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We study Markov random set models defined by their Radon-Nikodym derivative 

with respect to a given Boolean model. We investigate when a Boolean model is 
absolutely continuous with respect to another and discuss various Markov proper­
ties. 

1 Introduction 
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Markov point processes as introduced in the statistical literature by Ripley 
and Kelly 24 provide a useful class of models for a range of applications in 
image analysis, spatial statistics and mathematical physics (see eg. 15). They 
can be defined by local interaction functions that are easy to interpret and can 
be exploited in statistical inference. Most attention has been paid to pairwise 
interaction processes, with the interaction between two points defined in terms 
of the distance between them. 

In the last few years though, models of a more set-geometric nature have 
been proposed. Baddeley and Moeller 3 •21 suggested a realisation-dependent 
interaction, where two points interact if they can be joined by a chain of close 
points. Equivalently, if we place a ball around each point, points on the same 
connected component interact. Furthermore, it was realised that many cluster 
processes 7 are Markovian in this sense 5 • 

Baddeley and Van Lieshout 1•12•13•15 proposed to use Markov object pro­
cesses where two objects interact if they - or their influence zones - intersect 
as a prior distribution in image interpretation. For further developments see 
Trubuil et al. 29 and Mardia et al. 16. 

Widom and Rowlinson's penetrable sphere model for liquid-vapour equi­
librium 30 , defined in terms of the volume occupied by the union of molecular 
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influence zones, has recently received renewed attention. Baddeley and Van 
Lieshout 2 studied the model from a statistical point of view and generalised 
to allow for repulsion as well as attraction between molecules; Van Lieshout 
and Molchanov 14 took into account the coverage function of the molecular 
influence zones, while in 4 the replacement of the volume by other geometrical 
functionals such as the Euler-Poincare characteristic is studied. The phase 
transition behaviour of the penetrable sphere model proved by Ruelle 25 was 
investigated in Chayes et al. 6 and 6 and 9 . 

Models of the types described above force one to think of the random set 
formed by a union, eg. of objects, influence zones or individual clusters. Yet, 
explicit random set models defined in likelihood terms seem to be scarce 19. 

In his 1975 book, Matheron 17 considered the Boolean model. This is a germ­
grain model associating to each of the points in a Poisson process (the germs) 
a random set called the grain. In particular, a Poisson cluster process 7 can 
be seen as a Boolean model. In this paper, we build random set models by 
specifying a Radon-Nikodym density with respect to an underlying Boolean 
model similar to the point process models described above. We ask when the 
models are well-defined and study their Markov properties. 

The paper is organised as follows. In Section 2 we review the theory of 
Markov marked point processes. Basic results about Boolean models are col­
lected in Section 3 and in Section 4 we investigate when a Boolean models has 
a likelihood with respect to another Boolean model on the same space. The 
results are applied to the special cases of marked point processes, Poisson clus­
ter processes and Boolean models with deterministic grains. Finally, Section 5 
discusses local and global Markov properties. 

2 Markov marked point processes 

Here we give an overview of the theory of Markov marked point processes, fol­
lowing definitions and results in Ripley and Kelly 24 and Baddeley and Moeller 
3 

Heuristically, a marked point process assigns to each point of a 'location' 
process a 'mark' giving additional information. For instance in forestry, the 
location points may denote tree positions and the mark could be the stem 
diameter 23 . Graphically we can depict such a process by drawing a circle of 
stem radius around each tree position, see Figure l. 
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Figure 1: Poisson process of discs with intensity 50 and uniform radius in (0, 
0.1) 

Formally, we will define a marked point process as a point process on the 
>roduct space of locations and marks with the additional property that the 
narginal location process is itself a well-defined point process (see 7 ). 

Definition 1 Let (S, B, >..) be a measure space such that >..(S) < oo and the 
;-algebra B contains all singletons. Let (K,K,v) be a measure space such that 
1(K) = 1 and the a-algebra K contains all singletons. Then a marked point 
'Yrocess on S 'l.JJith marks in K is a (finite) point process on the exponential 
~pace DsxK of configurations {(s1, ti), ... , (sn, tn)}, n 2: 0. 

We are interested in defining a marked point process by its density. A 
;uitable reference process is a Poisson process on S x K, that is a Poisson 
:>rocess on S with intensity>..(·), labelled by iid marks with probability distrib­
llt ion v(·). The absence of interaction between the marked points makes it an 
:i.ppropriate benchmark process and we can define new models by specifying 
their interaction functions. 

