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Abstract 

The area-interaction process and the continuum random-cluster model 
are characterised in terms of certain functional forms of their respective 
conditional intensities. In certain cases, these two point process models 
can be derived from a bivariate point process model which in many re­
spects is simpler to analyse and simulate. Using this correspondence we 
devise a two-component Gibbs sampler, which can be used for fast and 
exact simulation by extending the recent ideas of Propp and Wilson. We 
further introduce a Swendsen-Wang type algorithm. The importance of 
the results within spatial statistics as well as statistical physics is out­
lined. 
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1 Introduction 

This paper is concerned with three related models for spatial point pro­
cesses, namely the area-interaction process [1], the continuum random­
cluster model [6, 24] and the penetrable spheres mixture model [35, 16, 
29, 30]. These are of interest in spatial statistics in situations where the 
independence property of the Poisson process needs to be replaced ei­
ther by attraction or by repulsion between points. They are also highly 
relevant in statistical physics, where the first and the third model pro­
vide the most well-known example of a phase transition in a continuous 
setting. After providing some background material on spatial point pro­
cesses in Section 2, Section 3 gives characterisation results for the models 
mentioned above, providing additional motivation for their use. 

In the remaining sections we devise algorithms for Markov chain 
Monte Carlo (MCMC) simulation of the models. The two-component 
Gibbs sampler for the mixture model introduced in Section 4 is used to 
explore how phase transition occurs; this is a problem which to a large 
extent lacks rigorous solution in the statistical physics literature. For 
accounts of MCMC techniques related to spatial statistics and statistical 
physics, see e.g. [4, 13, 14, 24, 32] and the references therein. 

A common problem in MCMC simulation is that the available rig­
orous bounds for rates of convergence are not good enough to be useful 
in practice, so that one is forced to use the (not particularly satisfac­
tory) method of running the chain for a reasonably long time and then 
just hope that it is close to the stationary distribution. Therefore, it is 
highly remarkable that Propp and Wilson [26] recently found a simulation 
technique which gives a sample from the Ising or Potts model that has 
exactly the right distribution, and which works in practice even for fairly 
large systems. In Section 5 we demonstrate how the two-component 
Gibbs sampler can be combined with Propp and Wilson's ideas in or­
der to obtain ex.act samples from the mixture model (and hence also 
from the attractive area-interaction model and some particular cases of 
the continuum random-cluster model). Recently, and independently of 
our work, Kendall [19] has also demonstrated a way to apply the Propp­
Wilson techniques in a more genera.I point process setting. While Kendall 



uses a coupling construction of spatial birth-and-death processes, our ap­
proach seems much simpler to present and implement. The possibility 
of doing exact simulation for general point process models by replacing 
spatial birth-and death processes with Markov chains generated by the 
Metropolis-Hastings algorithm will be studied in [20]. 

Section 5 also contains some empirical findings. We show that exact 
samples from the mixture model can be obtained in only a few steps as 
long as the rate of the underlying Poisson processes is small or moderate. 
Further we investigate empirically the phase transition behaviour. In 
particular, the number of steps needed per sample increases when we ap­
proach the critical parameter, and realisations tend to become dominated 
by one component. 

The two-component Gibbs sampler in Section 4 is somewhat similar 
in spirit to the celebrated Swendsen-Wang algorithm [34) for simulating 
Potts models, in that it changes the entire configuration in one swap 
(as opposed to the traditional single-point updating algorithms). In Sec­
tion 6, we present another algorithm which we believe is even closer in 
spirit to the one of Swendsen and Wang. 

2 Background and notation 

We consider spatial point processes X on a bounded Borel set AC JRd, 
defined by their density JO with respect to a unit rate Poisson process. 
Let GA denote the space of all finite point configurations in A without 
multiple points, that is 

QA = {x C A I n(x) < oo} . 

