
!I
ELSEVIER Theoretical Computer Science 200 (1998) 289-312

Theoretical
Computer Science

Operational semantics of rewriting with priorities

Jaco van de Pol*
Eindhoven University of Technology, Department of Computing Science.

Abstract

P.O. box 513, 5600 MB Eindhoven. Netherlands

Received March 1996; revised May 1997
Communicated by U. Montanari

We study the semantics of term rewriting systems with rule priorities (PRS), as introduced
in Baeten et al. (1989). Three open problems posed in that paper are solved. by giving counter
examples. Moreover, a class of executable PRSs is identified. A translation of PRSs into transition
system specifications (TSS) is given. This translation introduces negative premises. We prove
that the translation preserves the operational semantics. © 1998-Elsevier Science B.V. All
rights reserved

Keywords: Tenn rewriting systems; Rule priorities; Structural operational semantics; Transition
system specification; Negative premises

1. Introduction

1.1. Motivation

In [I], term rewriting with rule priorities has been introduced. A priority rewrite
system (PRS) extends an ordinary tenn rewriting system (TRS) with a partial order
on the rules. The main idea is to resolve a conflict between two rules by giving priority
to the largest rule. One may hope that by ordering the rules of a non-confluent TRS, a
conftuent PRS can be obtained (i.e. a system in which each reduction eventually gives
the same result). Indeed, some results of this kind are known.

The above motivation of the priority mechanism can be seen as an implementation
issue: priorities drastically decrease the amount of non-determinism involved in term
rewriting.

The second motivation evolves from a specification point of view. The priority mech
anism adds expressive power. We mention two points only: In a signature containing

• E-mail: jaco@win.tue.nl.

0304-3975/98/$19.00 © 1998-Elsevier Science B.V. All rights reserved
Pll 80304-3975(97)00283-1

290 J. van de Poll Theoretical Computer Science 200 (1998) 289-112

the booleans, an equality predicate for an arbitrary sort can be specified by two rules
only (see Example 34). This cannot be done in ordinary TRSs. The other indication
is: The one step reduction relation of PRSs is not decidable in general.

These motivations justify the mathematical study of the priority mechanism itself.
In this paper, we will not be concerned with restrictions on the rules, the partial
order or the reduction strategy. Such restrictions can be fruitful, but fonn a different
topic. We mention the following restrictions: specificity order on rules; left linear rules;
leftmost/innennost reduction or a lazy strategy; operator-constructor discipline. See e.g.
[4--6] for various results obtained by making such restrictions.

1.2. Contribution

The semantics of a PRS is not straightforward. The reason is that the question
whether a certain rule may be applied, cannot be answered by syntactically matching
the rules of higher priority (cf. Example 3). It is even the case that not every PRS
will have a semantics.

In [1], a PRS is called meaningful if it has a so-called unique sound and complete
rewrite set. A certain monotonic operator is associated to a PRS, which reaches its
least and greatest fixed points at some closure ordinal ex. It has been proved that in
case these fixed points coincide, the PRS is meaningful. It has also been shown that
if the PRS is bounded, then the least and greatest fixed points are equal. Three open
questions concerning this fixed point construction were posed:

(I) Is the associated monotonic operator always continuous?
(II) Is the closure ordinal ex always finite?

(III) Is coincidence of the least and the greatest fixed point a necessary condition for
being meaningful?

We solve these questions in a negative way, i.e. by giving a counterexample to each
of them (Section 2.4). We also give a sufficient condition for decidability of the one
step reduction relation. This can be used to identify a subclass of executable PRSs
(Section 2.3), addressing another question posed in [I]. In particular, the one step re
duction relation of the PRS is decidable, if the underlying TRS is strongly normalizing.

In Section 3.2, we give a translation of a PRS into a transition system specifi
cation (TSS) with negative premises [2, 7]. Such a specification can be seen as an
inductive definition with negative premises. Such definitions are not always mean
ingful. We show (Theorems 39 and 42) that the operational semantics is preserved
under this translation. Another application of TSS theory to term rewriting occurs
in [3].

This translation relates the semantics of priority rewriting given in [I] with general
techniques to deal with negation in operational semantics and logic programming (for
references to logic programming we refer to [7]). It also explains the negative answer
to the third of the open questions. Finally, it opens the way to combining priorities
with positive/negative conditions.

J. van de Poll Theoretical Computer Science 200 (1998) 289-312 291

2. Term rewriting with rule priorities

In Sections 2.1 and 2.2, we shortly recapitulate the definitions and some theory on
priority rewrite systems (PRSs). These sections are based on [1]; only Example 5 is
new. In Section 2.3 we identify a subclass of executable PRSs and Section 2.4 contains
counter examples to some open questions posed in [I].

2.1. Definition and semantics

We assume a signature J; of the form (F, f). Here~ is a set of function symbols
with fixed arities, f is an infinite set of variables. Sets of (open) terms fi(~. ·r)
and closed terms fi'(F) are defined as usual. Var(s) denotes the variables occurring
in term s. A substitution is a finite function from variables to terms.

Definition 1 (Baeten et al. [l, Definition 2.5]). (1) A rule is a pair oftenns, written
I f-+ r, such that I is not a variable and the variables of r occur in I.
(2) A term rewriting system (TRS) is a pair (I,R), with R a set of rules.
(3) A priority rewrite system (PRS) is a tuple (9t, >), with 9t a TRS, and > a partial

order on the rules of 9t.

In examples, the priority ordering will be denoted by arrows. We call 9t the under
lying TRS of a PRS (9t, >).

Definition 2. Let PRS £? = (91, >) be given.
(1) Let r be a rule in£?. An r-rewrite (written s 1--+'t) is a closed instance of r.
(2) Let R be a set of rewrites. The closure of R under closed context is denoted by

-+R. The reflexive transitive closure of -+R is denoted by - R • With s -knt t we
denote an internal reduction, i.e. a reduction where each contracted redex is not
at the root. If R is a large expression, we also write R f= s-+ t, R f= s- t etc.

(3) We write -+fit, -!Jt and -.t in case we work in the underlying TRS. (i.e. the
reductions may use all rewrites).

The priorities are used to indicate preference of one rule above another. In this way
a conflict between two rules can be resolved. So not every rewrite is enabled. A rewrite
is only enabled, if it is not blocked by a rule of higher priority. Let us look at an
example before making this formal.

Example 3 (Baeten et al. (1, Example 2.1]).

rl: P(O)r-tO

r2 : P(S(x)) H x

x +yH S(x+P(y))
lr3:

r4:

x+OHx

292 J. van de Poll Theoretical Computer Science 200 (1998) 289-312

The rewrite x + 0 .-. r 4 S(x + P(0)) is blocked, because r3 takes precedence. However,
also x+(P(S(O)))....., ' 4 S(x+P(P(S(O)))) should be blocked by r3, because eventually,
P(S(O)) becomes 0. The correct reduction is: x + (P(S(O))),,2 x + O .-.'3 x.