Definition 2 A density p( ·) is a measurable, integrable mapping 

p: (DsxK,FsxK) ~ (~+,Bor). 

Here FsxK is the smallest o-algebra making 

NB x L = number of points in B with marks in L 

a random variable for all B E B, L E K. 
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Due to the high dimension of Dsx K, it is desirable to impose further 
restrictions. A common choice is a Markov density, which has only 'local' 
interactions: given a symmetric neighbourhood relation ,...., on S x K that may 
or may not depend on the mark, the likelihood ratio (conditional intensity) 
for adding a new point (s,k) to a configuration Y = {(s1,k1),. .. ,(sn,kn)} 
depends only on the neighbours of the added point. 
Definition 3 A density p(·) is Markov if 

(M) for ally such that p(y) > 0, p(y~!;t}) depends only on (si,k;) E y: 
(s, k)"' (s;, k;); 

(H) if p(y) > 0 then also p( z) > 0 for all configurations z ~ y. 

By the Hammersley-Clifford theorem 3•24 a density p( ·) is Markov if and 
only if it can be factorised into a product of clique interaction functions 

p(y) = IT <P(z) 
zt;;;y ,cliques 

where 1{) ~ 0 is measurable and a clique is a configuration y such that for all 
(s,k), (s',k') E y: (s,k) "'(s',k'). This characterisation can be used to define 
new models by defining the interaction functions. However, for each choice we 
must check that the model is well-defined, i.e. measurable and integrable. 

As an example, consider the random disc process of3 . Here S is a bounded 
Borel set in Rd, A is Lebesgue measure and B the Borel CJ-algebra on S. Let 
K = R+ and v any probability measure on R+; the mark k E K is interpreted 
as the disc radius. 

Taking interaction function <P = 1 on cliques with three or more members, 
a pairwise interaction density could take the form 

p( { (si,k1), ... , (sn, kn)})= af3n IT g(lls; - Sj II, ki, kj) (1) 
i<j 

for some measurable, integrable g: [O,oo)3 --+ [O,oo). Taking 

(d k k ) = { "/ if d :::; ki + k2 g ' 1, 2 1 1 e se 

for 0 :S / :S 1 yields an analogue of the Strauss model 10028 . It is easily seen 
that this model is Markov with respect to the neighbourhood relation 
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Here B(s, k) denotes the closed ball of radius k centred at s. For 'Y = O, no 
balls are allowed to overlap, 0 < "( < 1 yields repulsion and for 'Y = 1, (1) is a 
Poisson process. Another example, allowing interactions of order higher than 
two, is the area-interaction process 2,14 

(2) 

a generalisation of the penetrable sphere model introduced by Widom and 
Rowlinson 30 . The model is well-defined for all (3, "/ > 0. 

Returning to Definition 2, a density can be interpreted in an infinitesimal 
sense as follows: e->.(S)p( { (si, k1), ... , (sn, kn)} )>.(ds1)v(dk1) ... >.(dsn)v(dkn) 
is the probability of having exactly n points, one at each of (s; + >.(ds;), k; + 
v(dk;)), i = 1, ... , n 7 . Thus, for any FE :FsxK, lP'(X E F) equals 

(3) 

Generalisations where the neighbourhood relation depends on the config­
uration were proposed in 3 . We are particularly interested in the connected 
component relation: two points (s;,k;),(sj,kj) E y = {(si,k1), ... ,(sn,kn)} 
are neighbours if there exists a path (s11' k1J, ... , (sim, k1m) E y such that 

for some fixed relation""· We write (s;,ki) "'y (sj,kj)- For instance in the 
random disc example above, (s;,k;) "'y (sj,kj) iff Si,Sj belong to the same 
connected component of Uf=1B(s;,k;). 

An analogue of the Strauss process could be Moeller's continuum random 
cluster model 21 

p(y) = aff"1-c(y) (4) 

where I > 0 and c(y) is the number of connected components. Note that, 
in contrast to (1), models (2) and (4) allow for both attraction ('y > 1) and 
repulsion ("! < 1) between the points. 

3 Boolean models 

The analogue of the Poisson point process for random sets is the Boolean model 
introduced by Matheron 17 . It can be defined by a Poisson point process marked 
by a random set, then taking the union of all marks. It is important to note that 
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only the union set is observable, not the mark sets that constitute the union 
(Figure 2). Models of this kind are useful to produce sets of a complicated 
shape from simple building blocks. However, due to the lack of identifiability 

. . l . ' . d"ffi lt 18 20 of the components, stat1st1ca m1erence JS 1 cu ' . 