Here n(x) denotes the number of points n in the configuration x 
{x1, ... ,xn}· 

The Papangelou conditional intensity [8, 17) of X is given by 

{ 
f(XU{u}) 

>.*(x, u) = 0 f(X) 
if f(x) > 0 
else 

(1) 

for x E QA and u E A\ x. In fact, there is a one-to-one correspon­
dence between JO and ).*(·, ·) if the probability density is hereditary, 
i.e. whenever f(y) > 0 implies f(x) > 0 for all x ~ y. 
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The conditional intensity can be used to define a Markov property for 
point processes. Given a symmetric neighbourhood relation "' on A, X 
is Ripley-Kelly Markov [27] with respect to,.._, if its density is hereditary 
and >."(x, u) depends only on u and its neighbours {xi Ex: u ,.._, Xi} in 
x. Heuristically, >.*(x, u)du can readily be interpreted as the conditional 
probability of having a point in the infinitesimal region du centred at u 
given the rest of the pattern is x. 

For modelling purposes it may thus be useful to establish characteri­
sation results in terms of >. * (., ·). Strauss [33] and Kelly and Ripley [18] 
considered the Strauss process 

(2) 

where a is the normalising constant, j3 > 0 and I E [O, 1] are model 
parameters, and s(x) denotes the number of pairs of points ~, 1J E x such 
that~"" ry. Any symmetric relation,.._, (defined on an arbitrary space) 
may be considered here, but usually ~ "' 1J if and only if 11~ - 1J 11 :::; R 
(for some prefixed R > 0). Then, if I = 0, (2) defines a hard core 
process where no points are allowed to be within distance R of each other. 
Assuming that A contains three points~' 1J, (satisfying~,...., 1J, ~,..., ( and 
TJ f (, Kelly and Ripley verified that if the conditional intensity is of the 
form 

>.*(x,u) = g(n(xn Bu)) (3) 

for all x E QA and u E A\ x, where g : No -t [0, oo) and Bu denotes the 
closed ball centered at u with radius R, then the density on nA induced 
by (3) is of the form (2). Conversely, (2) clearly implies (3), so the Strauss 
process is uniquely characterised by (3). 

Strauss [33] suggested (2) with I > 1 as a model for the clustering of 
Californian redwood seedlings around older stumps but, as pointed out in 
(18], (2) is only well-defined for 0 :::; I ;::;: l. Note that the model exhibits 
interactions between pairs of points only. Pairwise interaction models 
appear to be a useful and flexible class of models for regular patterns, 
but probably not so for clustered patterns [9, 11, 24]. A more promising 
way of modelling attraction between points in a spatial pattern is to allow 
interaction terms of higher order, or to generalise the Markov property 
to depend on the configuration as in the definition of nearest-neighbour 
Markov point processes ( cf. [2)). Examples of the former are penetrable 
sphere [35] or area-interaction models [1]. For the latter, consider the 



connected component relation "' on x E QA defined by 
x 

(4) 

for some subconfiguration {x1, ... xm} ~ x. Here for specificity we write 
u....., v whenever llu-vll ~ R, but any symmetric relation may be consid­
ered as well. Then, as shown in Baddeley et al. [3], the general expression 
for the density of a nearest-neighbour point process defined with respect 
to ( 4) becomes 

f(x) =er II <,Il(y) (5) 
yec(x) 

where C(x) is the set of (maximal) connected components defined by x 
and ell(-)~ 0 satisfies certain regularity conditions (if/(·)> 0 then strict 
positivity of ell(·) is the only condition). 

In fact, the Ripley and Kelly (27] Markov point processes as well as 
certain Poisson cluster processes [8] are special cases of (5), cf. Baddeley 
et al. [3]. Lattice processes with a density of a form similar to (5) have 
recently been studied by M!2Sller and Waagepetersen [25]. 

3 Characterisation results 

The Strauss process is Ripley-Kelly Markov, hence a fortiori of the form 
(5) with <I>(y) = pn<Y)ls(y)_ In this paper, we consider two other models 
with respectively, <I>(y) = pCY) h and <I>(y) = pn<Y), -IUyl, where Uy = 
UiBy; and I · I denotes Lebesgue measure. In both cases, the densities 
are well-defined for all /3, "'Y > 0 where the models exhibit regularity for 
0 < 'Y < 1 and clustering for 'Y > 1. The hard core process may be 
considered as a limiting case of both models. 