As Example 3 shows, the definition of the reduction relation induced by a PRS is
not straightforward. The rewrites+ t 1-+ ' 4 S(s + P(t)) is enabled only, if t-f 0. So in
the definition of the one step reduction relation, the negation of the more step reduction
relation occurs. This explains the following definition.

Definition 4 (Baeten et al. [I, Definitions 2.8 and 2.9]). Let PRS f!J = (9l, >) be
given, with a rewrite set R.
(I) Let x=s >--+'t be a rewrite of ?J. R is an obstruction for x (written x<3R) ifthere

is a rewrite s' 1-+ r' t' of f!J with r' > r and a reduction s - j/11 s', using precisely all
rewrites in R.

(2) A rewrite x of f!J is correct with respect to R, if there is no obstruction 0 ~ R for
x.

(3) R is sound if all its rewrites are correct w.r.t. R.
(4) R is complete if it contains all rewrites of f!J that are correct w.r.t. R.
(5) f!) is meaningful if it has a unique sound and complete rewrite set. This set is the

semantics of f!J.

In (I] an example of a PRS is given that does not have a sound and complete rewrite
set (see Example 44), as well as a PRS that has more than one sound and complete
rewrite set. Neither of them is meaningful by Definition 4.5. The following example
will also play a role in Section 2.4.

Example 5. Consider the following PRS f!J with a constant a and a unary function
symbol/:

lf(a) ~f(f(f(a)))

f(x) ~a

We write f"(a) for the n-fold application off to a. Note that all closed terms are
of the form f"(a). We claim that f!J is meaningful, because the following set is the
unique sound and complete rewrite set for it:

R:={f(a) 1-+ / 3(a)}U{f2ni+2(a)- a J m~O}.

Completeness: The only rewrites not in R are of the form / 2"'+1(a) - a, for some
m;;;:::O, but these are not correct with respect to R, because 1im+ 1(a)-jftf(a). (If

J. van de Po/ITMr>retical Computer Science 200 (1998) 289-312 293

m =0 in 0 steps, if m>O in one step). So R contains all rewrites that are correct w.r.t.
itself.

Soundness: Note that ifs has an even number of /-symbols, and s ""*Rt, then t bas
an even number of /-symbols too. So for no m we have [2m+2(a)-f1j(a}, hence
all rewrites of R are correct w.r.t. itself.

Uniqueness: Let S be a sound and complete rewrite set. By completeness S con
tains f(a) ~ J3(a), so for all m;;:i:O, f(a)-sf2m+1(a). Assume, towards a contra
diction, that S contains [2m+t(a) ~a for some m;;:i:O. Then f(a)-sa; hence also
flm(a)-sa. Now by soundness, 121n+1(a) ~a is not in S: contradiction. This shows
S s; R. Vice versa, let x ER, then x is correct w.r.t. R (soundness of R), hence also
correct w.r.t. the subset S and, by completeness of S, xES. Hence S=R, proving
uniqueness.

2.2. Fixed points

In Example S a rewrite set was given in advance and then checked for soundness and
completeness. We want of course a method to compute this set by means of successive
approximations. This is the aim of this section.

Definition 6 (Baeten et al. [I, Definitions 2.13 and 3.2]). (1) Let R be a set of re
writes of PRS fJI. Then the closure of R, written R' consists of all rewrites that are
correct w.r.t. R.

(2) Put T91'(R) := (J?!)i?.

Lemma 7 (Baeten et al. [I, Lemma 2.14]). Let R be a set of rewrites for PRS fJI.
(I) R is sound "'* R s; R9'.
(2) R is complete #R'2,R'.
(3) R s;s '*R' 2 s91'.

Combining (I) and (2) of this lemma, we see that we need a unique fixed point
of the closure map ()91 • Unfortunately, this map is not monotonic, but antitonic, as
seen from the last part of the lemma. But then the operation T91' is monotonic, so we
can compute its least and greatest fixed points. Consider the following construction,
parameterized by an arbitrary PRS fP. (Here and in the sequel, ex ranges over arbitrary
ordinals and A over limit ordinals; m and n range over finite ordinals.)

Definition 8 (Baeten et al. [I, Definition 3.3]).

T9"l0:=0,

T911 t(cx + l) := T91'(Tg.Toc),

T9'iA:= U (T91'joc),
a:<.A.

T9'!0:=091',

T9' l(cx + 1) := TSt(T91' ! ex),

TSt ! .A.:= n (Tg. ! ex).
:z<).

294 J. van de Pol/Theoretical Computer Science 200 (1998) 289-312

Proposition 9 (Baeten et al. [l, Theorem 3.5]). For all PRSs f?J and ordinals ex,
(l) (Tgo Tix)9" = T1;1> 1 rx.

(2) (Ta-lrx)91 =Ta-Hix+ 1).

Proposition 10 (Baeten et al. [l, Proposition 3.8]). For all PRSs f?J and ordinals ex,
(1) T9' Trx is sound.
(2) T 9' 1 ex is complete.
(3) If R is sound and complete, then T1;1>frx~R£;Tailrx.

Proof. (1) and (2) are proved in [l]. Part 3 is not explicitly mentioned there, although

it is needed in the following corollary.
Assume that R is sound and complete, then R = R91 by Proposition 7 (1) and (2),

hence T 91(R) = R. With induction to a, we prove that T9' Tix£;; R:
- Ta-TO= 0 s;; R;
- If T9'Tex~R, then as T£1' is monotonic, we have Ta-T(a + l)=T9(T91 Tex)~

T9(R)=R;
- If T9'Trx ~ R for all ex <.A., then also T9"f..l = Ux<A T11Tix s; R.
Then by Proposition 7.3, T9" lex=(Ta-Tex)9" 2R9' ==R. 0

Because the operation T 9' is monotonic, it has a least fixed point, which is reached

at some ordinal. We define the closure ordinal of a PRS f?J as the first IX such that

T,, Tct = T9 T(ct + 1). Note that for the closure ordinal also T9' 1ct=T91 l(ex + 1). In
this way we find the least and the greatest fixed points for the map T90 • We now have

the following corollary:

Corollary 11 (Baeten et al. [l, Corollary 3.9J). Let ex be the closure ordinal of

a P RS 9. If T 91 TIX = Ta- 1 ix, then 9 is meaningful and Ta-TIX is its semantics.

Example 24 - which can be read independently of the next section - shows, that

the condition of the corollary is not a necessary one.

2.3. An executable class of PRSs

In this section, we will prove that locally finite PRSs have a closure ordinal at

most OJ. Consequently, given a bounded PRS with finitely many rules, we can actually

compute the finite set of -+-successors of each tenn s. In this sense, the PRS can be

executed as a program with input s. This answers a question put in (l], by giving a
reasonable class of PRSs that is executable.

We first define some relevant properties of PRSs, in terms of the underlying TRS.

Definition 12. (1) A TRS is strongly normalizing if all reduction sequences are finite.

(2) A possibly infinite reduction sequence s0 -+ s1 -+ · · · is bounded if there
exists an n such that for all i, !s;I ~n. (Here Is! denotes the length of a term s in
symbols).