-0.z 00 0-2 0.4 0.6 0.8 1 O 12 -02 0.0 02 0.4 06 0.8 10 1.2 

Figure 2: Poisson disc process of intensity 50 interpreted as point process 
(left) and Boolean model (right) 

Here, we will concentrate on the Euclidean case, taking for S C JEtd a 
compact Borel set and a homogenous Poisson process with intensity .>. > 0 for 
the locations. The mark distribution is a probability measure v( ·) on ( K, K) 
as before. We will denote the distribution of the Boolean model thus specified 
by Q>.,v· Throughout we will assume that the union set can be observed fully, 
avoiding edge effects. 

Definition 4 A density p(·) is a measurable, integrable mapping 

p: (F,A.)-+ (JEt+,Bor) 

where F ·is the collection of closed sets, A. is the hitting a-algebra 17 , 27 . 

When specifying densities with respect to the Boolean law Q >.,v, without 
loss of generality p(·) assigns mass zero to any set that cannot be obtained as 
a finite union U~1 (s; EB K;). Here we writes; EB K; for the translation of set 
K; E K over vector s; E S, or in other words the set described by location s; 
and mark K;. 
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Analogously to (3), for any BE A, the probability that the random set X 
with density p( ·) falls in B equals 

00 ->.ISI J 1 L_e -,- ··· ,\np(U~1(siEBK;))l3(U~ 1 (s,EBK,)) (5) 
n=O n. (Sx K)" 

ds1dv(K1) · · · dsndv(Kn), (6) 

writing ISI for the Lebesgue measure of S. 
In particular, for p = 1 and B = {X nL # 0} for some compact set L, we 

obtain the capacity functional T(L) of the Boolean model parametrised by ,\ 
and v: 

1-T(L) 
00 ->.IS! J 1 n 

= L7 ··· .,.>-nfil{s;EBK;)nL=0} 
n=O · (Sx.K) i=l 

ds1 dv(K1) · · · dsndv(Kn) 

= f e->.,ISI [>-f j l{s1 EBKi) nL == 0}ds1dv(Ki)ln 
n=O n. (SxK) 

Now (s1 EB Ki) n L = 0 {::} S1 EL EB K1, the dilation of L by Ki 17·26 . Hence 

>-f { l{(s1 EB K1) n L = 0}ds1dv(K1 ) 

JsxK 

and thus 

>-l (ISI - IL EB K1 n Sl)dv(Ki) 

>-[ISI - E11 IL EB K1 n SIJ 

T(L) = 1- exp[->-E11 IL EB K1 n Sj]. (7) 

By the Choquet-Matheron theorem 17 , a random closed set distribution is 
determined completely by its capacity functional. The latter can be expressed 
in the density p(·), ,\and v(·) by equation (5). 

Turning attention to the form a density might take, the simple pairwise 
interaction density ( 1) is no longer valid, since distances between marked points 
are no longer observable, nor is the number of points. The latter observation 
rules out terms (3n, but the role of the parameter (3 is effectively taken over by 
the intensity parameter >. in Q >.,v· In general, coverage models 14 of the form 

p(X) =a exp[- log/ h f(cx(a))da] 
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do not generalise to random sets, since the coverage function Cx ( ·) is not known. 
However, special cases such as the area-interaction model (2) (or the truncated 
model (cf. 14 )) may yield a valid density 

p(X) = Q'}'-T(X) (8) 

for some finite measure T, 0 < "( < oo. Similarly the continuum random cluster 
model (4) suggests a random set density 

p(X) = Q"(-c(X)_ (9) 

Both (8) and (9) can be used to encourage many disjoint components 
('Y < 1}, few components ('Y > 1), or indeed a Boolean model ('Y = 1). For 
exact realisations see 9 . 

Sometimes the measurer(·) in (8) can be replaced by other Minkowski 
functionals 17. For details see 4 . 

4 Boolean likelihoods 

It is well known that the density of a Poisson process on a bounded subset 
S C JR.d with intensity f3 > 0 with respect to a unit rate Poisson process is 

(10) 

where n(x) denotes the number of points in configuration x. Hence all ho­
mogeneous Poisson processes are absolutely continuous with respect to each 
other. 