First, consider the continuum random-cluster model defined by its 
density 

(6) 

where c(x) denotes the number of connected components in Ux. This 
corresponds to <I?(y) = pnCY) h- This model seems to have been re­
discovered many times, e.g. in [6] and [23]; the earliest appearance in 
the literature we are aware of is in [21]. We use the name "continuum 
random-cluster model" because of the strong analogy with the random­
cluster representation of the Ising/Potts models introduced by Fortuin 
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and Kasteleyn [10] (see [5] and [15] for recent reviews). We have the 
following characterisation result. 

Theorem 1 A density J(-) is a continuum random-cluster process if and 

only if 
>.*(x, u) = g(c(x U {u}) - c(x)) (7) 

for allx E QA,u EA \x and a function g: z _, (0,oo). 

Note that 
c(x,u)= l+c(x)-c(xU{u}) 

is the number of 'clusters' Uy, y E C(x) generated by x which are inter­

sected by the disc associated with u, so (7) is equivalent to J(~(J)l) = 
g(c(x, u)). 

Note also that the result still holds if the fixed range relation ~ is 
replaced by any other symmetric relation defined on a finite measure 
space, cf. [24). For instance, one may consider configurations of path­
connected sets like e.g. discs, where two discs are related if and only if 
they overlap each other. 

Moreover, the positivity condition on >. * (., ·) is necessary: if g( n) = 
/31 { n = 1} then (7) gives a hard core process (all I lxi - x j 11 2:: 2R). 

Proof : Clearly, if JO belongs to the family of continuum random­
cluster processes, its conditional intensity is of the form specified in (7). 
Reversely, assuming (7) holds, we proceed to prove that f ( ·) is a con­
tinuum random-cluster process by induction with respect to n(x), the 
number of points. Setting 

/3 = g(O) and I= g(O) 
g(l) (8) 

then (6) holds for n(x) :::; l. Assuming the statement holds for configu­
rations with up to n(x) = n points and writing k = c(x U { u}) - c(x), 

f(x U {u}) = J(x)).*(x, u) = et/3ni-c(x)g(k). 

Combining this with the definitions in (8) give that J(-) has the desired 
form if k = 0 or k = 1. Suppose k < 0. Then the disc associated with u 
intersects at least two of the clusters generated by x, and it is easily seen 



that we can delete a disc from one of these clusters without changing the 
total number of clusters generated by x, i.e. 

c(x U {u}) = c((x U {u}) \ {xi}) 

for some Xi Ex. Hence, by the induction hypothesis and (8), 

f(x U {u}) = f((x U {u}) \ {x;})A"((x U {u}) \ {xi}, x;) 
= a/f'/-c((xu{u})\{z;})g(O) 

= a/r+l/-c(XU{t1})_ 

0 

Next turn to the model specified by 41(y) = pn(Y)'Y-IUyl or, equiva­
lently, by density 

(9) 

This is the area-interaction model studied by Baddeley and Van Lieshout 
[1], a generalisation of the (marginal) penetrable sphere model introduced 
by Widom and Rowlinson [35] in statistical physics. Contrary to the con­
tinuum random-cluster model, (9) is Markov in the Ripley-Kelly sense 
[27] but it has interactions of arbitrarily high order, cf. [l]. In the one 
dimensional case, it can also be presented as a pairwise interaction se­
quential neighbours Markov process [2], since 

n-1 

f(x) = 0:1- 2Rpn exp[-(log1) L min(Xi+i - x;, 2R)] 
i=l 

for x = {x1, ... , Xn} with X1 < z2 < ... < Xn. 

Clearly, to prove a characterisation result for (9) we need a positivity 
condition, since the conditional intensity of a hard core process 

can be written as 

A"(x, u) = {31 {p(u, x) ~ 2R} = /31 {!Bun Uxl = O}. 

The hard core process does not fall within the class of area-interaction 
processes, although it can be seen as a limiting case. 
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Theorem 2 Given a bounded Borel set A~ JR2 containing an open ball 
of radius 4R, a density f : DA -+ (0, oo) is an area-interaction density if 
and only if 

,\*(x, u) = g(IB., n Uxl) 

for all x E QA, u E A\ x and a left-continuous function g : [O, 7r R2] -+ 

(0,oo). 

