Two Different Strong Normalization Proofs?
— computability versus functionals of finite type —

Jaco van de Pol

Department of Philosophy, Utrecht University
Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
E-mail: jaco@phil.ruu.nl

Abstract. A proof of Vt3nSN(t, n) (term t performs at most n reduction
steps) is given, based on strong computability predicates. Using modified
realizability, a bound on reduction lengths is extracted from it. This
upper bound is compared with the one Gandy defines, using strictly
monotonic functionals. This reveals a remarkable connection between his
proof and Tait’s. We show the details for simply typed A-calculus and
Gédel’s T. For the latter system, program extraction vields considerably
sharper upper bounds.

1 Introduction

The purpose of this paper is to compare two different methods to prove strf)gg
normalization (SN). The first method uses the notion of strong o‘ar.nqpﬂtﬂblm‘v
predicates. This method is attributed to Tait [9], who used convertibility predi-
cates to prove a normal form theorem for various systems. The other method to
prove strong normalization uses functionals of finite type. To. each typed term
a functional of the same type is associated. This functional is measured by a
natural number. In order to achieve that a rewrite step gives’ rise t.o a decrease
of the associated number, the notion strictly monotonic ff.mctwnal is developf@du
The number is an upper bound for the length of reduction sequences starting
from a certain term. This method was invented by Gandy [2]. -
In the literature, these two methods are often put in contrast Sie-g-‘izgii zei
and [3, §4.4]). Using functionals seems to be more transparent an 1‘_’;‘;:‘:0 ore
on proof theoretical complexity; strong computability should gener; the feéling
complex systems. On the other hand, seeing the two proofs O“flg‘; 0.1] remarks
that “somehow, the same thing is going on”. Indeed De Vrijer tlin ’ frc;m concrete
that a proof using strong computability can l_)e seen as a,bs_tra.ct g imt‘m;z oo,
information in the functionals that is not stn.ctly needed in a term
but which provides for an estimate of r.educt?on leégths. will decorate the proof
In this paper we will substantiate ‘th.lS feeling. Fj“::ﬂgidng binarv predicates
4 la Tait with concrete numbers. This is doner?yri S most n 1 eduction steps.
SN(t,n), which mean that the term ¢ may perto

2 p y “ p "
f 1
a‘l cons tI uctlve l‘OOf Of 3nSN(t7 n) 18 gl‘!eﬂ or an t I TOm t hiﬁ !0{‘{

we extract a program, via (he lmm)iifhed ﬂiﬁiﬁl assigned to the term ¢ in the
this program equals (more or less) the

proof & la Gandy.

202

The paper is organized as follows. In Section 3, we decorate Tait’s SN-proof
for simply typed A-calculus. Modified realizability is introduced in Section 4. In
Section 5 the proofs of Section 3 are formalized; also the program extraction is
carried out there. In Section 5.3, the extracted functionals are compared with
those used by Gandy. The same project is carried out for Gédel’s T in Section 6.
Other possible extensions are considered in Section 7.

The idea of using a realizability interpretation to extract functionals from
Tait’s SN-proof already occurs in [1]. In that paper, the normal form of a term
is extracted. The contribution of this paper is, that by extracting numerical
upper bounds for the length of reduction sequences, a comparison with Gandy’s
proof can be made. Furthermore, we also deal with Gdédel’s T, which yields a
sharper upper bound than provided by Gandy’s proof. The author is grateful
to Ulrich Berger for discussions on the subject, and to Marc Bezem and Jan
Springintveld for reading and improving preliminary versions of the paper.

2 Simply Typed A-Calculus

The set of ssimple types contains a certain set of base types and is closed under the
binary operator —. By convention, metavariables ¢, ¢, - - range over base types;
p,0,7, - over arbitrary types. The adjective “simple” will often be dropped.

The set of ssmply typed A-terms contains a certain set of typed variables and is
closed under typed application and A-binding. We reserve r, s, ¢, - - - for arbitrary
simply typed terms, and 2,37, - - - for typed variables. Constants can be seen as
variables that will not occur after a A. With terms we will mean simply typed
A-terms. To indicate that r has type o, we write . The typing rules are as
follows:

I. A variable (or constant) =7 is of type o.
2. If s and ¢t are of type p — ¢ and p, respectively, then (st) is of type o.
3. If 7 is a variable and s is of type 7, then (A\zx®s) is of type o — .

Type decoration and outer brackets are often omitted.

Standard notions of bound and free variables (FV(s)) will be used. We will
identify a-convertible terms (i.e. terms that are equal up to the names of the
bound variables). Substituting a term ¢ for the free occurrences of z in a term s
is denoted by s[z := t]. Renamings to avoid unintended capture of free variables
are performed automatically.

The binary rewrite relation s —g t is defined as the compatible closure of
the J-rule: (Azs)t — s[z := t]. We write s —75 t, if there is a reduction sequence
from s to ¢ of n steps.

Definition 1. (SN for simply typed A-calculus)

L. A term ¢t is strongly normalizing, denoted by SN(t), if every reduction se-
quence t = 83 —g 87 —g - - - is finite.

203

2. A term is strongly normalizing in at most n steps (SN(t, n)) if every reduction
sequence out of t is finite, and has length at most n.

In the next section, we present the proof & la Tait, that every simply typed
A-term has an upper bound n such that it is strongly normalizing in at most

n steps. By Konig’s Lemma, this is equivalent to strong normalization, because
the B-reduction relation is finitely branching.

We will often abbreviate a sequence of terms ti,...,¢, by . In the same
way, sequences of variables T or types & will occur frequently. The length of such
sequences is implicitly known, or unimportant. The empty sequence is denoted
by €. The simultaneous substitution of the variables T by the terms f in a term
s is denoted by s[z :=1].

By convention, @ — 7 means ¢; — (02 — -+ — (0 — 7)) and sf means
(((st1)tz) - - -t,) and AZ.t means (Az1(Azs - - - (Azat))). We also use the following
(less standard) notation for sequences of variables, terms and types:

‘3".: o1
T __ml e

— a.
7wnn
C—T =0 — Ty,...,0 = Tn
~ 8t = s1t,..., 85t

— AZTL = AZ.t1,..., Tty

Note that by this convention @ — € = € (in particular,e — e = ¢jand e — 0 = o

3 Informal SN-Proof a la Tait

Tait’s method to prove strong normalization starts with defining a ‘:stmng comt-
putability” predicate which is stronger than “strong normalizability”. The proof
consists of two parts: One part stating that strongly computable terms are
strongly normalizing, and one part stating that any term is stmngly t‘"‘,nmpumbi@‘
The first is proved with induction on the types (simultaneously with the mﬂmw
ment that every variable is strongly computable). The second part s puww%
with induction on the term structure (in fact a slightly stronger statement is
proved). We will present a version of this proof that contains information about
reduction lengths.