For Boolean models, the situation is more complicated due to the occlu­
sion of individual mark sets. A further complication is caused by the mark 
distribution 11( ·). 
Theorem 1 Jf v, v are probability measures on (K, JC) such that;; is absolutely 
continuous with respect to 11 (v << v) and>.).> 0 then Q := Q, - << Q>. v := 

A,V 1 

Q. 
Proof. Suppose Q(B) = 0, that is 

oo e->.(S) J ! 
0 = 2:-1- • • • Anle(Uf=1 (si $ Ki))dsrdv(K1) ... dsndv(Kn)· 

n=O n. (Sx K)n 

Hence all terms must be zero, that is for all n E No : 
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Since ,\, >. # 0 by general assumption and v < < v : 

where f denotes the density of v with respect to v. 
Now by (11), 1B(U~1 (s; E9 K;)) = 0 ( leb® v)n - a.e., hence 1B(Uf=1 (s; E£) 

K;)) f1:. 1 f(K;) = 0 almost everywhere and we obtain, for all n E No 

yielding Q(B) = 0. Since B was arbitrary, Q << Q. D 

= 

By the Radon-Nikodym theorem, Qhas a derivative with respect to Q. By 
(5), we obtain 

dQ (X) 
dQ 

(12) 

L.::=o e-:;si ).n J · · · fcsxK)n l{Ui=l (s; E9 K;) = X}ds1dii(K1) · · · dsndv(Kn) 

L.::=0 e-~;si An J · · · fcsxK)n l{Uf=1 (s; E9 K;) = X}ds1dv(K1) · ·· dsndv(Kn). 

Below we investigate some special cases. 

4.1 Point processes 

A Poisson point process can be seen as a Boolean model with a degenerate 
mark, i.e. v( {O}) = 1. Thus by (12), the density of Q;x, 11 with respect to Q>.,11is 

dQ-
~ (X) = 
dQ>.,11 

= 

agreeing with (10). 
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4-2 H·~ire fmme processes 

Consider a Boolean disc process as in Figure 1. Since a homogeneous Poisson 
process almost surely does not have multiple points, there is a one-to-one 
correspondence between the union sets 

S(s;, k;) = fJB(s;, k;) 

the topological boundary of the ball at S; with radius k;, and configurations 
{ (s;, k;) : i = 1, ... , n}. In particular, the number of circles is an observable 
functional for both the random set and the marked point process representa­
tion. 

Suppose we have two radius distributions 11(·) and i{) on (ID;_+, Bor) with 
v << v and intensities,\)..> 0. Then 

( 13) 

where/(-) is the Radon-Nikodym derivative ~~. 
To verify (13), note that for any FE FsxK 

or alternatively, use (12) as in 4.1. 
The expression (13) also holds for other 'wire frame' processes with trans­

parent marks,where the individual component sets can be uniquely identified 
from their union. 

4. 3 Poisson cluster processes 

In a Poisson cluster process 7 , each of the points in a 'parent' Poisson process is 
marked by a finite, bounded point process of 'daughters'; a realisation consists 
of the total offspring. 

Thus, as before, let S ~ JRd be bounded Borel, equipped with Lebesgue 
measure, and take for K the exponential space Or for some large enough 
bounded Borel set T ;;;! S. The mark distribution v(·) could be specified by its 
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density g( ·) with respect to a unit rate Poisson process on T. Then, conditional 
on parent configuration s = { 8 1 , ... , sn}, the offspring X = ur,,,, 1 ( s; EB K;) is 
absolutely continuous with respect to a unit rate Poisson process on T, with 
conditional density 

n 

p(Xls) = elTI LIT (g(X\0-1(i) - 8i)e-ITI] 
\0 i=l 

where the sum is over all ordered partitions t.p of X. 
The unconditional density can be found by taking the expectation over s: 

Next consider two Poisson cluster processes, such that the daughter dis­
tributions satisfy i/ << v, i.e. if g:::: 0 on a non-null set, then the same is true 
for g. Then, by (12) or (14), 

dQ· 
-2.£.(X) (15) 
dQ>..,11 

"oo e-5.tSI \n ITl(l-n)" J J IT" "(X )d d Lm=O --:;;r" e L;<p ••• sn i=l g \0-l(i) - 8; 81 ... Sn 
= L::=o e-;ist >,nelTl(l-n) L<,0 I ... fsn rr~=l g(X\0-l(i) - 8;)ds1 ... dsn. 

