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Abstract 
We propose new summary statistics quantifying several forms of dependence between types in 
a spatial pattern of points classified into distinct types. These statistics are the multivariate 
counterparts of the J-function for point processes of a single type, introduced in [18]. They 
are based on comparing distances from a type i point to either the nearest type j point 
or to the nearest point in the pattt'.rn regardless of type to these distances seen from an 
arbitrary point in space. Information about the range of interaction can also be inferred. 
Our statistics can be computed explicitly for a range of well-known multivariate point process 
models. Some applications to bivariate data sets are presented as well. 
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1 Introduction 

A multivariate point pattern is a spatial pattern of points, each point belonging to one of a 
finite number of distinct types [8]. Bivariate or two-type patterns in particular have often 
been reported and analysed. Examples considered in section 5 are a map of two species of 
ants' nests, a map of trees identified as healthy or diseased, a microscope image of retinal 
ganglion cells identified as 'on' or 'off', and a microscope image of cell nuclei classified into 
two types. 

To investigate dependence between the different types of points, the usual approach [3, 
9, 11, 12, 15, 19, 23, 28] begins by estimating 'cross-type' versions of the standard summary 
functions G and K. The purpose of this paper is to pursue an alternative. 

In [18] we introduced a new summary function J(t) for univariate (single-type) point 
patterns X: 

1 - G(t) 
J(t) = 1 - F(t) (1) 

defined for all t ?: O with F(t) =f; 1, whf>.re the 'empty space function' F is the distribution 
function of the distance from an arbitrary fixed point 0 to the nearest point of the pattern X, 
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and the 'nearest neighbour distance function' G is the distribution function of the distance 
from a typical point of X to the nearei:;t other point of X. The J function is an index of 
spatial interaction, identically equal to 1 for a Poisson process, and generally takes values 
less than 1 for clustered patterns and greater than 1 for ordered patterns. An appealing 
property is that the superposition X. = X1 U X2 of two independent point processes Xi, X2 
has J-function 

(2) 

where Ji, h are the J-functions of X1, X2 respectively and >.i, >.2 are their intensities. A 
similar statement holds for the superposition of m independent point processes. 

In the present paper we extend these ideas to multivariate point patterns. Let Xi be the 
process of type i points and X. = X 1 U · · · U Xm the process of all points regardless of type. 
Three approaches are proposed, which correspond to investigating three different forms of 
independence between types. First we may compare the left and right hand sides of (2) or 
its analogue for m types. These two expressions are equal if X 1 , ... , Xm are independent. 
Secondly we may construct an 'inter-type' J function Jii(t) for each pair of types i and j. 
This is identically equal to 1 if Xi and Xj are (marginally) independent. Thirdly we may 
construct a function Ji.(t) for each i summarising the dependence of X. on Xi. This reduces 
to a simple form if Xi is independent of (Xj,j -:/= i), and to another simple form if the 
'independent random labelling' model holds. 

Section 2 contains preliminaries and the main definitions of the J functions; in section 3 
we calculate them for a wide variety of stochastic models and in section 4 we exhibit some 
applications to bivariate point pattern data. 

2 Definitions and notation 

2.1 Univariate J-function 

First we recall some definitions from (18]. Suppose X is a stationary point process in Rd with 
finite positive intensity >.. The empty space function F of X is the cumulative distribution 
function of the distance from a fixed point (say, the origin) to the nearest point of X. Thus 
fort> 0 

F(t) = lF{X n B(O, t) -:/= 0} 

where B(O, t) is the closed ball of radius t centred at the origin 0. The nearest neighbour 
distance function G is the distribution of the distance from a typical point of X to the 
nearest other point of X. For t 2: 0 

G(t) .P0 {X n B(O, t) \ {O}-:/= 0} 

p!0 {X n B(O, t)-:/= 0} 

where p0 is the Palm distribution (10, 17, 28) of X at 0, which can be interpreted as the 
conditional distribution of X given that there is a point of X at O. On the last line pio is the 
reduced Palm distribution, defined as the Palm distribution of the process with the point at 
0 removed, i.e. _p!O is the distribution of X \ {O} under ?°. 



In [18] we introduced 

J(t) = 1 - G(t) 
1 - F(t) 
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defined for all t ~ 0 with F(t) < 1. If X is a Poisson process then J(t) :::: 1. We found several 
representations of J(t) derived from the Nguyen-Zessin formula [22] 

>. E!o [f(X)] = E(>.(O; X) J(X)] (3) 

where f is any nonnegative measurable function on the space of realisations of X, E!o denotes 
the expectation with respect to p!O, and ,\(O; X) is the conditional intensity of X at O assuming 
this exists. 

2.2 Multivariate ]-functions 

Throughout the paper we consider a stationary multivariate point pattern Yin Rd, each point 
belonging to one of m types. Formally Y is a stationary marked point process in Rd with 
marks in {1,2, ... ,m}. Equivalently Y = (X1, ... ,Xm) is an m-tuple of jointly stationary 
point processes in Rd, where Xi is the process consisting of points of type i. Write Ai for the 
intensity of Xi. Define 

m 

.X. = LJ X;, 
i=l 

the point process consisting of all random points regardless of type. 
Henceforth i and j denote indices from the set {1, ... , m}. Let Fi and F. be the empty 

space functions of Xi and X. respectively; thus for t ~ 0 

F;(t) = P{X; n B(O, t) =f. 0}, 
F.(t) = P{X. n B(O, t) =f. 0}. 

Let p(o,i) be the Palm distribution of Y conditional on a point at 0 with mark i, and p!(O,i) 
the corresponding reduced Palm distribution, i.e. the distribution of Y \ { (0, i)} under p(o,i). 