J. van de Pol/Theoretical Computer Science 200 (/998) 289-312

(3) A TRS at is bounded if all reductions sequences in {}t are bounded.
(4) A TRS is locally finite if for all s, the set { t I s - t} is finite.
(5) A PRS is bounded (locally finite) if its underlying TRS is.

295

An easy syntactic check for boundedness is that all rules are "non-duplicating" and
"non-length-increasing". The first property holds if the multiset of variables on the right
hand side is contained in the multiset of variables on the left. A rule is non-length
increasing if its right hand side contains not more symbols than its left hand side. (One
can even assign weights to the function symbols). The existence of a recursive path
order also implies boundedness, as strong normalization is stronger than boundedness.
None of these syntactic conditions is necessary, however.

Proposition 13. Let &' be a bounded PRS with closure ordinal a. Then T?T:x=
Ta>! a.

Proof. This follows immediately from Propositions 3.l l and 3.14 in [I]. 0

It will be shown that if the set of rules is finite, then r.x is at most w (Proposition 16).
We first need Proposition 14, relating the properties defined above, and the auxiliary
Lemma 15.

Proposition 14. Let 91 = (E,R) be a TRS.
(1) If g{ is strongly normalizing, then 91 is bounded
(2) If !A is locally finite, then !A is bounded.
(3) If R is finite and 91 is bounded, then !A is locally finite.

Proof. (l) Given a sequence s0 -+s1 -+ ···,we can take the length of the largest term
in it, as the sequence must be finite.
(2) Given a sequence s0 -+s1 -+ ···,we can take the length of the largest tenn in the

finite set { t I so - t}.
(3) Suppose 91 is bounded and finite; let s be given. Put V = { t Is-"' t} and E :=

-+~ n V x V. Consider (V,E) as ans-rooted graph.
(a) (V, E) is finitely branching because -+ 91 is. This is because the set of rules is

finite, hence every term contains only finitely many redexes.
(b) All acyclic paths in (V,E) are finite. This is because each path corresponds

with a reduction sequence in - 91 . By boundedness, all terms in this sequence
are shorter than n for some n. Furthermore, these terms are built from a finite
set of function symbols: those occurring in s or in the finite set of rules. So
there are only finitely many different terms on each path.

Now (a) and (b) imply that V is finite. To see this, we apply Konig's Lemma on
an acyclic subgraph of (V,E) that covers all nodes in V. To obtain such a graph, we
proceed as follows.

296 J. van de Pol/TMoretical Computer Science 200 (1998) 289-312

For t E V, let d(t) denote the distance from the root s to t. Define D <;;, E as
{(r,t) I d(r) + l =d(t)}. Then Dis acyclic by construction. For each tE V, we have
sD*t as can be shown by induction on d(t). 0

Lemma 15. Let fJ' be a locally finite PRS. Let x be a rewrite of fJ'. Put V :=
U{O I x<iO}. Then V is finite.

Proof. Because fJ' is locally finite, the set { t I s - t} is finite for each s. Each tenn

has finitely many subterms, so the set {tl3C,r.s-r /\ C[t]=r} is also finite for
each s. Now each a 1-+ b in V is in an obstruction, so for some context C, we have
lhs(x)-int C[aJ- C[b]. Hence V is finite. 0

Proposldon 16. If fJ' is a locally finite P RS then its closure ordinal is at most w.

Proof. It is enough to prove that T 9' T w 2 T 9' f(w + 1). Consider x E Ta-T(w + 1) =
(TIJl'!w)9'. Put V:= LJ{Olx<iO}. Because x is correct w.~.t. Ta-!w, there is no ob
struction of x entirely in T 9' ! w, so we can find a set W ~ V, such that W n T 9' ! w = 0
and for each obstruction 0 of x, W n 0 =j:. 0. By Lemma 15, V is finite, so W is finite
too. Therefore, there exists a n, such that W n T 90 ! n = 0. But then x E Ta-T(n + 1), so
xETIJl'jro. 0

Corollary 17. If fJ' is a locally finite PRS, then TIJ'Tw is its semantics.

Proof. By Lemma 13 fP has a semantics, which must have been reached at w by
Proposition 16. 0

As a corollary we have that bounded PRSs with finitely many rules are executable
in the sense that for each term s, the set of --.. -successors is finite and computable.

Theorem 18. Let f? be a bounded P RS with .finitely many rules. Then fJ' is exe
cutable.

Proof. By Proposition 14.3, 9 is locally finite, hence (by the previous corollary) the
semantics of fP is Ta-T w. So given a closed tenn s, we have to compute the finite set

{t I T91fro F= s-t}.
This is done by generating all successors t of s in the underlying TRS, and then

testing whether the rewrite x used to obtain t is enabled, i.e. whether x E T 9' T ru. Note
that if so, then it is contained in Tgifn for some finite n already. Otherwise, it is not
in Tgi t ro either, hence it is outside T9' t n for some finite n already. So we consider
the sequence T 9' TO, T 9' ! 0, T 9' TI, T 9' ! 1, ... until we find an n, with x ET 9' Tn or x 'I.
TIJI' tn.

We still need to prove that for all finite n, it is decidable whether s t-+ 't is in f?/'(0)
(the n-fold application of ()!JI'). This is proved with induction to n. For n = 0, the
answer is clearly NO. Now suppose that for some n, f?"(0) is decidable. Let some

J. van de Poll Theoretical Computer Science 200 (1998) 289-112 297

rewrite s •-•.rt be given. It is in &"'+1(0) if and only if it is correct w.r.t. &"'(0). This
is the case if and only if there is no rewrite s' ~ r' t' with r' > r and &"' f= s - int s'.
This can be tested by generating all terms reachable from s using -;1 (there are only
finitely many because & is locally finite), and test whether the used rewrites are in
&"', which is decidable by induction hypothesis. 0

2.4. Counterexamples to open questions

In [1, p. 297] three open questions concerning the mapping Tao are posed
(I) Is the mapping T90 always continuous, instead of only monotonic?

(II) Is the closure ordinal of each PRS finite?
(III) Is the condition of Corollary 11 necessary? That is, does every meaningful PRS

& with closure ordinal oc, satisfy T 90 T oc = T 90 ! oc?
We have found counterexamples to each of these questions. First, Example 19 provides
for a finite PRS, with closure ordinal w. This is a counterexample to (II). It is easy
to extend this example in order to find a closure ordinal beyond w (Example 22).
This refutes (I), because if Tao were continuous, the closure ordinal would be at most
w. Finally, we show that for the PRS & of Example 5, Tao Tot =f. Tao! ot for any ex
(see Example 24), although it is meaningful, as we already showed. This answers (III)
negatively.

Example 19. Let & be the following PRS:

lf(b)HC

/(x)H g(x)

g(a)Hb

g(f(x))i-+ g(x)

Note that the TRS underlying & is strongly normalizing, so it is bounded. By
Lemma 16, the closure ordinal is at most ro. From Claim 21 below, it follows that the
closure ordinal is not finite, so it must be ro. This gives a negative answer to open
question (II) at the beginning of this section.