Definition 2. The set of strongly computable terms is defined inductively as
follows:

(i) SC.(t) iff there exists an n such that SN(t,n).
(i) SCyor(t) iff for all s with SC,(s), SC-(ts).

Lemma3 (SC Lemma). (a) For all terms t, if SC(t) then there exists an n
ith SN(¢,n).)) SC(t)
(b) tIl'f:n' all t(erm?s t of the form =i, if there exists ann with SN(t, n), then SC(t]

In (b), t may be the empty sequence.

204

Proof. (Simultaneous induction on the type of t)

(a) Assume SC(t).
If t is of base type, then SC(t) just means that there exists an n with SN(¢,n).
If t is of type ¢ — T, we take a variable z°, which is of the form zt. Note
that z is in normal form, hence SN(z, 0) holds. By IH(b), SC(z); and by the
definition of SC(t), SC(tz). By IH(a) we have that there exists an n such
that SN(tz,n). We can take this n, because any reduction sequence from ¢
gives rise to a sequence from tz of the same length. Hence SN(¢,n) holds.
(b) Assume that t = 2t and SN(¢,n) for some n.
If t is of base type, then the previous assumption forms exactly the definition
of SC(¢).
If t has type 0 — 7, assume SC(s) for arbitrary s?. By IH(a), SN(s,m) for
some m. Because reductions in zfs can only take place inside f or s, we have
SN(zts,m + n). IH(b) yields that SC(zts). This proves SC(t).
O

Lemma4 (Abstraction Lemma). For all terms s,t and 7 and variables =, it

holds that if SC(s[z := t]F) and SC(t), then SC((Az.s)tF).

Proof. (Induction on the type of s7.) Let s, z, t and 7 be given, with SC(s[z :=
t]7) and SC(t). Let o be the type of s7.

If ¢ =+, then by definition of SC, we have an n such that SN(s[z := t|7, n).
By Lemma 3(a) we obtain the existence of m, such that SN(¢,m). We have to
show, that there exists a p with SN((Az.s)t7,p). We will show that we can put
p:=m+n-+ 1. Consider an arbitrary reduction sequence of (Az.s)tF. Without
loss of generality, we assume that it consists of first a steps in s (yielding s'), b
steps in 7 (yielding 7') and c steps in ¢ (yielding #'). After this the outermost
redex is contracted, yielding s'[z := ¢']7’, and finally d steps occur. Clearly,
¢ < m. Notice that we also have a reduction sequence s[z := t]F —* s'[z :=¢'|F'
of at least a + b steps (we cannot count reductions in ¢, because we do not know
whether z occurs free in s). So surely, a + b+ d < n. Summing this up, we have
that any reduction sequence from (Az.s)tF has length at most m +n + 1.

Let ¢ = p — 7. Assume SC(r), for arbitrary r?. Then by definition of
SC(s[z := t]r), we have SC,(s[z := t]Fr), and by IH SC((\z.s)t7r). This proves
SC((Az.s)tT). a

In the following lemma, 6 is a substitution, i.e. a finite mapping from variables
into terms.

Lemma5 (Main Lemma). For all terms t and substitutions 6, if SC(z®) for
all free variables = of t, then SC(t%).

Proof. (Induction on the structure of t.) Let ¢t and 8 be given, such that SC(z%)
for all z € FV(t).

If t = z, then the last assumption yields SC(t?).

If t = rs, we have SC(r?) and SC(s?) by IH for r and s. Then by definition of
SC(r?), we have SC(r?s®), hence by equality of rs® and (rs)?, SC(¢?) follows.

205

If t = Az.s, assume that SC(r) for an arbitrary r. By IH for s, applied on the
substitution 8z := 7], we see that SC(s°(=="1), hence by equality SC((s%)[z :=
7]). Now we can apply Lemma 4, which yields that SC((Az.s?)r). Again by using
equality, we see that SC((Az.s)?r) holds. This proves SC((\z.s)?). (Note that
implicitly renaming of bound variables is required.) o

Theorem 6. For any term t there exists an n, such that SN(t,n).

Proof. Let 6 be the identity substitution, with as domain the free variables of
t. By Lemma 3(b), SC(z) is guaranteed. Now we can apply Lemma 5, yielding
SC(t%). Because t° = t, we obtain SC(t). Lemma 3(a) yields the existence of an
n with SN(¢,n).]

4 A Variant of Modified Realizability

As mentioned before, we want to extract the computational content from the
SN-proof of Section 3. To this end we use modified realizability, introduced by
Kreisel [4]. In [10, § 3.4] modified realizability is presented as a translation of
HA® into itself. This interpretation eliminates existential quantifiers, at the cost
of introducing functions of finite type (functionals), represented by A-terms.

Following Berger [1], we present modified realizability as an interpretation of
a first order fragment (MF') into a higher-order, negative (i.e. 3-free) fragment
(NH). We will also take over a refinement by Berger, which treats specific parts
of a proof as computationally irrelevant.

4.1 The Modified Realizability Interpretation

A formula can be seen as the specification of a program. E.g. Vz3y.P(z,y) spec-
ifies a program f of type o—o, such that Vz.P(z, f(z)) holds. In general a se-
quence of programs is specified.

A refinement by Berger enables to express that existentially quantified vari-
ables are independent of certain universal variables, by underlining the univer-
sal ones. In Yz3y.P(z,y) the underlining means that y is not allowed to de-
pend on z. So a number m is specified, with Vz.P(z,m). This could of course
also be specified by the formula 3yVz.P(z,y), but in specifications of the form
Vz.P(z) — Jy.Q(z,y) the underlining cannot be eliminated that easily. This for-
mula specifies a number m, such that Vz.P(z) — Q(z, m) holds. The ¥z cannot
be pushed to the right, nor can the 3y be pulled to the left, without changing
the intuitionistic meaning.

Specifications are expressed in minimal many-sorted first-order logic (MF).
This logic is based upon a many-sorted first-order signature. Terms over such a
signature are defined as usual (a,b,c,... denote arbitrary terms). The formulae
of MF are either atomic (P@), or of the form ¢ — v, Vz‘¢p, Yz'p or Jz*p. Here
©,1, ... denote arbitrary MF formulae. This logic is Minimal, because negation
is not included, and it deals with First-order objects only.

206

As programming language, we use the simply typed A-calculus. Because pro-
grams are higher-order objects, MF cannot talk about them. To express correct-
ness of programs, we introduce Negative Higher-order logic (NH). The terms of
NH are simply typed A-terms considered modulo B, with the MF sorts as base
types, MF function symbols as constants and with the MF predicate symbols.
The formulae are atomic (P3), or composed with ¢ — 9 or Vz?y. Here @,9,. ..
denote arbitrary NH formulae. Negative means that there are no existential
quantifiers, and Higher-order refers to the objects.