Then define the 'i-to-j' nearest neighbour distance function 

G;i(t) = p!(o,i){Xj n B(O, t)-::/= 0} 

and the 'i-to-any' nearest neighbour distance function 

G;.(t) = p!(O,i){X. n B(O, t)-::/= 0} 

Thus G;j is the distribution function of the distance from a typical point of type i to the 
nearest point of type j, and G;. from a typical point of type i to the nearest point of any 
type. To keep notation uniform we writ<~ c •• for the ordinary G function of X •. 

Definition 1 For a stationary multivariate point pmcess (X1, ... , Xm) on Rd define (for 
i,j = 1, ... ,m) 

J;j (t) 
1 - G;_7(t) (4) 
1 - Fj(t) 

J;. (t) 
1 - G;.(t) (5) -
1 - F.(t) 
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for all t ~ 0 for which Fj(t) < 1 or F.(t) < 1 r·espectiuely. For uniformity of notation we will 
also write 

J ( t) = 1 - G •• ( t) 
•• 1 - F.(t) 

for the J-function of X •. 

In particular Jii is the J-function of the univariate process Xi. Note that the definition of 
Jij is not symmetric in i and j. While this may be undesirable for inference on processes 
appearing on an equal footing, it may be easier to interpret, especially when considering 
qualitatively different patterns. 

Intuitively Jij is a comparison between the distributions of the distances to the nearest 
type j point, measured from (a) an arbitrary fixed point in Rd, (b) a typical type i point. 
The denominator of (4) is the unconditional probability of the event that there is no type j 
point within a distance t of 0. The numerator is the "conditional probability" of the same 
event given that there is a type i point at 0. 

As in the univariate case (18], the value 1 is obtained when there is no spatial interaction: 
if Xi, Xj are independent processes, then standard calculations give Jii = 1. However, 
having a Ji;-function taking value 1 everywhere should not be seen as a characterisation of 
independence. In particular Jii = 1 is not a sufficient condition for Xi to be a Poisson process 
(cf. (4)). Similar remarks apply to the other statistics introduced in Definition 1. 

Values Jij > 1 can be interpreted as indicating inhibition (of type j points by type i 
points) since this is equivalent to Gij(t) < Fj(t), i.e. the presence of a type i point decreases 
the probability of finding a type j point nearby. Similarly, values less than 1 suggest positive 
association. 

The statistic Ji. is a comparison between the distributions of the distances to the nearest 
random point of any type, measured from the origin and from a type i point. An interpre­
tation of the values of Ji• analogous to that of Jij applies. If {X1, ... , Xm) are independent 
then Jie(t) = Jii(t), the marginal J-function. If furthermore Xi is a Poisson process, then 

Ji.(t) = 1. 
With equation (2) in mind we introduce the following function I. 

Definition 2 For a stationary multivariate point process (X1, ... , Xm) on Rd de.fine 

m A· 
I(t) =LA' Jii(t) - J •• (t) 

i=l • 

where Ai is the intensity of Xi and>..= 2:~1 Ai is the intensity of X •. 

If Xi, ... , Xm are independent then I= 0 by [18, Theorem 2). 

(6) 

At least for bivariate processes Y = (Xll X2), the sign of I(t) should indicate the type 
of association between the two components Xi, X2 with a positive value being suggestive of 
positive dependence. This definition is similar to Lotwick and Silverman's [19] suggestion of 
studying the sign of 

T = log(l - F.) - log(l - F1) - log(l - F2) 

for a bivariate point process, since T is zero when X1 a.nd X2 a.re independent point processes. 



3 Basic properties 

3.1 Mixture formulas 

Lemma 1 For any stationary multivariate process Y = (X1 , ..• , Xm) 

m ).. 

G •• (t) - I: fGi.(t) 
i=l • 

m ).i 
J •• (t) - E :x-Ji.(t) 

i=l • 

m ).i 
I(t) = E :\ [Jii(t) - Ji.] 

i=l • 

for all t 2 0 with F.(t) < 1. 

Proof: The reduced Palm distribution a.t 0 of Y with respect to X. is 
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(7) 

(8) 

(9) 

t ).i p!(O,i). (10) 
i=l ).. 

This yields the expression for G ••. The remaining identities follow by substitution. D 

3.2 Case of independence 

Here we calculate the multivariate J functions when some form of independence holds between 
types. 

Lemma 2 Let i #- j. If Xi and X; are (marginally) independent then Jii := 1 where defined. 

Proof: Clearly Jij depends only on the marginal joint distribution of (X,, Xj)- If Xi, Xj 
are independent then the distribution of X; under p!(O,i) is the same as its ordinary marginal 
distribution, so Gij = Fj (see e.g. (11, p. 92] or (9, p. 700]) hence Jij = 1. D 

Lemma 3 If Xi is independent of (X;, j =/= i), then Jt. = Jii where defined. More generally 
this holds if xi is independent of x_i = U;;ei X;, the univariate process consisting of points 
of all types except i. 

Proof: Let F_i be the empty spa.ce function of X-i· If Xi and X-i are independent, then 

1 - F.(t) = (1 - Fi(t)) (1 - F-i(t)) 

and under p!(O,i), Xi and X _; are also independent with Xi governed by its reduced Palm 
distribution at O, and X-i by its ordinary marginal distribution. Thus 

1- Gi.(t) = (1- Gii(t)) (1 - F_;(t)) 

and division by 1 - F.(t) yields the result. 0 
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Definition 3 The marked point proces.o.; Y has the random labelling property if the marks 
(types) of the points are conditionally i.i.d. given the locations of tht: points. 