Note that although the characterisation Theorem 2 is stated for the 
planar case only, generalisations to higher dimensions are straightfor­
ward. In order to prove Theorem 2 we need the following Lemma. 

Lemma 1 If g: [O, ?rR~-+ (0, oo) is left-continuous and 9~c~)J(g2 = 1 
for alls, t E [O, 7rR~ such that s + t E [O, 7rR2], then g(s) = g(O)is for 
some/> 0 and alls E [O, 7rR2]. 

Proof: Extend the function g(-) onto the whole of (0, oo) as follows. 

:i (g(7rR2))k g(hR + s) = g(O) g(s), s E (0, 7rR2], k EN. 

Then g(·) is left-continuous on (0, oo). Moreover, for s, t E [O, 7rR2] with 
s+t > 1rR2 , 

g(O)g(s+t) _ g(7rR2)g(s+t--;rR2 ) 

g(s)g(t) - g(s)g(t) 

Now choose ci, c2 > 0 such that s - c1 7r R 2 ? 0, t - c2 -;r R 2 ? 0, and 
c1 + c2 = L Then 

g(O)g(s +t) 
g( s )g(t) 

= g(-;rR2 )g(s - c17rR2)g(t- c2-;rR2 ) 

g( s )g(t)g(O) 

= g(-;rR2 )g(s - c17rR2)g(t- c2-;rR2)g(O)g(O) 
g(O)g(c17rR2)g(s - C11rR2 )g(c2-;rR2 )g(t - c27rR2) 

g(7rR2)g(O) 

The latter expression equals 1 by assumption, since c1 + c2 = 1. By 
Hamel's theorem g(t) = g(O)e->-t where>..= ~log g(9(~;2. In particular 



(
g( 7r R2)) 1/( ... R 2

) 

g(s) = g(O);s, I= g(O) > 0. 

E" Theorem 2: If f (-) is an area-interaction process, 

f(xf~x~u}) = ,81-IB .. l+IB .. nUxl = g(IBu n Uxi) 

>ntinuous function g(t) = ,a,-1rR2 1t. 

0 

ove the reverse statement, take s,t E [0,7rR2] such that s+t E 
We will show that g(s +t)g(O) = g(s)g(t), so assume without 

:nerality that t > 0 and 0 < s < 1r R2 • 

se € > 0. By the Heine-Borel theorem and since A contains an 
ofradius 4R, there exist u, v EA, y E nA, such that IBunBv I= 
I = t' E [t - €, t], where D = Bv n Uy and llYi - ull = 2R for all 
row 

f({u,v}Uy) /({v}Uy) 
= f ( { v} u y) f (y) 

·(s)g(t') 

f({u,v}Uy) f({u}Uy) = g(s+t')g(O). 
f({u} Uy) f(y) 

"t 1 -+ t. Since t' ~ t, by left continuity g(s + t)g(O) = g(s)g(t). 

~quently, by the Lemma, g(s) = g(O);"', for some/> O. Now, 
= g(O)"y1rR2 = g('rrR2 ), we obtain g(s) = f3r-1'R 2 and hence 

f({u}) = f(0)g(O) = af31-1fR2 = a/3;-IU< .. 11_ 

.tion with respect to the number of points n(x) = n, 

f(xU{u}) = g(IBunUx)l)f(x) 
= g(O);IB,.nUxlapn1-IUxl 

= apn+1 1 -..-R2 +jB,.nUxl-1Uxl 

= apn+i1-1Uxu{ .. l 1. 

0 

9 
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4 Relationship to a mixture model and Gibbs 
sampling 
The penetrable sphere model and a particular case of the continuum 
random-cluster model are both related to Widom and Rowlinson's [35] 
mixture model as described below. So far this correspondence has mainly 
been used for studying phase transition behaviour; we return to this in 
Section 5. In the present section we shall investigate the relationships for 
the purpose of simulation. 