Below we define 7(¢), the sequence of types of the programs specified by the
MF formula ¢. This operation is known as “forgetting dependencies” (of types
on terms). Furthermore, if 5 is a sequence of programs of type 7(y), we define an
NH formula 3 mr ¢ (modified realizes). This NH formula expresses correctness
of 3 with respect to the specification ¢.

Definition 7. (modified realizability interpretation)

7(Pa):=¢ emr Pg:= Pa
(p = ¥) :=7(p) — 7(¥) Smry — ¢ = V& ¥} mr p) — (57 mr)
T(Vzt) := 1 — T(¢) S mr Vztp ;= Vz'(Sz mr ¢)
T(¥zte) = 1(p) 3 mrVYz'y := Vz*(3 mr ¢)
T(3ztp) := 1, 7() r,3mr 3z‘p(z) := 3§ mr p(r)

In the mr-clauses, z* should not occur in § and Z should be fresh. Note that
only existential quantifiers give rise to a longer sequence of types. In particular, if
 has no existential quantifiers, then 7(¢) = e. (We use that & — € = ¢). Nested
implications give rise to arbitrarily high types. In Yz‘yp, the program specified
by ¢ may not depend on z, so the “. —” is discarded in the 7-clause. In the
mr-clause, the programs 5 do not get z as input, as intended. But to avoid that
z becomes free in , we changed Berger’s definition by adding Vz*.

By induction on the MF formula ¢ one sees that if 5 is of type 7(¢), then
3 mr yp is a correct formula of NH, so in particular, it will not contain 3- and
Y-quantifiers (nor of course the symbol mr).

4.2 Derivations and Program Extraction

In the previous section we introduced the formulae of MF, the formulae of NH
and a translation of the former into the latter. In this section we will introduce
proofs for MF and for NH. The whole point will be, that from an MF proof of ¢
a program can be extracted, together with an NH proof that this program meets
its specification ¢.

Proofs are formalized by derivation terms, a linear notation for natural de-
duction. Derivation terms are defined as the least set containing assumption
variables (u¥,v¥,...) and closed under certain syntactic operations. To express
some side conditions, the sets of assumption variables (FA(d)) and of computa-
tional relevant variables (CV(d)) are defined simultaneously. By convention, =
and y range over object variables. We let d, e range over derivations.

207

The introduction rule for the Y-quantifier has an extra proviso: we may only
extend a derivation d of ¢ to one of Yzo, if z is not computationally relevant
in d. Roughly speaking, all free object variables of d occurring as argument of a
V-elimination or as witness in an 3-introduction are computationally relevant.

Definition 8. (derivations, free assumptions, computational relevant variables)

ass : u¥f FA(u) = {u} CV(u) =0

-t (Aufd¥)Pv FA(Mud) =FA(d) \ {u} CV(\ud) = CV(d)

7 (4P Ye?)? FA(de) = FA(d) UFA(e) CV(de) = CV(d) U CV(e)

vt (Az7d®)¥ee FA(Azd) = FA(d) CV(izd) = CV(d) \ {z}
provided (1)

AN C AL ICPRaTAC) FA(da) = FA(d) CV(da) = CV(d) UFV(a)

vt (AgZde)¥eZe FA(Azd) = FA(d) CV(dzd) = CV(d)
provided (2)

Y~ o (dZTe)gr)e (@) FA(da) = FA(d) CV(da) = CV(d)

It . (3t[a”; de@])3="¢ (=) FA(3*[a;d]) =FA(d) CV(3*[a;d))

= CV(d)UFV(a)

37 (@[T g ur) e¥))Y FAIT[d; v us€]) CV(3[d;y;use])

provided (3) =FA(d) U (FA(e) \ {u}) =CV()U(CV(e)\ {y})

where the provisos are:

(1) = ¢ FV (%) for any u¥ € FA(d).
(2) = ¢ FV (%) for any u¥ € FA(d) and moreover, z ¢ CV(d).
(3) y ¢ FV(¢¥) and y ¢ FV(x) for all vX € FA(e) \ {u}.

An MF-derivation is a derivation with all quantifier rules restricted to base
types. An NH-derivation is a derivation without the Yz and the 3-rules. We will
write @ Fuvr 9 if there exists a derivation d¥, with all free assumptions among
@. Likewise for Fng.

From MF-derivations, we can read off a program and a correctness proof for
this program. This is best illustrated by the I* rule: If we use this rule to prove
Jdzp(z), then we immediately see the witness a and a proof d of ¢(a). In genera
we can define ep(d), the sequence of extracted programs from a derivation ¢
To deal with assumption variables in d, we fix for every assumption variabl
u¥ a sequence of object variables EZ("’). The extracted program is defined with
respect to this choice.

Definition 9. (extracted program from MF-derivations)

ep(u?) := 75¥ ep(d"* ¢()a*) := ep(d)a
ep(Ourd?) := 375" ep(d) ep(dz'd?) := ep(d)
ep(d¥~¥e?) := ep(d)ep(e) ep(d¥=#(*)g") := ep(d)

ep(Az'd?®) := Az‘ep(d) ep(3*[a‘;d#(]) := a,ep(d)

ep(37[d; y; u*¥); e¥]) := ep(e)[y := s[Fu := T], where s, = ep(d¥*'¥(*))

The whole enterprise is justified by the following

208

Theorem 10 (Correctness [1]). Ifd is an MF derivation of ¢, then there ex-
ists an NH derivation u(d) of ep(d) mr ¢. Moreover, the only free assumptions
in u(d) are of the form T, mr %, for some assumption u¥ occurring in d already.

Proof. First the following facts are verified by induction on d:

1. FV(ep(d)) C U{Zw|u € FA(d)} U CV(d).
2. ep(d¥) is a sequence of terms of type 7(¢).

Then the existence of u(d) can be proved by induction on d. We only deal
with one typical case. See e.g. [1] for the other cases.

p(dztd) ;= Az*(u(d))

By induction hypothesis, we have u(d) proves ep(d) mr ¢. By the proviso of Y,
z ¢ CV(d), hence (by fact 1) z ¢ FV(ep(d)). Furthermore, does not occur in
free assumptions of d, hence not in assumptions of u(d), so Azu(d) is a correct
derivation of Vz(ep(d) mr (), which is equivalent (because = ¢ ep(d), and using
B-equality) to ep(Azd) mr Yzep. O

4.3 On Using Axioms

If we use an axiom ax¥ (as open assumption) in a proof d of MF, then the ex-
tracted program ep(d) will probably contain the free variables ?E;(Jf) (as holes)
and the correctness proof p(d) may contain a free assumption Zax mr ¢ (ac-
cording to Theorem 10).