Claim 20. Let R be an arbitrary set of rewrites. Rao contains /"+1(a) ~ g(f"(a)) if
and only if Rao f=f"+1(a)-b.

Proof. "'*" is clear, because we have:

298 J. van de Pol/Theoretical Computer Science 200 (1998) 289-312

-<=: Suppose there were a reduction from r+1(a) in ~ that does not start with
g(f"(a)). The first step must be an innennost application of the second rule. We have
to reduce the topmost f at some later point. So the reduction has the following form
(for some m, k =n - m - 1 and z):

Inspection of the rules of f/ reveals that the total number of b-, c- and g-symbols
cannot decrease during rewriting. But then the reduction above cannot exist, because
g(z) contains at least 2 such symbols, so it can never reduce to b. D

Oaim 21. For all m, the rewrite j 2111+1(a) t-t g(J2'"(a)) is in T9'i(m + 1), but not
yet in T9'jm.

Proof. Induction to m. Base case: because a is a norm.al form, T 9' ! 0 I= a+ b, so
Tgijl contains /(a) t-t g(a); Taoi0=0.

Induction step: assume the claim holds for m, then (by Claim 20)

hence J2m+2(a) g(f2m+1(a)) is not contained in T9' ! (m + 1), but it is in T9' ! m.
Therefore (Claim 20),

Therefore, J2m+3(a) t-t g(j2m+2(a)) is contained in T9'j(m + 2), but this rewrite is
not in T.9'i(m + 1), so the claim holds form+ 1. D

The idea of this example is that fm(a) can be reduced to b for odd m only. These
reductions block the reductions for even m. The system is constructed in such a way
that the larger m becomes, the later we decide whether fm(a) reduces to b. Because
the system is bounded, we cannot go beyond w. The only way to go beyond w uses
a non-bounded system. As the proof of Proposition 16 reveals, we need a term with
infinitely many possible reducts. Only at stage w, the system may know that none of
these is actually reached. This is the idea of the following example:

Example 22. Extend f/ of Example 19 with the following rules (note that the two
rules are not ordered):

h(x)Hf(x)

h(x) H h(h(h(x)))

We will show that T, T ro f. T, T (w + I). by showing tll&t the latter contains the
rewrite f(h(f(a))) g(h(/(a))), but the former does not. Note that Claims 20 and 21
still hold for the extended system, because the proofs remain valid for the new~.

for au m, h(x)- j2m+l(x) (induction to m:)

=> for all m, h(f(a))- j2"'+2(a)

=> for all m, T1 ! m I= h(f(a))- / 1.m+2(a)-b (see proof of Claim 21)

=> for all m, Tgol(m + l)F/(h(/(a))),...... g(h(/(a)))

=> Ta>frop!:/{h(f(a))) >-+ g(h(f(a))). (defined as union)

On the other hand, T,,. i(w + l) I= f(h(f(a))) ,_. g(h(f(a))) by Proposition 9 and the
claim below.

Claim 23. T91 l w I= h(f(a))-f b.

Proof. Any reduction of h(f(a))-b would have the following form:

I 11 III
h(f(a)) - f(z) ,_. g(z) - b.

We will show that II is not a rewrite in T9' ! w.
Because the total number of b-, c- and g-symbols cannot decrease during (III), z

may not contain one of these symbols, hence (I) uses only the two h-rules. Therefore,
z consists of an odd number of f and h symbols, applied to a, so z - f2m+ 1 (a) for
some m. Using Claim 21 above we get a reduction

T,T(m + l) l=z-/2,,.+1(a),...... g(f°"(a))-h.

Then T 1' ! (m + 1)~ f (z) 1-+ g(z). So step II above is indeed absent in T .¥ ! w, because
this is defined as the intersection of all the T _, l m. 0

One might have the idea to reduce the number of rules in the previous ex.ample,
by identifying f, g and h. In this way, one more or less gets Example 5. We showed
that this system has a unique sound and complete rewrite set, hence it is meaningful.
However, contrary to the examples before, for this system the least and greatest fixed
points do not coincide. This solves the third open question.

Example 24. Let ~ be the PRS of Example 5. We have

T:J010=0

T.~ ! 0 = {J(a) - f 3(a)} U {!"+2(a) ,_.a In EN}

Taoil ={!(a),...... / 3(a)}

T,,!l=T_p!O

T.!l'T2 = T90Tl

300 J. van de Pol/Theoretical Computer Science 200 (1998) 289-312

The crux of this system is that, although T 91 l O~ f(a) 1-+ a, the reduction f(a) t-+

f 3(a) 1-+ a is still present. Therefore, every closed term reduces to a in T.,, ! 0. Clearly,
the closure ordinal of this system is l, but the least and greatest fixed points are not
equal.

3. Transition system specifications

Not every PRS is meaningful in the sense of Definition 4 (for an example see the
appendix). The reason is that a rewrite f(r) t-+ sis enabled if a certain reduction r-1
is not present. However, one of these steps may involve the original question, whether
f(r) s is enabled or not. In [I] this problem is solved by asking for a unique
sound and complete rewrite set. A fixed point construction was given to compute the
semantics. We showed (Example 24) that this is not a complete method. For some
meaningful PRSs the meaning cannot be obtained by this fixed point construction.

In this section, we put the priority mechanism in a wider context. We will present a
translation from PRSs into transition system specifications (TSSs). This opens the way
to use existing work on operational semantics of TSSs with negative premises [2, 7].
It will turn out (Section 4) that the PRS-semantics coincides with the operational
semantics of the TSSs obtained by our translation. In this way, the PRS-semantics gets
a broader basis. The translation shows, that the discrepancy between "meaningful" and
the fixed point construction is quite inevitable.

A second advantage of the semantics in terms of transition systems is that it provides
a way to give semantics to the combination of rule priorities and rules with positive
and negative conditions. The conditional rules can be translated to TSS rules in an
obvious way. This gives both mechanisms a common basis.

A PRS can be translated to a TSS in a smooth and intuitive way. The addition rules
from Example 3 can be translated into:

y fa 0
x + 0, x x + y t-+ S(x + P(y))

This is not the complete specification, because we also need rules for the context- and
transitive closure of, . (See Definition 33). Although this example illustrates the
main idea, it simplifies matters too much. The following example is more representative:

l Zero?(S(y)) HF

Zero?(x}H T

These rules translate into

Zero?(S(y)), F

"</ y. x fa S(y)
Zero?(x) 1-+ T

J. van de Pol/Theoretical Computer Science 200 (1998) 289-312 301

The second rule contains a universal quantifier in the premise. The second rule is
enabled if there is no y, such that x reduces to S(y). This falls out of the scope of
the usual format for negative literals in TSS-theory.

In Section 3.1, we recapitulate some TSS-theory, taken from [7]. On the fly, the
format for negative literals will be generalized slightly. In Section 3.2 the translation
of priorities into negative premises will be given. In Section 4 the connection with the
PRS-semantics is established.