Formally, let X and Y refer to the configurations of the two types. 
Then the joint density of (X, Y) at (x, y) with respect to the product 
measure of two independent unit rate Poisson processes is 

(10) 

where, as before, a is the normalising constant, /31, /32 > 0 are model 
parameters, and d( x, y) is the shortest distance between a point in x and 
a point in y. In other words, only points of different types interact and 
they are not allowed to be within a distance R of each other. Hence the 
conditional distribution of X given Y is a homogeneous Poisson process 
on A\ Uy with intensity /Ji (see [35]). The marginal distributions of X 
and Y are area-interaction models (9) with interaction parameter i 2: 1, 
as shown in [35]. 

It is interesting to note that there exists a simple, explicit relation 
between the normalising constants amix of the mixture model and a 1 

of the marginal distribution of X as follows. Writing 7r for the distribu­
tion of a unit rate Poisson process on A and integrating out the second 
component, 

f(x) = j amixffi1(X)p;CY)l{d(x,y) > R}d7r(y) 

= J amix ffi1(X) .a;<Y)l{y n Ux = 0}d7r(y) 

= amix.B~Cx) expL62IA \ Uxl- IAI]. 

Provided periodic boundary conditions are imposed on A (making A into 
a torus) and balls Bu are defined with respect to geodesic distance II· II 
or alternatively, IUxl is defined as the Lebesgue measure of Ux n A, 

f(x) = a1.B~(X)(ell2)-IUxl, 



where a 1 = O!mixe-<1-.B2 )IAI. Hence X is an area-interaction model 
with parameters (/3, 'Y) = (/31, e.82 ). Similarly, Y is an area-interaction 
model with parameters (/3, r) = (/32 , e.81 ) and normalising constant a 2 = 
O!mixe-(l-.81)IAI. 

For simulating the area-interaction model, it is simplest to apply 
MCMC methods on the mixture model (10) and marginalise, since this 
avoids calculation of the areas of overlapping balls in U x. In particular, 
if /3 = log 'Y we can sample from both X and Y as they are identically 
distributed. Moreover, using the fact that the conditional distribution of 
Y given X is a Poisson process, moments of the marginal area-interaction 
model are easily obtained in terms of the mixture model as indicated in 
the following Lemma. 

Lemma 2 The moments of {10} and its marginals satisfy 

lEi IUxl = IAI - Emix n~:) (11) 

Var1JUxl = (Varmixn(Y)- Emixn(Y))//3~ (12) 

Cov1(n(X), JUxl) = -Covmix(n(X),n(Y))/132 (13) 

Jn particular, n(Y) is overdispersed. Similar expressions hold with the 
roles of X and Y exchanged. In the symmetric case /31 = /32 = /3, 

and 

E1 IUxl = E1 IUYI = IAI- Einix[n(X) + n(Y)]/(2/3) 

VarJU x I =Vari Uy I= (Varmixn(X) + Varmixn(Y) 

-Emix(n(X) + n(Y)))/(2/32). 

In the inhibitory case 'Y < 1 in (9) a mixture can be defined by its 
density 

(14) 

Then arguments similar to those for 'Y > 1 give the marginal density for 
Xas 

(15) 

again writing JUxl for the Lebesgue measure of Ux either restricted to 
A or in the geodesic sense. Hence X (but not Y!) is an area-interaction 
model. 

11 
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Turning attention to the superposition Z = XU Y, its density (with 
respect to a unit rate Poisson process on A) can be written as 

f(z) = e-IAI L fmix(z1, z2) 

= e-IAlamix L~(Zi),a;(z2)l{d(z1, z2) > R} 

where the sum is over all ordered partitions of z into two groups z1 and 
z2 • In the symmetric case /31 = ,82 = /3 this reduces to 

f(z) = CTmixe-IAl,Bn(z)N(z) 

where N(z) denotes the number of partitions such that 

(U'1ez1 B(17, R/2)) n (U(ez2 B((, R/2)) = 0. 

Since N(z) = 2c(z), the superposition density is a continuum random­
cluster model with radii R/2 and parameters /3 and 'Y = 1/2. This 
relation is exploited in [12] in order to understand the phase transition 
of the mixture model in percolation terms. 

This construction can be straightforwardly extended to the case of a 
multitype point process (X(l), ... , X(k)) with density proportional to 

(16) 

for z = x(l) U · · · U x(k). The superposition is then a continuum random­
cluster model but with 'Y = l/k. However, for k 2: 3, X(i) is not an 
area-interaction process. 