For example, if Y = (X1, ... , Xm) for independent Poisson processes X;, i = 1, ... , m, 
then Y has the random labelling property. 

Lemma 4 Under the random labelling assumption with label probabilities p; (i = 1, ... , m), 
for all t ~ 0 with F.(t) < 1 

J;.(t) = J •• (t) (11) 

while whenever F; (t) < 1 

.. - E!O [(1- P;)Nt] 
J,3(t) - E[(l - P;)Nt] {12) 

where Nt = N(X. n B(O, t)) is the numbe1· of points of any type in B(O, t), and E10 denotes 
expectation with respect to the reduced Palm distribution of X •. 

Proof : If Q is the distribution of any univariate point process Z, let p(Q) denote the 
distribution of the multivariate point process obtained by assigning i.i.d. random marks to 
the points of Z. 

The random labelling assumption is that P = p(P.) where P is the distribution of 
(Xl! ... , Xm) and P. is the distribution of X •. It can easily be shown that under random 
la.belling, 

p!(O,i) = p ( p;o) {13) 

i.e. the reduced Palm distribution of (X1, ... , Xm) given a point of type i at 0 is equivalent 
to applying random la.belling to the reduced Palm distribution of X •. Thus 

G;.(t) - p!(O,i){x. n B(O, t) I- 0} 

_ p (P!0 ) {X. n B(O, t} f. 0} 

P!0 {x. n B(O, t) I- 0} 

G .. (t) 

and substituting in the definition of J;. yields (11) The second result (12) follows from (13} 
and the representation of the J-function for an independent thinning in [18, Theorem 3]. D 

3.3 Representations 

Here we investigate explicit representations for the various J and I functions in terms of 
conditional intensities, analogous to the univariate case [18, Theorem 1]. 

Write Ai(O; Xi) for the conditional intensity of X; at 0, and )..(O; X.) for that of X., defined 
to satisfy the analogues of the Nguyen-Zessin formula (3), if they exist. Let A((O, i); Y) be the 
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I 

conditional intensity (if it exists) of the multivariate process}.= (X 11 .•. ,Xm) for a point 
at 0 with type i, defined to satisfy the multivariate counterpart of (:J) 

>.; E!(O,i) f (Y) = E [ >.( (0, i); Y) f (Y)] (14) 

for any nonnegative measurable function f on the space of realisations of Y. In particular 
taking f = 1 

>.; = E.A((O, i); Y). 

The existence of >.((O, i); Y) implies that of .\;(O; X;) and >..(O; X.) and indeed 

E[>.((O, i); Y)IX;] = >.;(O; X;) a.s. 

E [t,.l.((O, i); Y)I x.] >..(O; X.) a.s. 

by (3) and (14). 

(15) 

(16) 

Lemma 5 Let Y = (X1, ... , Xm) be any stationary multivariate process for which the con­
ditional intensity >.((O, i); Y) exists and satisfies (14). 

Then G;j(t) < 1 implies F;(t) < l awl 

Ji;(t) E [ >.((O~~); Y) IX; n B(O, t) = 0] (17) 

( E!(o,i) [ >.((o~t); Y) j Xj n B(o, t) = 0] )-1 (18) 

Similarly G;.(t) < 1 implies F.(t) < 1 and 

J;.(t) _ E [ >.((o~:); Y) Ix. n B(o, t) = 0] (19) 

= (E('(o,i) [ >.; j x n B(o t) = 0] )-1 

A.((O,i);Y) • ' 
(20) 

Expressions for J(t) can be obtained by substituting (17)-(20) in (9). 

These results should be compared to similar expressions in the univariate case, see (18, The­

orem 1). 

Proof: For (17)-(18), use the Nguyen-Zessin formula. (14) taking f(Y) = l{Xj n B(O, t) = 
0} or J(Y) = l{XjnB(O, t) = 0}/>.((0, i); Y). For (19)-(20) take J(Y) = l{X.nB(O, t) = 0} 
or J(Y) = l{X. n B(O, t) = 0}/A((O, i); Y). D 

The following corollary describes how J;i and J;. may be interpreted as indicating positive 

or negative association between types, d. [18, Cor. 1, eq. (3.7)). 
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Lemma 6 Let Y = (X1, ... , Xm) be any stationary multivariate process for which the con­
ditional intensity ,\((0, i); Y) exists and satisfies (14). Then Jij(t) 2 1 iff 

Cov (,\((0, i); Y), l{Xi n B(O, t) = 0}) 2 O 

and Jie(t) 2 1 iff 

Cov (,\((0, i); Y), l{X. n B(O, t) = 0}) 2 0. 

Proof : Rewriting (17) as 

Jii (t) = Cov ().((0, i); Y), l{Xj n B(O, t) = 0}) + l 
,\iP(Xi n B(O, t) = 0) 

we obtain the first result. Similarly for the second. D 

Using Lemma 5 and the decomposition (9) we find that a sufficient condition for l(t) 2 0 
is that for all i, 

E[,\i{O; Xi)IXi n B{O, t) = 0] 2 E(,\((O, i); Y)IX. n B(O, t) = 0]. 

Reversing the signs gives a. similar, sufficient condition for l(t) ::::; 0. 

3.4 Finite interaction range 

Here we derive multivariate versions of the result in [18, Theorem l(b)] that the J-function 
is constant for all t 2 s if the process has finite interaction ranges. 

Following [18] a univariate point process X has interaction range s, 0 < s < oo, if its 
conditional intensity AX (O; X) is constant for all patterns X which contain no points in 
B(O, s). That is, X n B(O, s) = 0 implies Ax (O; X) = .Xx (O; 0). 