3.1. Universal negative premises in TSSs

We asswne a signature 'E of the form (F,!t', "!'). Here F is a set of function
symbols with fixed arities, i' is an infinite set of variables. Sets of (open) tenns
9'(F, ii") and closed terms !T(F) are defined as usual. Var(s) denotes the variables
occurring in term s. Furthermore, !I' is a set of relation symbols. These occur as names
of transitions.

Definition 25 (Literals and Rules). (1) A positive literal is of the form s-0 t. Nega
tive literals are of the form Vz.s-f+0 t. Here s,t E ff(F, "!'), --+11 E ft' and z= Var(t)
Var(s) c "f'". A literal is closed if it contains no free variables (the i are not considered
free). We let K and L range over arbitrary literals. H and J denote sets of literals; N
is reserved for sets of negative literals.

(2) Closed literals s --+0 t and Vi. s -f+0 r deny each other, if there is a substitution
a with dom(a)=z, such that ra=t. We write KLtL if Kand L deny each other.
Moreover, H t.tJ means that a literal from H denies one from J.

(3) A rule is of the form ~. with L a positive literal (the conclusion) and H a set
of literals (the premises). We often write L for ~·

(4) A transition system specification (TSS) is a set of rules.

The form of negative literals has been generalized in order to capture priorities. We
can now dispose of negative literals of the form s -f+0 , because they are subsumed
by Vz.s-f+0 z. Because Vz.s-f+0 t can be thought of as an infinite number of ordinary
negative premises, the theorems of [7] still apply.

Literals, rules and TSSs will be interpreted by transition relations. These are defined
as sets of triples, but can alternatively be seen as families of binary relations (for each
relation symbol a relation). It is defined below, when a transition relation is a model
for a TSS. Of course, we can only speak about the meaning of a TSS, if there is a
way to choose between different models. In case a TSS has only positive rules, the
least model is a very natural choice. This model only contains the transitions that are
really forced by the rules. This notion is formalized below as positive provability.

Definition 26 (Models). (1) A transition relation R is a set of triples of the fonn
s --1-0 t, where s and t are closed terms, and -a is a relation symbol.

(2) A positive closed literal L holds in R, if L ER. A negative closed literal L holds
in R, if there is no closed K that holds in R and such that K LtL. An open literal holds,

302 J. van de Poll Theoretical Computer Science 200 (1998) 289-312

if all its closed instances hold. A set of literals H holds in R if each literal in H holds
in R.

(3) A rule !{: holds in R if for each closed instance of H that holds in R, the
corresponding instance of L holds in R too.

(4) A transition relation R is a model of a TSS T, if each rule from T holds in R.
(5) We write R f=L if L holds in R. Similarly for rules and sets of literals or

rules.

Definition 27 (Positive provability). Given a TSS T, positive provability (written 1-r
or I-+ for short) is inductively defined by the following two clauses:
(l) For any literal L, {L}l-+L.
(2) If~ is an instance of a rule from T, and for all KEH, Hxl-+K, then UxEnHx

1-+L·
we write 1-rL for 01-rL.

The following "deduction lemma" and "soundness lemma" will be useful in the
sequel.

Proof. Induction on the proof of L from H. 0

Lemma 29. If R is a model for TSS T, and H 1-r L, then Rf= !f:.

Proof. Induction over the proof of L from H. 0

If a TSS T contains positive premises only, it can be viewed as a (simultane
ous) inductive definition of a certain labeled transition relation. The relation contains
exactly those literals that are provable from T. If T contains negative premises in
addition, it is not so clear which transition relation is defined. A TSS may even be
refused, because it is meaningless. In the full version of [7] up to 11 different solutions
for this problem are summarized and compared. Two of these are important for our
purpose.

The first one gives a minimality criterion that transition relations should satisfy. The
intuition is that positive literals are true only if they are forced somehow. A negative
literal may be assumed true, as soon as this is consistent. This intuition is made formal
by the notion well supported model. A TSS is meaningful, if there is a unique well
supported model.

The other method has a proof theoretic flavor. The definition of positive proof is
extended with a proof rule for deriving negative literals. In the second approach, a TSS
is meaningful, if each positive literal is either provable or refutable. Unfortunately, these
solutions do not coincide.

-- -·--~-------- -------

J. van de Pol/Theoretical CompuJer Science 200 (1998) 289-312 303

Definition 30 (cf [1, Definition 7]; Well supported transition relations). A transition
relation R is well supported 1 by a TSS T, if for each positive closed L with R I= L,
there is a set N of negative literals, such that N I-! L and R F= N.

In [7, Proposition 3], it is proved that T has a unique well supported model if and
only if it has a least well supported model. In case this exists, it can serve as the
semantics of T.

We now recapitulate the second method, which adds a new proof rule in order
to derive negative information. We dropped the possibility to start with assumptions,
because this is not needed. For technical reasons, provability is restricted to closed
literals.

Definition 31 (cf [1, Definition 9]; Well supported proof). Given a TSS T, well sup
ported provability (1-~5 or 1-ws for short) is defined inductively by the following two
clauses:
(1) If !f: is a closed instance of a rule from T, and for all KEH, 'r ws K, then 1-'l\'S L.
(2) Let L be a negative closed literal. If for any K "1.L and set of negative closed

literals N such that N 'r + K we can find an M such that M "1. N and I-ws M, then
1-wsL.

A TSS T is complete, if for each closed transition s -+0 t, either 'r~5 s-+" t or 1-~5 s
f+" t.

The second rule has a "negation as failure" ftavor: if every attempt to prove a denial
K of L fails (because it needs hypotheses N that are in conflict with some M that has
been proved already), L may be considered valid. Note that in case no rule matches a
transition s....,. t, then the condition of the second clause is vacuously true, so 1-wa s tf+ t
holds.

Proposition 32 (van Glabbeek [7, Proposition 6]). Let T be a TSS.
(1) 'r~ is consistent.
(2) If I-~ L then R F= L for all well supported models R of T.

3.2. Translation of PRSs into TSSs

In this section, we give a translation of a PRS £? to T55(£?). Without loss of
generality, we make two assumptions about 9. The first is that different rules have
disjoint variables. This can always be reached by renaming the variables. The second
assumption is, that for each inhabited arity m in £?, there is an in-ary function symbol
that does not occur in the rules, denoted by (_,. . .,_),,.. This can always be achieved
by adding new function symbols. This is to avoid -. int as a relation symbol.

1 This use of the phrase "well supported" coincides with the full version of [7]. In the extended abstract [7],
the same notion is still used to define stability. But the phrase "well supported" is used there for a more
complex notion, and it is stated that the stable models and the well supported models coincide.

304 J. van de Pol/Thtoretical Computer Science 2()() (1998) 289-312

Definition 33 (The translation). (I) Let E= (?,"I'). Put TSS(I)= (?, .Y,~), where

~:={I-+,-. - }.
(2) Let .9=(91, >)be given. Let x=f(s)i-+t be a rule in 91. Define

TSS(x)= {Vz. {S} ~ (r) I (f(T)i-+ t')>x in!?, and i'= Var(r)}
x

(3) Depending on .E, a set of rules F is defined, consisting of

X1-+ y (C2)
f(xi, ... ,x,, ... ,xn)-+ f(xi. ... , y, ... ,xn)

Xi-+y (Cl)
x-+y

-(TI)
x-x

X-+ y y-z (T2)
x-z

Rule C2 is present for each function symbol f, including Un,, and for each 1 ~i~
arity(f) (so not for constants).