The goal is to complete the program in a correct way. More specifically, we
look for realizers Zax, such that the NH formula fax mr ¢ holds in our intended
interpretation. If this succeeds, then the extracted program can be completed
by taking ep(d)[Tax := fax|. This is correct, because the assumptions in the
correctness proof p(d) hold. We conclude that the justification of postulated
principles should be given in terms of NH, because in this logic the correctness
proofs live. We will now justify some typical principals. (See also [10] and [1].)!

3-free axioms. Let ¢ be such a formula. Then 7(¢) = ¢. The only candidate
realizer is the empty sequence of programs. Note that the formula € mr ¢ is
obtained from ¢ by removing all underlinings. So a formula without existen-
tial quantifiers may be used as axiom, whenever it is true after removing all
underlinings.

Equality axioms. Assume that = is a binary predicate symbol. The usual ax-
ioms for symmetry, transitivity and reflexivity of = are existential-free and are
iustified as above. The replacement scheme requires another justification. We
wtroduce the axiom scheme
repl:s =1t — ¢(s) — o(t) .

(n the full version we regard some principles that depend on the underlining.

209

Note that 7(s =t — ¢(s) — ¢(t)) = 7(p) — T(¢)- The identity can be taken
as realizer, as the following calculation shows:

A7) F mr (s =t — p(s) — @(t))
=s=t— VZ.T mr ¢(s) — T mr ¢(t),

The latter NH formula is true, if we interpret = by the identity relation. This
means that we can use the replacement scheme in MF proofs. Its realizer is the
identity on sequences.

5 Formalized Proofs and Extracted Programs

In this section the proof of Section 3 will be formalized in first-order predicate
logic, as introduced in Section 4. This is not unproblematic as the informal proof
contains induction on types and terms, which is not a part of the framework. This
is solved by defining a series of proofs, by recursion over types or terms. In this
way the induction is shifted to the metalevel. There is a price to be paid: instead
of a uniform function U, such that U(t) computes the desired upper bound for
a term t, we only extract for any ¢ an expression Upper[t], which computes an
upper bound for term ¢ only. So here we lose a kind of uniformity. It is well
known that the absence of a uniform first-order proof is essential, because the
computability predicate is not arithmetizable [10, §2.3.11].

Another incompleteness arises, because some combinatorial results will be
plugged in as axioms. This second incompleteness is harmless for our purpose,
because all these axioms are formulated without using existential quantifiers.
Hence they are realized by the empty sequence (and finding formal proofs for
these facts would be waste of time).

5.1 Fixing Signature and Axioms

As to the language, we surely have to represent A-terms. To this end, we adopt
for each type p new sorts V, and 7,, that interpret variables and terms modulo
a-conversion of type p, respectively. Constants of sort V, are added to represent
variables (written "z'). Function symbols for typed application and abstraction
are included as well. With 5", we denote the representation of a A-term s in this
first-order language, using the following function symbols:

V, :V, — T, to inject variables into terms;
_ %0 _:T,,; x T, > T,, denoting typed application;
AoV, x T, — T, denoting typed abstraction.

Note that e.g. Az.z = A(%", V(%")), for some arbitrary but fixed choice of y.
Although the terms in the intended model are taken modulo a-conversion, the
first-order terms cannot have this feature. We will also need function symbols
to represent simultaneous substitution: for any sequence of types o,71,...,7n, &
symbol _(_,_,...:=_,_,...)of arity To x Vp, X+ --x Ve XTI, X+ - xTr, — T
The intended meaning of s(Z := t) is the simultaneous substitution in s of z; by

211

Due to the underlined quantifier, 7(SC,(s)) = o', where o' is obtained from
o by renaming base types ¢ to nat. The underlined quantifier takes care that
numerical upper bounds only use numerical information about subterms: the
existential quantifier hidden in SC(t e s) can only use the existential quantifier
in SC(s); not s itself. In fact, this is the reason for introducing the underlined
quantifier.

Formalizing the SC Lemma. We proceed by formalizing Lemma 3. We will
define proofs

&, : ¥t.8C,(t) — InSN,(t,n) and
¥, : Yot. (3mSN,(V(z) e t,m)) — SC,(V(z) e t)
with simultaneous induction on p:
&, := At uSCt)y
B, := AtASCE)
37[8,(t « V(2) (WV(2)(Z,23* [0; (a2:12)]));
m; ,USN(toV(z),m);

3t [m; (azstzmv)]]

)‘mzAuamSN(V(z)-?,m)u

v, .=
Vposo 1= Azt)\uamSN(V(z)'z’m)&z\vsc(’)

3= [u; m; uﬁN(V(z)o?,m).

3[(Bp8v);ms 5 ™
U, zts 3T [(m + n); (az2ztsmnugvy))]]

Having the concrete derivations, we can extract the computational content,
using the definition of ep. Note that the underlined parts are discarded, and
that an 3-elimination gives rise to a substitution. The resulting functionals are
ep(®,) : p — nat and ep(¥,) : nat — p,

ep(d,) = Azyzy
ep(By.0) = Azymlm = ep(8,)(.(ep(Z,)0))]
= Azyep(Ps)(zu(ep(¥,)0))
ep(¥,) = Az, Ty
ep(¥p—o) = Az Azeep(¥y)(m + n)[n 1= ep($,)] [m = 2]
= Az Az, ep (s) (T4 + (ep(Pp)zy))

Formalizing the Abstraction Lemma. We proceed by formalizing Lemma 4,
which deals with abstractions. Let r have sort T5_,,, and each r; sort 7, (so
roT has sort 7,). Let s have sort 7, y sort V,, each t; sort 7, and each z; sort
Vr,. We construct proofs

Qpo57 V1,4, %, 8,8,7.SCp(r(y, T :=5,1) ¢ 7) —=8Cs(s) —)
SCo(A(y,r)(T :==t) e (5,T))

210

t;. If for some i and j, z; and z; happen to be the same, the first occurrence from
left to right takes precedence (so the other substitution is simply discarded).

In order to represent upper bounds for reduction sequences, we introduce a
sort nat, denoting the natural numbers, with constants onat qnat and 4+ _ of
arity nat x nat — nat, with their usual meaning.

We let 7, s and t range over terms of sorts 7,; and y are variables of sorts
V,; m and n range over sort nat. We abbreviate ((sot))e---ety) by s et
Type decoration is often suppressed.