Definition 4 A multivariate point process Y = (Xi. ... , Xm) has joint interaction range s 
if for each i, its multivariate conditional intensity ,\((O,i);Y) is constant/or all realisations 
which contain no points in B(O, s). That is, Xi n B(O, s) = 0 for all i implies ,\((0, i); Y) = 
,\((0, i);0). 

A sufficient condition is that ,\((0, i); Y) depend only on Y n B(O, s), the restriction of Y 
to B(O, s). 

Lemma 7 If Y has joint interaction range s, 0 < s < oo, then Ji• (t) is constant fort 2 s, 

(21) 

If additionally the marginal processes X; ea.eh haue intemction ranges, then l(t) is constant 
fort 2 s, 

1 m 
J(t) =: -:X- :L)>.;(O; 0)- ,\((O,i);0)] ,t 2 s 

• i=l 

(22) 
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or equivalently 

I(t) = L~1:i(O; 0) - >..(O; 0) 
Li=L >.; >.. 

, t > s. (23) 

An analogous statement for J;; does not hold in general. 

Proof : In (19) observe that X. n B(O, t) = 0 for t ~ s implies X; n B(O, s) = 0 for all 
i so that >.((O, i); Y) is conditionally constant and equal to .>.((O, i); 0). The first result (21) 
follows. The second result is proved by combining (21) with (9) and [18, Theorem l(b)J. The 
third result follows using (16) and the fact that >.((O, i); Y) is conditionally constant. o 

4 Theoretical examples 

In this section we calculate the multivariate J fu.nctions for a variety of multivariate point 
pattern models. 

4.1 Multitype cluster processes 

By a multivariate cluster process in Rd we mean a general cluster process [10] constructed 
from a univariate point process in R.d (of 'parent' points) by associating with each parent a 
cluster (of 'offspring' points) which is a finite multivariate point process, i.e. a finite point 
process in Rd x { 1, ... , m}. Only the offspring points are observed. 

We shall consider only the stationary multivariate Poisson cluster process in which the 
parents are a stationary Poisson process in Rd and, for a parent located at x E Rd, the cluster 
Zx of offspring of x is distributed as Z + x, the vector translation by x of a given, a..s. finite, 
multivariate point process z. Offspring clusters from different pa.rents x; are independent. 
Thus Y = U;Zx;· 

4.2 General result 

We need the multivariate version of a basic identity for cluster processes [10, §8.3, p. 243 ff.], 
[28, p. 143], see [3, p. 8-9). It is a trivia.I rephrasing of the univariate result. The functional 
form of the Palm distribution involved for a variety of univariate cluster processes is studied 
in [27]. 

Lemma 8 Let Y = (X1 , ••• , Xm) be a stationary multivariate Poisson cluster process in Rd. 
Then the Palm distribution of Y with respect to a point of type i at 0 can be written 

p(O,i) = C(O,i) * p (24) 

where p is the distribution of Y and C(O,i) is the Palm distribution of the typical cluster with 
respect to a point of type i at O. Similarly for the red"ced Palm distributions, 

p'(o,i) = c'<o,i) * P. (25) 
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The following is a trivial corollary. 

Lemma 9 For a stationary multivariatr. Poisson cluster process, 

c!(O,i){Zj n B(O, t) = 0} 

c1(o,i){z. n B(o, t) = 0} 
(26) 

(27) 

where Zj denotes the finite point process of points of type j in the cluster, and z. the process 
of all points in the cluster regardless of type. 

Thus, all Jij and Ji• functions are decreasing a.n<l bounded above by 1. Moreover Ji.(t) :S 
Jii(t), suggesting clustered behaviour. 

Regarding the range of interaction, if all dusters have maximum diameter s then Jij (t) 
and Jie(t) are constant for all t ~ s. 

4.2.1 Two-type Gauss-Poisson process 

A Gauss-Poisson process [5, 20, 21] is a. (univariate) Poisson cluster process in which each 
cluster consists either of one point (with probability 1 - p) or two points (with probability 
p). If a cluster has two points, they a.re separated by a random vector displacement V which 
has probability density h on Rd. 

Here we study the associated bivariate point proce.ss in which parent points are labelled 
as being of type 1 and daughter points, type 2. This is a. multivariate Poisson cluster process. 

Lemma 10 For the two-type Gauss-Poisson process as described above, 

where 

Ju (t) 

J12(t) 

hi(t) 

J •• (t) 

I(t) 

J22(t) = 1 

Ji.(t) = 1 - pH(t) 

J2.(t) = 1 - H(t) 
2p 

1- -H(t) 
I+p 

_li!_H(t) 
l+p 

H(t) = f h(x) dx. 
j B(O,t) 

Thus, the types 1 and 2 in this process a.re positively associated, in the senses measured 
by Jii, Jij, J •• and I functions. All the .l functions a.re decreasing and less than or equal to 
1 (since h is a probability density); I is increasing and non-negative. 

Furthermore, Ji• :S Jii, suggesting positive association as well. However, regarding asso­
ciation between labels, for p <f. {O, l}, J2• - J •• = ~H(t) < 0 and decreasing, suggesting 
that the "2 to any" distances appear more clustered tha.n if the type is disregarded, while 
Ji. - J .. = P~1;{)H(t) > 0 and increasing, indicating tha.t distances from a type 1 point 
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appear more regular. A possible explanation is that any type 2 point will have a parent type 
1 point, while a type 1 point may not have a.n associated tyiw 2 point. 