The expression (15) can be simplified if we make further model assump­
tions. For instance, let each parent have a single daughter, with displacement 
densities h(-), h(·) concentrated on a ball of radius R. Then the process is 
neare5t-neighbour Markov at range 2R, and (15) reduce5 to 

e<>..-X)1s1(~rcx) IT fsh(X; -s)d8 . - n(X) ( • ) 

>- i=l fs h(X; - 8)d8 

4.4 Boolean models W'ith deterministic grains 

Consider a homogeneous Poisson proce5s of locations and at each of the points 
in a realisation place a copy of the fixed set Ko. Then for every .>., >. > 0, 
Qx << Q>. and 

dQ>. (X) = L::=o ~).n J · · · fsn l{Ur,,,,1 (8; EB Ko)= X}d81 · · ·d8n 

dQ>. L::=o .,-;1st >.n J · · · fsn l{ur,,,,1 (8; EB Ko)= X}ds1 · · · dsn 

Note that the terms for n < m in both numerator and denominator vanish, 
where m is the number of non-empty connected components in X. 
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5 Markov properties for random sets 

In this Sect.ion, we focus on finding an analogue to Definition 3 for random 
sets. We will exploit the Hammersley-Clifford theorem, giving an equivalence 
between Markov densities satisfying (M) and (H) in Definition 3 and factorisa­
tion of the clique interaction functions. Intuitively, in the random set case, it 
seems reasonable to expect a factorisation into disjoint connected components. 
Indeed, by a result in5 , Poisson cluster processes (simple Boolean models!) are 
connected component Markov. For this family of neighbourhood relations", the 
Hammersley-Clifford factorisation is 

m 

(M') p(S) = p(0) II iI>(Sj) 
j=l 

where 3 1, .•• , Sm are the maximal connected components in S and the inter­
action function iI>( ·) 2:: 0 is such that if Y is connected and Z ~ Y is connected 
too, then <I>(Y) > 0::::} <I>(Z) > 0 5 . 

Hence we can define a random set density p( ·) to be Markovian if it sat­
isfies (M'). Random fields with a similar factorisation property are studied in 
Moeller and Waagepetersen 22 . 

Theorem 2 The Boolean model {12), the continuum random cluster random 
set (9) and the area-interaction random set (8) satisfy the factorisation prop­
erty (M'). 
Proof. For the Boolean model density (12), consider the denominator 

00 e-AISI J ! Z:.:-1-.An · ·· l{Uf=1(si $Ki) = S}ds1dv(K1) · · ·dsndv(Kn)· 
n=O n. (Sx K)" 

(16) 
Write B = S1 U ···Sm where S, i = 1, ... , m are the maximal connected 
components of S. Then (16) can be rewritten as 

ft { l{u~,;1 (si$Ki) =Bj}ds1dv(Ki)···dsn.dv(Kn.) = e-AISI 
j=l }K"i ' ' 

fr [f nl·!_xn;/··· { ... 1{u~,;1(si$Ki)=Sj}ds1dv(K1)···dsn;dv(Kn;)]. 
;=l n;=l J ix 3 



The numerator in (12) factorises similarly, hence (12) satisfies (M'). 
Regarding the area-interaction random set, 

giving (M'). 
Finally 

m 

p(S) = 0:7-T{E) =Cl! IT 'Y-T(E;) 

j=l 

p(3) = ll!'Y-c(X)Q ft..!:_ 
i=l 'Y 
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hence the continuum random cluster model also satisfies (M'}, completing the 
proof. O 

Although it does not seem clear how to define a conditional intensity for 
random sets in general, the likelihood ratio for adding s,.+ 1 $ Kn+l to S = 
Uf=t (s; $ K;) depends only on the component of s,.+l $ Kn+l in the new set 
and the connected components Bj of S intersecting the added set. 

Turning to 'global' Markov properties, Matheron showed that any Boolean 
model X with convex mark sets satisfies the semi-Markov property that X n 
E and X n Fare conditionally independent given X n G = 0 where E, F 
are compact sets separated by another compact set G, i.e. any line segment 
joining x E E with x' E F must hit G 17. This property does not hold for 
( Af')-densities in general. On the other hand, spatial Markov properties as 
considered by Kendall 1 1 and Moeller 21 may carry over, provided appropriate 
hereditariness assumptions are satisfied 5 . 
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