Finally, we add binary predicate symbols _ =, _ for equality on sort 7 and
SN, of arity 7, x nat, representing the relation of Definition 1(2).

We can now express the axioms that will be used in the formal proof. We will
use the axiom schema repl : s =t — ©(s) — ¢(t) to replace equals by equals.
Furthermore, we use all well typed instances of the following axiom schemata.

1. Yz. SN,(V(z),0)
2. Vz,t,5,m,n. SN,,(V(z) e t,m) = SN,(s,n) — SN, (V(z) e (I,), m + n)
3. Vs, z,m. SN, (s e V(z),m) — SN,_,,(s,m)
4. VYr,y,%,s,1,7,m,n. SN, (r(y,% := s,t) e T,m) — SN,(s,n) —
SN.(A(y,n)(T :=1t) e (s,F),m +n+1)
. YE. t; =V(z)(T :=1), provided i is the first occurrence of "z;" in Z".
Vr, s, Tt r(T:=t)es(T:=1)=(res)(T:=1)
7. Vs,%. s(Z:=V(T)) =s, where V(Z) stands for V(z1),...,V(zm)

[=r BN

In the formal proofs, we will refer to these axioms by number (e.g. azs). Ax-
ioms 1-3 express simple combinatorial facts about SN. The equations 5-7 ax-
lomatize substitution. Axiom 4 is a mix, integrating a basic fact about reduction
and an equation for substitution. The reason for this mixture is that we thus
avoid variable name clashes. This is the only axiom that needs some elaboration.
In the intended model, (Azr)[ZT := t] equals Az(r[T := t]), because we can
perform an a-conversion, renaming z. However, we cannot postulate the similar
equation
Vz,Z,t,7. A(z,7)(ZT :=1) = Az, r(ZT :=1))
as an axiom, because we cannot avoid that e.g. t; gets instantiated by a term
containing the free variable z, such that the same z would occur both bound
and free?. Now in the proof of Lemma 4 it is shown how the reduction length
of (Ay.t)sT can be estimated from the reduction lengths of s and t[y := s|7.
After substituting r[Z := t] for ¢, and using the abovementioned equation (thus
avoiding that variables in ¢ become bound), we get Axiom 4.

5.2 Proof Terms and Extracted Programs

As in the informal proof, we define formulae SC,(t) by induction on the type p.
These will occur as abbreviations in the formal derivations.

{ SC.(t) := InMAtSN, (¢, n)
SCpo(t) := ¥s%SC,(s) — SC,(t ® 3)

? Strictly speaking, [1] erroneously ignores this subtlety.

212

by induction on p. This corresponds to the induction on p in the informal
proof. The base case uses Axiom 4. Only the first two subscripts will be written
in the sequel.
Ao = Ar, y’z—c-,s’E’FAMSC,(r(y,E:=s,I)oF)A,USC(a)
I [u;m; uﬁN(r(y’Em H)eTm),
37 [($ssv);m; vgN(’ m). _
Ftm+n+1; (aa;uy?z‘st'fmnuovo)]]]

Apsr g = Ar,y,E,s,Z,7"AUSC(T(V’E‘“’I)'F))\vsc(’)
A AwSCe () (A, ,ryEstrr! (ur'w)v)

Having these proofs, we can extract their programs, using the definition of
ep. In this way we get ep(A,) :p — 0 — p,

ep(4,,0) = Az Az, (m +n + 1)[n = ep(Po)zo][m = 2]
= Az Az, (T + (ep(Ps)zy) + 1)
ep(Apmiro) = ATy AT, ATy, (ep(Ar,0) (TuTw)Ty)

Formalizing the Main Lemmma. The main lemma (5) states that every term
s is strongly computable, even after substituting strongly computable terms for
variables. The informal proof of Lemma 5 is with induction on s. Therefore, we
can only give a formal proof for each s separately. Given a term s with all free
variables among %, we construct by induction on the term structure a proof

I,z :Vt,...,t,.SC(t;) — -+ - = SC(t,) — SC(&' (T :=1)).
II,, 7 := At\u(repl (azst) u;

T, = Aa(repl (azs TSTFE) (1T, 280 (T := 1) (I, 77)
Hz\zr,z = At A’I‘L)"S/\'USC(s)(A' ' F_—SZ (Hr' 'Yy zst'U'U:))

where in the last equation, we assume that \zr = A(y, '), with z : o and
T:p.

Again we extract the programs from these formal proofs. Because the realizer
of repl is the identity, we can safely drop it from the extracted program. For
terms s with free variables among %, each «; : 7;, we get ep(II,z) : 7 — o,

ep(Hz;,E) = AE‘umu,i
ep(Hrs,?c') = Xfu(eP(Hr,z)?Eu(ep(H,’;)Eu))
ep(ﬂAzr’E) =)‘E“)‘m"(ep(AﬂyU)(ep(nr’,y,'i)xviu)xv)a

where again it is assumed that Azr' = A, '), z:0 and 7 : p.

213

Formalization of the Theorem. Now we are able to give a formal proof of
InSN("s", n), for any term s. Extracting the computational content of this proof,
we get an upper bound for the length of reduction sequences starting from s.
We will define formal proofs {2, : 3nSN("s",n) for each term s ("s” denotes the
representation of s). Let T be the sequence of free variables in s : o, each z; : ;.

02, := (8,75 (vepl (az,s7) (I, V(@)W - - ¥y))),

where ¥; := (¥, V(z;")37(0; (az1zi")]) is a proof of SC(V("z")) (¥ is defined in

Section 5.2) and V(7z') stands for V(z17),- -+, V(Z,"'). As extracted program, we
get ep(£2,) : nat,

ep(£2;) = ep(&,)(ep(IL, z)(ep(¥r,)0) - -- (ep(¥-,)0))

5.3 Comparison with Gandy’s Proof

In order to compare the extracted programs from the formalized proofs with the
strictly monotonic functionals used by Gandy [2], we recapitulate these programs
and introduce a readable notation for them.

M, :0 — nat :=ep(P,)
Sy:0 = ep(¥,)0
Lyo:p—0—p:=ep(dys)
[s°)zn7:0 = ep(Il,z)t
Upper(t] : nat := ep({2).