If we assume that h is concentrated on a ball B(O, R). then lij, Ji.(t), J •• and I are 
constant for all t ?: R, mirroring the results for a univariate Poisson cluster process [18]. 

Proof: Both X1 and X2 are stationary Poisson processes, so Jii = 1. 
Under the Palm distribution C(O,l), with probability I - p the cluster Z has only a single 

point (of type 1 at 0), while with probability pit has two points (one of type 1 at 0 and one 
of type 2 at V, where Vis random with density h).Applying Lemma 9, 

C!(o,i){Z2 n B(O, t) = 0} 

(1- p) + pP{V ~ B(O,t)} 
(1 - p) + p (1 - H(t)) 
1 - pH(t). 

The calculation for Ji. produces the same result since Z2 = z. under C!(O,l). 
Under c<0 •2>, with probability 1 the cluster has two points (of type 2 at O and of type 1 

at -V). Applying Lemma 9, 

C'(0 •2l{z1 n B(O, t) = 0} 

Jr{-V rf. B(O, t)} 
L - H(t). 

Again the calculation for J 2• is identical. 
Regarding J •• , we apply the univariate version of Lemma 8. Now C0 is number weighted, 

hence 

J.. C0{z. n B(O, t) = {O}} 
1-p 2p 

- -+-(1-H(t)). 
l+p l+p 

The result for I follows using Lemma. 1. 

4.3 Bivariate Poisson processes 

0 

A bivariate Poisson process is a two-type process in which the marginal distribution of each of 
the components is that of a stationary Poisson process. We treat several standard examples. 

4.3.1 Linked Poisson 

A linked Poisson process [12) is a biva.ria.te Poisson cluster process in which every cluster 
consists of exactly two points, a type 1 point a.nd a. type 2 point, separated by a random 
displacement V where V has density h on Rd. 

This is the special case p = 1 of our two-type Gauss-Poisson process, so Lemma 10 can be 
applied and we obtain J 11 =122 = 1, l12(t) = J21(t) = -li.(t) = h.(t) = J •• (t) = 1- H(t) 
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and J(t) = H(t). In particular, Ji.= J •• (i = 1, 2), so the model is consistent with a random 

labelling assumption. However, in gen(~ra.l, a. randomly labelled linked Poisson process is 

not a linked Poisson process which can be seen easily if the displacement V is taken to be 
deterministic. 

4.4 Bivariate Cox processes 

A bivariate Cox process (7, 8, 13] is formed as follows. We start with two random measures 

Ai, A2 on Rd which are typically dependent. Conditional on (Ai, A2) = (.Ai, >.2), let X 1 

and X2 be independent inhomogeneous Poisson processes with intensity measures >. 1 and >.2 

respectively. Then the unconditiona.l model Y = (X 1, X 2 ) is a bivariate Cox process. 

4.4.1 Linked bivariate Cox process 

As an example of positive dependence consider the case where A1 = vA2 for some fixed 

positive constant v; the resulting Y is called a. linked hivaria.te Cox process [8). 

Lemma 11 Let (X1, X2) be a linked Cox process where the intensity measures are 'mixed 

Poisson', A2 = Am, for some non-negative random uariable A with finite positive expectation 

and where m is Lebesgue measu1-e. Write L(s) = Ec-sA for the moment generating Junction 

of A. Then E [ Ae-sA J = -L'(s) and 

Ju (t) 

J22(t) 

J •• (t) 

I(t) 

J21 (t) = L'(v1qtd)/(L'(O)L(vx:dtd)) 

- J12(t) = L'(,,,dtd)/(L'(O)L(K-dtd)) 

Ji.(t) = J2. = L'((l + v)K-dtd)/(L'(O)L((l + v)11;dtd)) 

-v [-L'(vK.dtd) L'((l + v)K-dtd)l 
L'(O)(l+v) L(vKdtd) + L((l+v)Kdtd) 

-1 [-L'(Kdtd) L'((l + v)x:dtd)l 
+ L'(O)(l + v) L(Kdtd) + L((l + v)x:dtd) 

where Kd = m(B(O, 1)) is the volume of the unit ball ·in Rd. 

In the general case where (A1 , A2) are stationary random measures, this result holds true 

with A-weighted means replaced by expectations under the Palm distribution at 0 of Az. 

Proof: Since Xi, X 2 and X. are mixed Poisson processes with random intensity measures 

vAm, Am and (l+v)Am respectively, the equations for J11 1 J22 and J •• follow from Theorem 6 

in [18] and the discussion therein. The expression for I follows easily. 
The reduced Palm distributions p!(O,l), p!(o.2) a.re both bivariate Cox processes with A1 

(respectively A2 ) replaced by its A-weighted distribution, Eweight.ed f(A) = E[AJ(A)]/E[A]. 

The remaining identities follow. D 

By [18, Theorem 6], Jij ~ 1 (with equality only if A is constant a.s.), suggesting positive 

correlation between the component processes. Moreover, .f;1 is decreasing with limt-+oo J;j (t) = 
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ess~f A By the same argument, J;. and J •• are bounded a hove by 1 decreasing to essinf A • , EA . 
Hence, I converges to 0 as t--+ oo. Sinn· the function 

L'(s) 
8 f-t L'(O)L(s) 

is monotonically decreasing, the terms in brackets in the expression for I are both non­
negative. Thus I is non-negative, confirming the positive dependence between the com­
ponents. Finally, J;.(t) ~ J;;(t), confirming the positive dependence. Note that given 
A, the conditional distribution of (X1, X 2) given X. is that of a random labelling with 
(p1,P2) = ,,~ 1 (v;1). Since this distribution does not depend on A, Y has the random la­
belling property. This is reflected in the fact that J;.(t) = J •• (t). 