(4) Let !?=(91, >) with 9t=(I,R) be given. Define TSS(!?)={TSS(.E),R'),
where R' = {TSS(r) I rER} UF.

Example 34. Let .9 be the following PRS (1, Example 4]:

lEq(x,x) H T

Eq(x,y)HF

The TSS associated to .9 has the following rules:

Eq(x,x) i-+ T

x-+y

'rlz. {x,y) _.,. (z,z}
Eq(x, y) i-+ F

X-+ y

Xi-+ y

x-+y

x-+y
Eq(x,z)-+Eq(y,z) Eq(z,x)-+Eq(z, y) (x,z}-+ (y,z)

x-+y x-+y y-z
(z,x}-+ (z,y} x-x x-z

Any transition relation for TSS(!?) can be seen as a triple of binary relations
(R, C, T), where R interprets i-+, C interprets -+ and T interprets - . Any rewrite set
R gives rise to the transition relation (R,-+R, -R). We use R f=L as an abbreviation of
(R,-+R, -R) f=L. Note that if (R, C, T) is an arbitrary transition relation for TSS(.9),
then R is not necessarily a rewrite set for .9 (i.e. a set of closed rule instances), nor
is it always the case that C = -+R and T = -R .

The adequacy of the translation above is shown by the following lemma, which is
also the key lemma in subsequent sections.

J. van de Poll Theoretical Computer Science 200 (1998) 289-312 305

Lemma 35. Let 9 be a P RS, R a set of &-rewrites. Put T := TSS(&) and let L be
a positive closed literal of T. Then

~ F= L <=> for some set N of negative premises, N r-L L and R f= N

Proof. =>: Distinguish the three possible forms of L.

(I) L = s 1-+ t with s = f (s), an instance of rule x. Put

N:={'Vz.(s)-;.. (.i)j(f(.i)t-+b)>x in & and Var(.i)=Z}.

Then ~ is an instance of the rule TSS(x). Clearly N I-+ L. Furthermore, L is in
RrP, so it is correct w.r.t. R. So for any u-instance of any rule (f(ii)1-+b)>x, we

have the following: f(s) ft+A01 f(ay. So (s) ft+R (i.i}r;. In other words, R f=N.
(2) L =s-+t. Then for some C(], I and r, s= C[/], t = C[r] and~ f= / 1-+r. By (l),

there is a set N such that Rf= N and NI-+ f 1-+ r. By Cl, NI-+ I-+ r. By suitable
applications of C2, N I-+ s --+ t.

(3) L=s-t. Then for some n, so,. .. ,sn. we have s=so, t=s,,, and for all O~i<n,

s; -+s;+1· By (2), there are N1 such that R f=N1 and N1 f-+s1 --+ s;+i· Put N := LJN1•

Then R f=N, and by suitable applications of Tl and T2, also Nf-+s-++t.
~: Induction on N I-+ L. We distinguish the last applied rule in the proof:

(1) Application of TSS(x) for some rule x. This is the only step of the proof, because
negative premises can only occur as assumptions in positive proofs. Therefore,

TSS(x) is ~· Rf= N, hence L is correct w.r.t. R, so R,,. f=L. (Details are similar
as in =>).

(2) Application of Cl. Then Lis of the form s-+t, and Nf-+s1-+t is a subproof. By
induction hypothesis, R!J' f= s 1-+ t, hence also RB' f= s --+ t.

(3) Application of C2. Then L is of the form f(.. .,s,. ..)-+ f(.. .,t,. ..), and Nf-+

s-+ t is a subproof. By induction hypothesis,~ f=s-+ t, hence also R!J' f= /(... ,s,
.••)--+ f(... ,t, ...).

(4) Application of T 1. Then L is of the form s - s. Clearly, RB' f= s - s.
(5) Application of T2. Then L is of the form s-++ t, and the subproofs have the form

N1 I-+ s --+ r and N2 I-+ r - t, for some r and N1 u N1 = N. By induction hypothesis,
R:J' f=s-+r and~ f= r-t, hence also RB' f=s-t. D

4. Operational semantics of PRSs

We now want to establish a link between the PRS-semantics and the semantics that
comes with transition systems. The comparison is made possible by our translation.
Indeed, there is a quite remarkable connection. We will show (Theorem 39) that the
sound and complete rewrite sets for & coincide with the well supported models of
TSS(9). To this end, it is proved that a rewrite set is complete for & if and only
if it is a model for TSS(&). In the same way, soundness and well-supportedness are

tightly related.

306 J. van de Pol/Theoretical Computer Science 200 (1998) 289-312

In Section 4.2, we will also establish a link between complete TSSs and the fixed

point construction for PRSs. It will turn out (Theorem 42) that TSS(&) is a complete

specification if and only if the least and greatest fixed points of the operator T rP

coincide.

4.1. Sound and complete vs. well supported model

Recall that R is complete if it contains all correct rewrites w.r.t. itself. Therefore, a

rewrite is present whenever the negative premises connected to it are true. This in tum

means that the rules of the associated TSS are true, hence the rewrite set is a model.

Hence, a rewrite set is complete for 9 if and only if it is a model for TSS(&).

Proposition 36. R is a complete rewrite set of a P RS & if and only if (R, -+R, ""* R)

is a model of TSS(&').

Proof. =>:Rules Cl, C2, TI and T2 clearly hold in (R,-+R, -R). Now let some other

rule, ~ be given. Assume that R p N°", for some substitution a. Then by Lemma 35,

RB' p r<r. Because R is complete, also Rf= r<T (Lemma 7.2). Now (R, ;, ""*R) is a

model of TSS(.9), because all rules hold in it.

{:::Let s1-+'t be correct w.r.t. R; then it is in R"'. By Lemma 35, there exist negative

premises N, such that Rf=N and N'r+s 't. Because R is a model of TSS(&),

Lemma 29 yields R I= s t. Hence R is complete. 0

Now we will show that the sound rewrite sets coincide with the well supported

models. The intuition is that in a sound rewrite set, all rewrites are correct, so the

negative premises connected with them are true. The latter forms the basic idea of

well-supportedness.

Proposition 37. Let & be a PRS. Then R is a sound rewrite set if and only if
(R, -+R, ""*R) is a well supported transition relation for TSS(&).

Proof. =>: Let R I= L for some L. As R is sound, all redexes used in the reduction

L are correct w.r.t. R, hence also R"' I= L. By Lemma 35 there exists a set N of

negative premises, such that Rf=N and N'r+L. Hence (R,-+R, ""*R) is well supported

by TSS(&).
=>: Assume R f=s t. By well-supportedness, there is a set N of negative premises

such that R I= N and N f-+ s H> t. By Lemma 35, R~ I= s t, so s t is a correct

rewrite w.r.t. R. Hence R is sound. 0

Together, Propositions 36 and 37 show that sound and complete rewrite relations

coincide with well supported models of the form (R, ;, -R). We still have to show
that a well supported model has this particular form.