Function application is written more conventionally as f(z) and some recursive
definitions are unfolded. Assuming that ¢ = o3 — --- — on, — nat, these
functionals obey the following equations:

Mo'(f) = f(Sa'n cee aSo',.)
So(T) = My, (z1) +---+ Mo, (zn)
La,rﬁ[fay7i) = f(-f) + Mf(y) + 1
Tilzst = ti
[rslz—i = [rlzz ([s]z-2)
IIA:BOTP]]EH? (y) = LP)U(‘IT]]z,Ev——»y,E ? y)
Upper(t™] = M- ([tlz_3)-

The Correctness Theorem 10 guarantees that SN(t',Upper][t]) is provable in NH,
so Upper[t] puts an upper bound on the length of reduction sequences from ¢.
This expression can be compared with the functionals in the proof of Gandy.
First of all, the ingredients are the same. In [2] a functional (say G) is defined
playing the rdle of both § and M (and indeed, S,_nat = Ms). § is a special
strictly monotonic functional and M serves as a measure on functionals. Then
Gandy gives a non-standard interpretation t* of a term ¢, by assigning the special
strict functional to the free variables, and interpreting A-abstraction by a Al
term, so that reductions in the argument will not be forgotten. This corresponds
to our [t]-, 3, where in the -case the argument is remembered by L, . and

214

eventually added to the result. Finally, Gandy shows that in each reduction
step the measure of the assigned functionals decreases. So the measure of the
non-standard interpretation serves as an upper bound.

Looking into the details, there is one slight difference. The bound Upper[t]
is sharper than the upper bound given by Gandy. The reason is that Gandy’s
special functional (resembling § and M by us) is inefficient. It obeys the equation
(with o =0y » -+ — 0, — nat)

Go(a1,.--,2n) = Ggy _nat(21) + 2°Goymnat(z2) + -+ +2"7%G,, _nat(zn)-

Gandy defines G, with a + functional on all types and a peculiar induction.
By program extraction, we found functionals defined by simultaneous induction,
using an extra argument as accumulator (see the definition of ep(®) and ep(¥)),
thus avoiding the + functional and the implicit powers of 2.

We conclude this section by stating that program extraction provides a tool
to compare the two SN-proofs in the case of simply typed A-calculus.

6 Application to Godel’s T

Godel’s T extends simply typed A-calculus with higher-order primitive recursion.
The set of base types is extended with a type o of natural numbers. We let p
and g range over terms of type o. Constants 0° and S°7° are added. For each
type o, we add a constant R, : 0 — (0 = ¢ — ¢) — 0 — o. The following rules
express higher-order primitive recursion:

R,st0 — s and R, st(Sp) — tp(R,stp) .

With —ggr we denote the compatible closure of the 8 rule and the two recursion
rules. It is a well known fact that — g is a terminating rewrite relation.

The proof & la Tait of this fact (see e.g. [10, 2.2.31]) extends the case of
the B-rule, by proving that the new constants are strongly computable. We
will present a version with concrete upper bounds. It turns out to be rather
cumbersome to give a concrete number. Some effort has been put in identifying
and proving the right “axioms” (Lemma 12-15) from which the decorated proof
can be constructed (Lemma 16, 17). The extracted upper bounds are compared
with the functionals used by Gandy (Section 6.3).

6.1 Changing the Interpretation of SN(%,n)

Consider the following consequence of SC,_,(r) for fixed r. This formula is
equivalent to ¥pVm.SN(p,m) — 3InSN(rp,n). So we can bound the reduction
length of rp uniformly in the upper bound for p. More precisely, if SN(p,m)
then SN(rp, [r](m)). A stronger uniformity principle appears in [11, §2.3.4]).
The uniformity principle does not hold if we substitute R,st for r: Although
SN(S5*0, 0) holds for each k, Rst(S*0) can perform k reduction steps. So SC(Rst)
cannot hold. This shows that it is impossible to prove SC(R) with SC as in

215

Definition 2. Somehow, the numerical value (k) has to be taken into account
too.

To proceed, we have to change the interpretation of the predicate SN(, n).
We have to be a bit careful here, because speaking about the numerical value
of a term s would mean that we assume the existence of a unique normal form.
The following definition avoids this assumption:

Definition11. 1. Second interpretation of SN: SN(¢,n) holds if and only if for
all reduction sequences of the form ¢t = sg —gRr $1 =gr *** —gR Sm = Sk(r),
we have m + k < n. Note that k can only be non-zero for terms of type o.
2. A finite reduction sequence so —gg -+ —gR Sn is mazimal if s, is normal
(ie. there is no term ¢ with s, —gg t). An infinite reduction sequence is
always maximal.

So SN(t,n) means that for any reduction sequence from t to some s, n is at least
the length of this sequence plus the number of leading S-symbols in s. Note that
SN(t,n) already holds, if n bounds the length plus value of all mazimal reduction
sequences from ¢.

We settle the important question to what extent the proofs of Section 5 re-
main valid. Because these are formal proofs, with SN just as a predicate symbol,
the derivation terms remain correct. These derivation terms contain axioms, the
validity of which was shown in the intended model. But we have changed the
interpretation of the predicate symbol SN. So what we have to do, is to verify
that the axioms of Section 5.1 remain correct in the new interpretation.

The axiom schema repl, azs, axg and az; are independent of the interpreta-
tion of SN. Axioms 1, 2 and 3 remain true, because the terms in their conclusion
have no leading S-symbols (note that 1 and 2 have a leading variable; 3 is of ar-
row type). Axiom 4 is proved by a slight modification of the proof of Lemma 4.
The following observation is used: If (Az.s)tF —jp 5%(q), then at some point
we contract the outermost B-redex, say (\z.s')t'r" —p s'[x := t'[r’. The latter is
also a reduct of sz := t|7, so £ is bounded by the upper bound for the numerical
value of this term.

6.2 Informal Decorated Proof

To prove SC(0), SC(S) and SC(R), we need some axioms, expressing basic truths
about SN. In this section, — is written for —gg. For 0 and S we have:

Lemmal2. 1. SN(0°,0"3%)
2. For all terms p and numbers m, SN,(p, m) implies SN,((Sp), m + 1).

Proof. 0is normal and has no leading S-symbols. If (Sp) —™ S*(r) for some n,
k and r, then p —™ S*~!(r). From SN(p,m) we obtain k+n < m + 1. This
holds for every reduction sequence, so SN((Sp), m + 1) holds. O

It is less clear which facts we need for the recursion operator. To prove
SC(R,) (see Lemma 17), we need to prove SC,(Rstp) for strongly computable

216

s, t and p. If p is strongly computable, then SN(p, m) holds for some m. With
induction on m, we will prove Vp(SN(p,m) — SC,(Rstp)). We need two axioms
to establish the base case and the step case of this induction. For the base case,
we need (schematic in the type o):

Lemmal3.
Vs, t,7,p,£,n. SN,(s7,£) = SN, 50 (t,n) = SN,o(p,0) — SN, (R, stpF, £+n-+1)

Proof. Assume SN(s7, £), SN(t,n) and SN(p,0). The latter assumption tells that
p is normal and cannot be a successor. If p # 0, then reductions in RstpF can
only occur inside s, ¢t and 7, and these are bounded by £+ n. If p = 0, then a
maximal reduction of RstpF will consist of first some steps within s, t and 7 (of
respectively a, b and c steps, say) followed by an application of the first recursion
rule, and finally d more steps. This gives a reduction of the form:

RstOF —°T0+¢ Rs't'0r’ — s'77 —2 Si(r)

We can construct a reduction sequence from s7 via s'7/ to S%(r) of length a+c-+d.
By the first assumption, a + ¢+ d + 1 < £, by the second assumption-b <
nysoa+b+c+1+d+i < £+n+ 1. As this upper bound holds for an
arbitrary maximal reduction sequence, it holds for all reduction sequences, so
we get SN(Rstpr,£ +n + 1). O

The next lemma is needed for the step case. Note that if SN(p, m + 1) holds,
then p may reduce to either 0 (in at most m + 1 steps) or to (Sp') (in at most
m steps). This explains the first two hypotheses of the following lemma.