4.4.2 Balanced Cox 

An. example of negative dependence is the class of ha.lanced Cox processes [13] where 

m again denoting Lebesgue measure. Note that the superposition is always distributed as a 
Poisson process with intensity v. 

Lemma 12 Let (X1, X 2) be a balanced Cox pmcess on Rd with A2 =Am, for a random vari­
able A concentrated on (0, v) with 0 <EA < v. Then, writing L for the moment generating 
function of v - A, 

hi(t) 

J •• (t) 

l(t) 

L' (Kdtd) I (L'(O)L(Kdtd)) 

L' ( Kdtd) I ( L'(O)L(Kdtd)) 

E [ (v - A)e-A"'dtd] 

E[v - A] Ee-A><dtd 

E [Ae-(11-A),.dtd] 

E(A] Ee-("-A)"<1td 

.f1e(t) = h.(t) = 1 

- +....,.-,.....;....-""" 1 {-L'(Kdtd) L'(K-dtd)} 
ll L( Kdtd) L( Kdtd) 

as before writing "'d = m(B(O, 1)) /01· th~ uolnme of the unit ball in Rd. 

Proof: As the superposition is a Poisson process, J •• (t) = 1. Again applying [18, Theo­
rem 6), the formulae for J 11 and J22 follow, yielding the expression for I. 

The reduced Palm distribution p!(0,2) is that of a bivariate Cox process with A2 replaced 
by its A-weighted distribution, while p!(O,l) is simila.r with A1 governed by its (v-A)-weighted 
distribution. The other results follow. D 
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Using 

and a similar inequality with A replaced by (v - A), it is easily seen that l(t) ~ 0, indicating 
negative dependence. By the discussion following [18, Theorem 6], I(t) decreases to (essinf 
A - esssup A) / v as t -7 oo. 

We can verify that Ji; ;?: 1, suggesti11g negative correlation between the component pro­
cesses. For example consider J21 • Then 

E ( Ae-(11-A)icc1t"] 
= EA Ee-(11-A)icc1t" 

E [ (v - A)e-(11-A)ic11t"] v 

- EA Ee-(11-A)ic11 t" + EA 

(v - EA) Ee-(11-A)1tc1t" v 
> - EA Ee-(11-A)1tc1t" + EA = 1. 

Moreover, both J12(t) and J21(t) are monotonically increasing with limits 11-~~% A and 

essstip A respectively (t -7 oo). From [18], 1 = Ji.(t) ~ Jii(t), a.gain suggesting negative 
dependence between the component proce..c;ses. 

Turning attention to the label association, note that given A, the conditional distribution 
of (X1, X2) given X. is that of a. random labelling with probabilities (p1, P2) = (11:A, ~ ). Thus 
the allocation probabilities are random, and in general Y does not satisfy the random labelling 
property. (This could also have been seen more directly by noting that X. is a. Poisson process 
and therefore its random la.belling is a biYa.riate Poisson process with independent components 
rather than the balanced Cox model we started with.) However Ji. - J .. ::: 0, which is in 
accordance with a random label allocation. 

4.5 Pairwise interaction Gibbs processes 

Consider a multitype point process Y with conditional intensity of the form 

>.((u, i); Y) = /31 IJ li;(llx; - ull) 
(:r:;,j)EY 

where {31 , ••• , f3m are nonnegative consta.nts and Iii are nonnegative real functions. Without 
loss of generality Iii =Iii· In general, t.erms Iii appear. This might be called a stationary 
pairwise interaction Gibbs process, cf. [2, 25, 24]. 

Lemma 5 and equation (8) immediately yield the following. 

Lemma 13 For a pairwise-interaction Gibbs process as aboue, 

J •• (t) = m /3· [ l L f E II lik(ll:r.11) x. n B(O, t) = 0 
i=l • (:r,k)EY 

(28) 

- ~~ E [ IT lik(ll:r.11) xi n B(O, t) = 0] 
' (:r.,k)EY 

(29) 

J,.(t) = f3i_E [ IT lik(llxll) x. n B(O, t) = 0] 
A, (:r.,k)El' 

(30) 
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wherever defined. If there is finite range interaction in the sense that 'Yii(llxll) = 1 for 

llxll > rij, the formulae above reduce to J •• (t) = L: ~ fort ~ r = ma.xrij and Ji.(t) = ~ 
fort ~ ri = maxi rii· Since in (29) the conditioning is only on no point of type j in a bail 
around the origin, a similar reduction for .Jij in geneml will not hold. 

5 Applications 

In this Section we analyse four bivariate data sets with a. range of correlation structures be­
tween the compol)ent processes, using empirical I and J-functions and Monte Carlo inference. 

We consider two different null hypotheses: random labelling as described in Definition 3, 
and independence of the components X 1 and X2 • To test the random labelling null hypothesis 
we condition on the locations and the relative frequency of the types, more specifically given 
a. data set consisting of ni type i events (i = 1, 2), the labels a.re permuted randomly, leaving 
the locations unchanged. Alternatively, we could condition on the location of the events 
only and sample the labels with replacement. A disadvantage of the latter is that the label 
probabilities are unknown - although they can be estimated by Pi = nifn where n; is the 
number of observed i-events and n the tot.al number of events - and that the relative frequency 
of the labels is variable. 

In general, non-parametric sampling from the unconditional null-hypothesis of indepen­
dent components is hard. For rectangular windows however. Lotwick and Silverman proposed 
identifying opposite sides of the window to obtain a torus, and then translating the type 1 
pattern randomly over the torus [19). Hence this approach is conditional on the within­
component patterns rather than on the superposition locations. 