J. van de Poll Theoretical Computer Science 200 (1998) 289-312 307

Lemma 38. Let a PRS &'be given. Any well supported model of TSS(.9) is of the
form (R, -rt, - R) for some rewrite set R.

Proof. Let (R, C, T) be a well supported model. Because it is a model of Cl, C2, Tl
and T2, _,.R ~ C and -R ~ T.

Next, let (R, C, T) I= L, for arbitrary positive L. Then by well-supportedness, for some

set N of negative premises, (R, C, T) I= N and N 1-i L. By induction on this proof it
can be shown that if L is of the form s ,....... t then it is a rewrite; if L is of the form

s _,. t then s -R t and if L is of the form s - t then s - R t. (details are similar to the
proof of Lemma 35). 0

For the previous lemma, we really need that the transition relation is well supported.
There exists a less restrictive notion of supportedness, but in Appendix A we give an
example showing that this is not enough.

We are now able to state the main theorem of this section. The theorem says that
the PRS-semantics can be expressed in terms of models of TSSs.

Theorem 39. Let &' be a P RS. The following two statements are equivalent:

(1) &' has a unique sound and complete rewrite set.
(2) TSS(9) has a least well supported model.

Proof. Any sound and complete rewrite set R for &' yields a well supported model

(R, __.R, -R) for TSS(9), by Lemmas 36 and 37. Conversely, each well supported

model is of the form (R,-R, -R). where R is a sound and complete rewrite set, by
Lemmas 38, 36 and 37. By [7, Proposition 3], if a least well supported model exists,

then this is the unique well supported model. Now the theorem follows. D

4.2. Fixed points and complete specifications

Recall from Section 2.2 the function ()a>, which assigns to each rewrite set R the

set of correct rewrites. We had a series T9"l1X iterating ()9" an even number of times,

starting with 0, and Ta> l .:x, iterating ()9" odd times, starting with ~. In this way we

obtained the least and greatest fixed points of T 9' that, when equal, yield the unique

fixed point of ()a>.
This section is devoted to the proof that these fixed points coincide if and only if

TSS(9) is a complete transition system specification. We have to relate truth in T 9' l ix

and T9' l .:x with provability of positive and negative literals. In Proposition 40 we
show that for any .:x, Ta>llX only contains information that is provable. This is proved

simultaneously with the fact that only refutable transitions are outside T g. l ix.

Proposition 40. Let P RS 9 with TSS(9) = T and ordinal ix be given. Then we have:

(1) For all positive closed L, if T 9" l ix I= L then 1-~. L.
(2) For all negative closed L, if T,, 1 ix I= L then 1-~ L.

308 J. van de Pol/Theoretical Computer Science 200 (1998) 289-312

Proof. Simultaneous induction on ex. We first prove that for fixed a, we have (I)=? (2).
Let ex be fixed, assume (I) and T 9' l ex I= L for arbitrary negative L. In order to apply
proof rule 31.2, let K and N be given, such that K ~ L and N f-+ K. Then T 9' l ex ~ K.
By 9.1 and 35, Ta> Tex ~ N. So there exists some (positive) M, with M '1,N and
Ta> Tex f=M. By (1), r~5 M. Hence r~5 K.

Next we prove (1) by ordinal induction on ex. By the implication above, we may
also use the induction hypothesis of (2).
0: T 9' TO= 0, Then L is of the form s- s, which is provable by Tl.
ex+ 1: Let T 9' T(ex + I) I= L. By Lemma 35 and 9.2, there is a set N of negative

premises, such that Nf--+L and T~lexf=N. By induction hypothesis (2), r~5 N.
Hence f-~s L.

A. (a limit ordinal): Let Ta> j J.1= L. Let I be the set of redexes used in the reduction
L. Ta-T J. != I. Because I is finite, there is some ex < J., such that Ta> Tex I= I. Then also
T 9' i ex I= L, and by induction hypothesis (1), f-~s L. 0

The next proposition serves as the converse of the previous one. It expresses that
the provable transitions hold in fixed points of Tao and that refutable transitions are
not correct w.r.t. them.

Proposition 41. Let PRS 9 with TSS(.9) = T be given. Let a rewrite set R be given,
with (R9')'1' =R. Let L be a closed literal.
(1) If f-~1 L and L is positive then R I= L.
(2) If f--~5 L and Lis negative then~ l=L.

Proof. Simultaneous induction on the definition of f-ws. Distinguish the last step in
this proof.
• The last step is ~ for some negative set of premises N, and L =sf-> t. We have

smaller subproofs f-~s N so by induction hypothesis (2), R9 I= N. Clearly N f-+ L.
By Lemma 35, (R9)9' I= L. Because (RrP)9 = R we have R I= L.

• The last step is an application of Cl, C2, TI or T2. These cases follow straightfor
wardly from the induction hypotheses.

• L is negative and the last step is an application of the rule 31.2. Let K and N be
given, such that K'1,L and Nf-+K· Then we have immediate subproofs of f-w5 M,
for some M with M '1, N. By induction hypothesis (l), R I= M. Hence R p!: N. So
for all N with N f--+ K, we have R ~ N. Hence R9' p!: K by Lemma 35. This holds
for any K with K '1.L, hence R91 I= L. 0

We are now able to prove that T9 has a unique fixed point if and only if the
specification of TSS(.9) is complete.

Theorem 42. Let 9 be a P RS, with closure ordinal ex. Then Tao Tex= T 9' ! ex if and
only if TSS(.9) is complete.

J. oon de Poll Theoretical Computer Science 200 (1998) 289-312 309

Proof. =>: For each positive closed literal L, either Ts-icx f=L or Tgojcx fi': L. In the
first case, 1-ws L by Proposition 40(1). Otherwise, T 91 ! ix ~ L, as we may assume
Ts-iix = T9' ! ix. Hence Ts- ! ix f=-.L, and by Proposition 40(2), 1-ws -,£.

{::::: Note that for the closure ordinal ix, T s- Tex = ((T 91 Tix)9')9', so Proposition 41
is applicable. Note also that T90jcx\;Tao!a:=(Ts-icx~. (By Propositions 7(1), 9(1)
and 10(1)). We still have to prove Tgjcx;;2Ts-!a:. Let Ts-lcxf=s1-+t, then (Propo
sition 41(2)) ~ws s ..;.+ t. Hence by completeness of TSS{@), 1-wssi-+ t. Now by
Proposition 41(1), TaoTcxf=s1-+t. This shows that Tao!cx~Taolcx. 0

5. Conclmion

We summarize the findings of the paper. In Table 1, the counterexamples presented
earlier are mentioned, with the properties that they illustrate. Table 2 compares a PRS @

with its translation TSS(!1') (Definition 33). The numbers refer to the theorems where
the correspondence is proved. The third result is that bounded PRSs are executable
(Theorem 18).