Lemma14.
Vs, t,7, €, m,n. SN,(s7,£) —
Vg.SN,(g,m) — SN, (tq(Rstq)F, n)) .
Vp.SN,(p,m + 1) — SN, (RstpF, £+ m +n + z))

Proof. Assume SN, (s7,£), ¥q.SN(g,m) — SN,(tg(Rstq)7,n) and SN(p,m + 1),
for arbitrary s,t,7,£,m,n and p. Consider an arbitrary maximal reduction se-
quence from RstprF. It consists of reduction steps inside s, ¢, p and 7 (of a, b, ¢
and d steps to the terms ', #', p’ and 7/, respectively), possibly followed by an
application of a recursion rule, concluded by some more steps. We make a case
distinction to the shape of the reduct p’ after these steps:

Case A: p’ = 0 Then the maximal reduction has the following shape:
Rstpr —°to+etd Roliorl - o' ¢ Si(r)

We can construct a reduction from s¥ to S*(r) of a + d + e steps, hence, by the
first assumption, a+d+ e+ 1 < £. From the third assumption, we get ¢ < m+ 1.
To bound b, we can only use the second hypothesis. Note that SN(0, 0) and hence
SN(0,m) holds. The second assumption applied to 0 yields SN(t0(Rst0)F,n), so

217

necessarily b < n. Now the reduction sequence can be bounded, viz. a + b+ c +
d+1+e+i<fl+m+n+2.

Case B: p' = (Sq) Then the maximal reduction has the following shape:
Rstpr —otbtetd RoY(Sq)r — t'g(Rs't'q)r" —¢ Si(r)

First, SN(g,m) holds, because if ¢ —7 S*(g'), then p —<*J Sk+1(¢") so c+j +
k+1 < m+1, hence j + £ < m. Next note, that there is a reduction from
tg(Rstq)7 to Si(r) of a + 2b + d + e steps. Now the second assumption can be
applied, which yields that a + 2b+ d + e + ¢ < n. Finally, ¢ < m. Adding up all
information, we get a +b+c+d+1+e+i<m+n+1l

Case C: If cases A and B do not apply, then p’ is normal (because a maximal
reduction sequence is considered), and no recursion rule applies. The reduction
sequence has length ¢ + b + ¢ + d and the result has no leading S-symbols.
Nowec<m+1l a+d< £and b <n can be obtained as in Case A. Clearly
a+b+c+d<l4+m+n+1.

In all cases, the length of the maximal reduction plus the number of leading
S-symbols is bounded by £+ m + n + 2, so indeed SN(RstpF,f + m + n + 2)
holds. a

The nice point is that this lemma is 3-free, so it hides no computational
content. Unfortunately, it is not strong enough to enable the induction step.
We have Vq.SN(g,m) — SC(Rstq) as induction hypothesis, and we may assume
SN(p,m + 1). In order to apply Lemma 14, we are obliged to give an n, such
that V¢.SN(g, m) — SN(tg(Rstq)7,n) holds, but using the induction hypothesis
we can only find an n for each g separately.

The solution of this problem relies on the fact that the upper bound n above
does not really depend on g. In the formalism of Section 4, this is expressed by
the Vg-quantifier. We change the lemma accordingly:

Lemmals.
Vs, t,7, 4, m. SN,(sF,£) —
Vq.SN,(g,m) — 3InSN,(tg(Rstq)7, n)) —
Vp.SN,(p,m + 1) — InSN, (Rstpr, L +m +n + 2))

The justification of this lemma has to be given in terms of NH, as pointed out
in Section 4.3. Lemma 15 contains existential quantifiers, so we have to insert a
realizer. Of course we take as realizer An.n. Now it can be verified that

An.n mr (Lemma 15) = (Lemma 14) .

Eventually, we can prove that the new constants are strongly computable.
The Numeral Lemma is a direct consequence of Lemma 12. The Recursor Lemma
uses Lemmas 13, 15 and 3. The SC-formula is an abbreviation introduced in
Section 5.2. The proofs below are in MF, so the underlining is important.

218

Lemmal6 (Numeral Lemma). SC(0) and SC(S).
Lemmal7 (Recursor Lemma). For all o, SC(R,) is strongly computable.

Proof. Note that R, has type 0 — (0 — 0 — ¢) — 0 — 0. We assume SC(s),
SC(t) and SC(p) for arbitrary terms s, t and p. We have to show SC, (R, stp).
From the definition of SC,(p) we obtain ImSN(p,m). Now YmVYp.SN(p, m) —
SC(Rstp) is proved by induction on m, which finishes the proof.

Case 0: Let SN(p, 0). Let arbitrary, strongly computable 7 be given. We have to
prove 3kSN(RstpF, k). From SC(s) and SC(7) we get SC(s7), hence SN(s7, £)
for some £ (using the definition of SC repeatedly). Lemma 3 and the assumption
SC(t) imply SN(¢,n) for some n. Now Lemma 13 applies, yielding SN(Rstp7, £+
n+1). Soweput k:=£+n+1.

Case m + 1: Assume Yq.SN(g,m) — SC(Rstg) (IH) and SN(p,m + 1). Let
arbitrary, strongly computable 7 be given. We have to prove JkSN(RstpT, k).
As in Case 0, we obtain SN(s7,£) for some £. In order to apply Lemma 15, we
additionally have to prove Vq.SN(g,m) — InSN(tq(Rstq)7,n).