Estimates of the various F- and G-functions were computed using the Kaplan-Meier 
estimators [1]. The corresponding J-func.tions were derived by substitution. In the case of F, 
the windows were discretised into (subsets of) rectangular pixel arrays and the distances from 
each pixel to the nearest data. point were computed using the distance transform algorithm 
[6). The algorithms were implemented in Splus and C. 

5 .1 Beta cells in the cat retina 

Figure 5.1 depicts a pattern of beta-type ganglion cells in the retina of a. cat recorded by 
Wassle et al. (32] and kindly provided by P. Diggle. The window is a rectangle (0, 1) x (0,. 7533) 
in units of approximately lOOOµm. Beta. cells are associated with the resolution of fine detail 
in the cat's visual system. They can be da.."8ified as 'on' or 'off', depending on the branching 
level of their dendritic tree in the inner plexiform layer. Analysis of the spatial pattern 
provides information on the cat's visual discrimination. In particular, independence of the 
'on'- and 'off'-components would strengthen the assumption that there a.re two separate 
channels for 'brightness' and 'darkness' <LS postulated by Hering in 1874. For details see (32]. 

Wassle et al. [32) investigated this pattern using histograms of nearest-neighbour dis­
tances (ignoring edge effects). To test independence of the 'on' and 'off' patterns, a. random 
translation of the 'off'-component was superimposed on the 'on'-component, and the re­
sulting nearest-neighbour histogram compa.red with the original one by a sign reversal test. 
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Figure 5.1: 65 'on' ( ~) and 70 'off' ( +) beta cells in a cat retina.. 

They concluded that both types of beta. cells form a. regular lattice, which are superimposed 
independently. 

Our analysis begins by computing estimates of the summary statistics. The marginals 
Gu and G22 lie below the graph of G •• (and similarly for F) and the cross G-functions are 
similar to G •• , due to the fact that most cells have a. nearest neighbour of the opposite type. 
The marginal ]-functions are increasing and exceed 1, suggesting repulsion between the cells. 

To investigate independence of the components we took the Lotwick-Silverman approach 
and repeatedly translated the first component over the torus. For each simulation, J12 was 
computed. The envelopes for 99 translations and the empirical estimate of 112 are depicted 
in Figure 5.2. For almost all t, the null hypothesis is accepted as the data lies between the 
envelopes. Using the statistics h. - J 21. or I leads to acceptance of the null hypothesis as 
well. This confirms conclusions of (32]. 

A random label allocation of types to beta. cells on the other hand does not seem appro­
priate as a null hypothesis for testing the Hering postulate. However, for illustrative purposes 
we did perform the test. Since most points have a nearest neighbour of the opposite type, 
Ji• - J •• is not a suitable test statistic, but both .J12 and I lead to rejection of the random 
labelling hypothesis. See Figure 5.3. 

A second order analysis by Stoyan [30, 14] yielded similar results. At close range, the plot 
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Figure 5.2: Envelopes based on 99 torus tra.nslations of X 1 (dashed) and empirical J12 , 

J2. - J22 and I statistics for the cat retina. data.. 

: 

,./ .. 
_.,-/~ 

~ 

Figure 5.3: Envelopes based on 99 ra.11dom la.hellings {dashed) a.nd empirical J12 and I 

statistics for the cat retina <la.ta. 
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Figure 5.4: Dividing ( •) and pyknotic ( +) cells in a section of metastasising lymphoma in a 
hamster kidney. 

of the mark correlation function p12 (29, p. 264-265] is high compared to the plots of p11 and 
P22, before flattening down. 

5.2 Hamster tumour 

Figure 5.4, originally collected by Dr W A Aherne (Department of Pathology, University of 

Newcastle upon Tyne) and kindly provided by Professor P J Diggle, shows the positions of 
cell nuclei in an approximately .25mm square histological section of tissue from a laboratory­
induced metastasising lymphoma in the kidney of a hamster. Two types of cells are distin­

guished: 77 pyknotic nuclei corresponding to dying cells and 226 nuclei arrested in metaphase. 
The background void is occupied by unrecorded, interphase cells in relatively large numbers. 

Both the marginal and joint )-functions a.re la.rger tha.n 1, suggesting inhibition between the 
cells. 

The spatial correlation between the dying and dividing cells is important for the study 

of tumour growth. Since the classification into pyknotic and metaphase cells is made after 
the spatial positions are determined, in this case random labelling seems a more natural 
hypothesis than independence of the components. We performed tests using each of the 
statistics J 12, J 19 -J •• , J2.-J •• and I with 99 random la.bel allocations without replacement. 
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Figure 5.5: Envelopes based on 99 ra.ndom labellings (dashed) and empirical J 12 , Ji. - J •• , 
J2. - J •• and I statistics for the hamster tumour data.. 

The results are plotted in Figure 5.5. Although the sign of I suggests negative dependence 

between the two components, the null hypothe.sis cannot be rejected. Note that for most t, 
Ji.(t) - J •• (t) > 0, while h.(t) - J •• (t) is predominantly negative. However, the deviations 

are not statistically significant at the 1 % level. 

Our conclusion is in keeping with other analyses reported in the literature. For instance, 
Diggle [11) accepted the random labelli11g hypothe.sis using the K-function; Stoyan (30, 14] 

plotted the mark correlation functions lli.i, i, j E { 1, 2} ancl found nearly horizontal graphs, 

suggesting a random allocation of mark:--. 