Acknowledgements

The research on which this paper is based was carried out at the Philosophy Depart
ment of the Utrecht University, The Netherlands. I am grateful to Jan Bergstra, who
suggested this topic to me. I thank Wan Fokkink for the fruitful discussions with him
and for directing me to Rob van Glabbeek, and Rob for his comments. Finally, I am
indebted to the anonymous referees for their useful suggestions.

Table I
Counterexamples to open problems

Table 2

PRS

Example 19
Example 22
Examples 5, 24

Illustrated property

Closure ordinal (I)

ClOSUIC ordinal >(!), so Tgo is not continuous
meaningful, but no unique fixed point.

Comparison of notions for PRSs with counterparts for TSSs

Notion for fJi'

Complete rewrite set
Sound rewrite set

Unique soundandcomplete rewrite set
Unique fixed point

Notion for TSS(a')

Model
Well supported relation
Least well supported model
Complete TSS

Theorem

Prop. 36
Prop. 37
Thm. 39
Thm. 42

310 J. VD1I de Pol/Theoretical Computer Science 20() (1998) 289-112

Appendix A. Just supported is not enough

This appendix gives an example that serves as extra explanation. In Section 4.1
we proved that the sound and complete rewrite sets for PRS !JI correspond to well
supported models of TSS(/JI). The definition of well-supportedness is quite intricate,
as it requires that for each transition L in a model JI, there exist negative premises N,
such that N I-+ L and JI F= N. There exists a much simpler definition of supportedness:

Definition 43 (van Glabbeek [1, Definition 5]). A transition relation JI is supported
if for every transition L E JI, there is a rule instance ~ such that JI f= H.

Instead of the existence of a proof of L with true negative premises, now simply
a rule with conclusion L is required, with true premises. However, note that when
L appears among H, then the support for L is not very convincing. In this case the
presence of L would be used to make sure that L is forced. Such a circularity can
also be less visible. The circularity is avoided in the definition of we/l-supportedness
(Definition 30). Indeed, we can find an example of a PRS that has no sound and
complete rewrite set, but whose corresponding TSS has a least supported model. In the
sequel, !JI refers to the following example.

Example 44 (Baeten et al. [I, Example 2.12]).

11-+A(l)

lA(O)i-+ 1

A(x)i-+ 0

In [I] it is shown that this system bas no meaning. The problem lies in the fact that
the rewrite A(1) i-+ 0 is allowed if and only if 1 -f+ 0. This however is precisely the
case if A(l) tf-> 0. Hence no sound and complete rewrite set can exist.

Applying the translation of Definition 33, we get a TSS consisting of the fixed rules
Cl, C2, T1 and T2, together with:

1 i-+A(l) (Rl) A(O)i-+ I (R2)
x-f+O

A(x)i-+O (R3)

Remember that models of TSS(9) are of the form (R, C, T), where R is the rewrite
set, and C and T interpret the context- and transitive closure, respectively. As shown
below, supportedness does not guarantee that T really equals "'*R. Lemma 38 shows
that for we/I-supported models, this is guaranteed.'.

J. van de Poll Theoretical Computer Science 200 (1998) 289-312 311

We claim that JI:= (R, C, T) as defined below is the least supported model of
TSS(&'). This is proved by (1), (2) and (3) below.

R:={(l,A(l)), (A(O),l)}

C:=;

T := -R U {(x, 0) Ix a closed term}

We have no R3-rewrites in R. So in order to make R3 true, its premise must be false.
This is done by ensuring that each term .. reduces" to 0 in T. We have
(1) JI is a model o/TSS(.9). Clearly, Rl, R2, Cl, C2 and Tl hold in JI. R3 holds,

because its premise is never true. As to T2, assume X-+RY and yTz. Now either
y -Rz, in which case also x-Rz, or z=O. In both cases we have xTz. Hence
T2 also holds in .A.

(2) .A is supported. Elements of R are supported by rules Rl or R2. Elements of C
are supported by rules Cl or C2. The -R-elements of T are supported by TI or
T2. Finally, the (x,O) elements of T can be supported as follows. If x=O, then
TI supports it. For x=An(l), we find as support

An(I)-+ An+I(l) An+I(1)-0
An(l)-O (T2)

Both premises hold in .A. For x=An+1(0) we find as support

An+l(O)-+All(l) An(l)-0
An+l(O)-O (T2)

Again, both premises are true in .A.
(3) JI is contained in any supported model Jl':=(R',C',T'). As JI' is a model of

TSS(.9), surely R r; R' (because Rl and R2 hold); from Cl and C2 we derive
C =-+R £;-+rJt' r; C'; and by TI and T2, we have -R s; C'* s; T'.

We still have to show that (x, 0) ET' for all closed x. If x is 0, this follows
by TI. Assume towards a contradiction, that T' t=An(I) -fo 0. R3 holds in .A',
so R't=An+1(1)1-+0, hence by Cl, TI, T2, T't=An+ 1(1)-0. Using Rl, Cl, C2,
we derive C' pA11(l)-+An+l(I). Now by T2, we get T' t=A11(1)-0. Contra
diction. Hence T' t=An(l)-0. But then, using R2, Cl, C2, T2, we also obtain
T' pA11+1(0)-0 (via A11(l)). Hence, T r;, T'.

(l), (2) and (3) together yield that (R, C, T) is the least supported model of TSS(!P).
This shows that Theorem 39 is not true if we replace "well supported" by .. supported".

References

{I] J.C.M. Baeten, J.A. Bergstra, J.W. Klop, W.P. Weijland, Tenn-rewriting systems with rule priorities,
Thcoret. Comput. Sci. 67 (2-3) (1989) 283-302.

{2] R. Bol, J.F. Groote, The meaning of negative premises in transition system specifications, J. ACM 43
(S) (1996) 863-914.

312 J. van de Pol I Theoretical Computer Science 200 (1998) 289-312

[3] W.J. Fokkink, C. Verhoef, A conservative look at tenn deduction systems with variable binding, Logic

Group Preprint Series 140, Utrecht University, 1995.
[4] J.R. Kennaway, The specificity rule for lazy pattern-matching in ambiguous term rewrite systems, in:

Proc. 3rd European Symp. on Programming, Lecture Notes in Computer Science, vol. 432, Springer,

Berlin, 1990, pp. 256-270.
[5] A. Laville, Comparison of priority rules in pattern matching and term rewriting, J. Symbol. Comput. 11

(1991) 321-347.
[6) C.K. Mohan, Priority rewriting: semantics, confluence, and conditionals, in: N. Dershowitz (Ed.), Proc.

Jrd Internat. Conf. on Rewriting Techniques and Applications, Chapel Hill, NC, April 1989. Lecture
Notes in Computer Science, vol. 355, Springer, Berlin, 1989, pp. 278-291.

[7] R.J. van Glabbeek, The meaning of negative premises in transition system specifications II (extended

abstract). in: F. Meyer auf der Heide, B. Monien (Eds.), Automata, Languages and Programming, 23rd

ICALP, Lecture Notes in Computer Science, vol. 1099, Springer, Berlin, 1996, pp. 502-513. (Full version
appeared as technical note STAN-CS-TN-95-16).