So assume SN(g, m) for arbitrary g. This implies SC(q) and, by IH, SC(Rstq).
Now by definition of SC(t), we have SC(tq(Rstq)T), i.e. SN(tq(Rstq)7,n) for
some n. Now Lemma 15 applies, yielding SN(RstpF, £+ m +n' + 2) for some n'.
We put k:=£+m +n' +2. o

6.3 Extracted Programs compared with Gandy’s Functionals

The informal proof of the previous section can be formalized in the extension of
MF, obtained by adding induction axioms to it. System INH has to be extended
with induction axioms accordingly. We also have to add the (simultaneous) prim-
itive recursors, in order to get realizers of the induction axioms (see [10, §1.6.16,
§3.4.5]). Objects in the extended NH are regarded modulo SR-equality.

We will omit the formal proofs here, due to lack of space®. Instead, we directly
give the program that can be extracted from the formalized proof. This program
will contain the primitive recursor R,, because Lemma 17 contains induction

to a formula ¢ with 7(¢) = 0. Using the notation of Section 5.3, the extracted
functionals read:

[o]=o0
[Sim)=m+1
IIR,]](.’E, 1 O’E) = Z(E) + Ma—-w—m(f) +1
[Ro](z, f,m + 1,Z) = 2(Z) + m + f(m, [R,](z, f,m),Z) +2

These clauses can be added to the definition of [_] (Section 5.3), which now
assigns a functional to each term of Gédel’s T. This also extends Upper[_], which
now computes the upper bound for reduction lengths of terms in Godel’s T. But,
due to the changed interpretation of the SN-predicate, we know even more. In

3 The formal proofs are in the full version.

219

fact, Upper[t] puts an upper bound on the length plus the numerical value of
each reduction sequence. More precisely, if ¢t —¢ S7(¢') then i + j < Upper[t].

Gandy’s SN-proof can be extended by giving a strictly monotonic interpre-
tation R* of R, such that the recursion rules are decreasing. The functional used
by Gandy resembles the one above, but gives larger upper bounds. It obeys the
following equations:

R*(z, f,0,2) = z(zZ) + G(f) + 1
R*(w’ f’m+ 172) = f(m’R*(m’f’m)72)+R*(x’f’m,—z) + 1.

Here G is Gandy’s version of the functional M (see Section 5.3). Clearly, the
successor step of R* uses the previous result twice, whereas [R] uses it only
once. Both are variants of the usual recursor. In the base case, the step function
f is remembered by both. This is necessary, because the first recursor rule drops
its second argument, while reductions in this argument may not be discarded. In
step m + 1 the two versions are really different; R* adds the results of the steps
0,---,m, while [R] only adds the result of step 0 and the numerical argument
m. The addition of the result of step 0 is necessary to achieve strict monotonicity
of [R] in its third argument.

7 Conclusion

With two case studies we showed, that modified realizability is a useful tool
to reveal the similarity between SN-proofs using strong computability and SN-
proofs using strictly monotonic functionals. The extra effort for G6del’s T has
paid off, because we found sharper upper bounds than in [2, 7]. Moreover, the
new upper bound puts a bound on the sum of the length and numerical value
of reduction sequences. This information helps to improve the proof that uses
strictly monotonic functionals.

We think that our method can be applied more often. In a typical computabil-
ity proof SC-predicates are defined with induction on types. It is then proved
by induction on terms, that any term satisfies SC. By induction on the types,
SN follows. After decorating such a proof with an administration for reduction
lengths, the appropriate modified realizability interpretation maps SC-predicates
to functionals of the original type and SN-predicates to numbers. The extracted
program follows the induction on terms to obtain a non-standard interpretation
of the term. This object is mapped to an upper bound by the proof that SC
implies SN.

The realizability interpretation follows the type system closely. To deal with
Godel’s T, induction was added. In the same way, conjunction and disjunction
can be added to deal with products and coproducts (see also [2]). Recently,
Loader [5] extended Gandy’s proof to System F. As he points out, Girard’s SN
proof for System F (using reducibility candidates, see e.g. [3]) can be decorated,
after which modified realizability yields the same upper bound expressions. An-
other extension could deal with recursion over infinitely branching trees.

220

A problem arises with the permutative conversions for existential quantifiers
in first order logic. Prawitz [8] gives an SN-proof using strong validity (SV). In
[7] an SN-proof is given based on strict functionals. The SV-predicate is defined
using a general inductive definition, hence the computational contents of Prawitz’
proof is not clear. Consequently, the two SN-proofs cannot be related with our
method.

The latter system, and also Gédel’s T, can be seen as instances of higher-
order term rewrite systems. In [6, 7] a method is given to use strict functionals in
termination proofs for such rewrite systems. The connection with computability
should help in finding strict functionals for such proofs. One could for example
extract functionals from a computability proof for a core system, and then change
them by hand to obtain termination of a richer system.

The connection between computability and functionals gives rise to the fol-
lowing questions: Are the functionals extracted from SN-proofs always strictly
monotonic? What are right notions of strict monotonicity for higher type sys-
tems? Can some “easy” classes of strictly monotonic functionals be identified?

References

1. U. Berger. Program extraction from normalization proofs. In M. Bezem and J.F.
Groote ed., Proc. of TLCA ’93, Utrecht, volume 664 of LNCS, pages 91-106.
Springer Verlag, 1993.

2. R.O. Gandy. Proofs of strong normalization. In J.R. Hindley and J.P. Seldin ed.,
To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
pages 457-477. Academic Press, London, 1980.

3. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge
tracts in theoretical computer science. Cambridge University Press, 1989.

4. G. Kreisel. Interpretation of analysis by means of constructive functionals of finite
types. In A. Heyting ed., Constructivity in Mathematics, pages 101-128. North-
Holland, 1959.

. R. Loader. Normalisation by translation. http://sable.ox.ac.uk/ loader/, 1995.

6. J.C. van de Pol. Termination proofs for higher-order rewrite systems. In
J. Heering et al ed., Proc. of HOA ’'98, volume 816 of LNCS, pages 305-325.
Springer Verlag, 1994.

7. J.C. van de Pol and H. Schwichtenberg. Strict functionals for termination proofs.
In M. Dezani-Ciancaglini and G. Plotkin ed., Proc. of TLCA’95, volume 902 of
LNCS, pages 350-364. Springer Verlag, 1995.

8. D. Prawitz. Ideas and results in proof theory. In J.E. Fenstad ed., Proc. of the 2nd
Scandinavian Logic Symposium, pages 235-307, Amsterdam, 1971. North-Holland.

9. W.W. Tait. Intensional interpretation of functionals of finite types I. JSL, 32:198-
212, 1967.

10. A.S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and
Analysis. Number 344 in LNM. Springer Verlag, Berlin, 1973. A 2nd corrected
edition appeared as ILLC X-93-05, University of Amsterdam.

11. R. de Vrijer. Exactly estimating functionals and strong normalization. Proc. of the
Koninklijke Nederlandse Akademie van Wetenschappen, 90(4):479-493, Dec 1987.

(=3}