Although it is less meaningful from a. biologica.J point of view, one can perform a test 

for independence of the components. The results are plotted in Figure 5.6. The empirical 

J 12-function lies close to or above the upper envelope, and similarly for J2. - h2, while the 
plot of the I-statistic is close to or below the lower envelopt> for small distances r. Diggle (11] 
also found deviations from independence with a. Monte Carlo te.st of 99 simulations using the 
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Figure 5.6: Envelopes based on 99 torus translations of X 1 (dashed) a.nd empirical JrJ, 
J.i. - J.i2 a.nd I statistics for the hamster tumour data. 

cross ]{-function. 

5.3 Myrtle trees 

Our third example is a pattern of 221 healthy and 106 diseased myrtles in a. rectangle of 
170.5 by 213.0 meters, depicted in Figure 5.7. The data. set wa..s collected by Dr G Kile a.nd 
colleagues at CSIRO Tasmania. a.nd kindly supplied by Prof P J Diggle. 

The empty spaces in three corners of the plot suggest that it would not be appropriate to 
treat these data as a. realisation of a. stationary point process viewed through the rectangular 
frame. Instead, we have arbitrarily marked out a smaller window with a polygonal boundary 
as shown in Figure 5.7, and computed all statistics with reference to this window. 

Figure 5.7: 221 healthy ( +) a.nd lOfi diseased (.6.) myrtles. 
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Figure 5.8: Envelopes based on 99 random labellings (<la.shed) a.nd empirical J 12 , Ji. - J •• , 

h. - J •• and I statistics for the Tasma.nia.n myrtle data.. 

Both components have J-functions that lie below 1, suggestive of clustered behaviour. 

The J-function of the superposition is also less than 1. The /-statistic is close to zero, mostly 

positive. 

Since disease affects plants after their location has been fixed, we prefer to test for a 

random mark allocation conditional on the locations. Moreover, working on a non-rectangular 

window, the Lot.wick-Silverman approach using independent toroidal shifts can no longer be 

applied. Secondly, if we would not have corrected for the corners, empty spaces would be 

overestimated, resulting in underestimatPS of F- and J-functions. However, the multiplicative 

bias (for fixed t) will be approximately the same, so should not effect a test for random 

labelling (cf. Definition 3) too much. This is confirmed by our analysis. 

The Monte Carlo envelopes over 99 simulat.ions are given in Figure 5.8. The empirical 

J12, Ji. - J •• and J2• - J •• and I functions lie between the simulation envelopes for almost 

all values of t, hence for most t tests ba.,ed on these st.a.tistks a.rcept. the null hypothesis. 
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5.4 Ants' nests 

.. 
+ 

6 . 

6 

6 
6 

6 

+ 

.. + + 

.. + 
+ 

+ 
• .. + 

• 

Figure 5.9: Nests of 32 Mf'.SSOr {+) a.nd 15 Cataglyphis (.a) ants 

In our final example, we consider the distribution of the nests of two ant species, Messor 
wasmanni and Cataglyphis bicolor in a field in Northern Greece [15]. This data set was 
supplied by Professor V Isham with kind permission by Professor R.D. Harkness. These two 
species have different feeding patterns. The Messor ants collect seeds, while the Cataglyphis 
ants collect dead insects which a.re mostly dead Messor ants. For details see [15). It is 
therefore of interest to see whether the functional dependence between the species is reflected 
in dependencies between the nest location patterns. 

The original data. set contains 68 Messor and 29 Cataglyphis nests in an area of about 
1 hectare. This region is divided into two main parts, scrub la.nd and field. As Cataglyphis 
ants tend not to build their nests in scrub, we only consider the field region (about 290 by 
165 ft) with 32 Messor and 15 Cata.glyphis ne.st.c;. For convenience, we have rotated the data 
through -0.6 radians to align with a sta.n<la.rd coordinate system (Figure 5.9). No coordinates 
of the boundary were given, so we took the smallest rectangle including all observed nests. 

The data set was previously a.nalySl'<i by Ha.rknes.c; a.nd Isham [15] using a K-function 
approach. They reported inhibition amongst Me.ssor ants, but no evidence of interaction 
amongst the Cataglyphis and no evidence of dependence between the two species. See also 
[16, 26, 31]. The marginal ]-functions of ea.eh spE'<".if"S ex(':E'ed 1, suggesting inhibitory patterns; 
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Figure 5.10: Envelopes based on 99 torus translations of X1 (dashed) and empirical J 12 , 

J2. - J22 and I statistics for the ants' nests data. 

the I-function is close to 0, mostly negative for small t. positive for larger t. 
In 99 random torus translations, we found the empirical J1 2 function to lie at the upper 

envelope for small distances (due to the ~hort-rauge repulsion between nests), and in between 
the envelopes at a larger range (see Figure 5.10). The I and J2. - Jn graphs lie within the 
envelopes. Hence we too cannot find any significant. positive correlation between the two 
components to reflect their functional d1~pendence. As a. possible explanation, Harkness and 
Isham suggest that Cataglyphis ants may prefer an overall strategic position to being close 
to one specific Messor nest. 

Ants occupy the field simultaneously, hence a null hypothesis of random label allocation 
seems less natural than one of independence between the components. Nevertheless the 
Monte Carlo envelopes for the former hypothesis a.re given in Figure 5.11. For J1 2 , Ji. - J 
and J2• - J •• the random la.belling null hypothesis is not rejected (except for the hard core 
distance between nests), but I provides Pvidence for positive association between the two ant 
species. 
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Figure 5.11: Envelopes based on 99 random labellings (dashed) and empirical J12 1 Ji. - J •• , 
J2• - J •• and I statistics for the ants' ni:>.sts da.ta._ 
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