The conditional distribution of one type of points given the others 
is very easy to sample from, so we opted for a Gibbs sampler approach. 
In the bivariate case this is given by altering between the conditional 
distribution of XJY and YJX: initialise with any y0 , e.g. from a Poisson 
process (rate .82). Then the sweeps of the two-component Gibbs sampler 
are given by the following steps for each k = 0, 1, ... 

1. X.1;+1 ~ Poisson(/31) on A\ Uyk; 

2. Yk+1 ~ Poisson(,82) on A\ Uxk+i. 

The Poisson processes in steps 1 and 2 above are easily implemented 
by thinning a Poisson process in the whole window A (that is, just delete 
those points lying in Uyk or Uxk+i ). It is possible to specify a similar two­
component Gibbs sampler for the inhibitory case of the area-interaction 



process using (14)-(15) but the first step, where XIY = y is Poisson(,81 ) 

restricted to the event H x,y = { Ux 2 y} may be too slow in practice, so 
it would be preferable to replace this step with a single point updating 
procedure. The other step, where YIX = x is a Poisson(,62) process on 
Ux is still easy to perform by thinning. 

5 Exact simulation 

We now combine Propp and Wilson's [26] ideas of exact simulation based 
on coupling Markov chains from the past with the two-component Gibbs 
sampler introduced in Section 4. 

Our setup differs from that in [26) mainly in two respects. First, 
the state space in [26) is finite while ours is infinite. Second, our state 
space does not have any maximal (or minimal) element with respect to 
the partial order introduced below. The first difference turns out to be 
inconsequential, but the second requires special treatment. 

Introduce a partial order ~ on the space n~ = QA x nA of mixed 
configurations by ( x, y) ~ (x', y') (or (x', y') !::: ( x, y)) if x s;; x' and y 2 
y'. In order to be able to adapt the Propp-Wilson ideas we verify first 
that the two-component Gibbs sampler respects the partial order ::::;. Let 
~d denote stochastic domination with respect to :;5, i.e. two n~-valued 
random elements (X, Y) and (X', Y') satisfy (X, Y) :;5d (X', Y') if there 
exists a coupling of (X, Y) and (X', Y') such that (X, Y) ::5 (X', Y') a.s. 
(see [22) for a general discussion of coupling and stochastic domination). 

Lemma 3 Fix (x,y),(x',y') E Q~ such that (x,y) ~ (x',y'). Let, 
for i = 0, 1, ... , (X;, Yi) be the Q~-valued random element obtained 
by starting with (X0 , Yo) = (x, y) and running i iterations of the two­
component Gibbs sampler in Section 4, and define (Xf, Y/) similarly. 
Then (Xi, Yi) ::5d (Xi, Yi') for all i. 

Proof: The case i = 0 is trivial. To prove the case i = 1 we consider the 
following coupling. Let Z 1,:i: and Z 1,y be two independent Poisson pro­
cesses on A with rates /31 and /32, respectively. Let X1 = Z1,:i: \ Uy0 and 
Xf = Z1,:i: \Uy~, and then let Y1 = Z 1,y \Ux, and Y{ = Z1 ,y \Ux;. Clearly, 
this gives the right marginal distributions of (X1 , Y1) and (Xi, Y{). Since 
Yo 2 Yo' we get Uy0 2 Uyd whence X1 s;; Xf. This in turn implies 
Ux1 s;; Ux; so that Y1 2 Y{, and we have (X1, Y1) ~ (Xf, Y{). The cases 
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i = 2, 3, ... follow similarly by induction. D 

We call an element (x, y) E n~ quasimaximal if y = 0 and Ux 2 A. 
Similarly, (x, y) is called quasiminimal if x = 0 and Uy 2 A. 

Lemma4 Fix(x,y)EO~, andfori=O,I, ... , let(Xi,Yi) betheD~­
valued random element obtained by taking (Xo, Yo)= (x, y) and running i 
iterations of the two-component Gibbs sampler. Define (Xi, Yi') similarly, 
with an arbitrary distribution of (Xb, YcD· If (x, y) is quasimaximal, then 

(X;, Yi) ?:::d (Xf, Y/) 

for all i ~ 1, while if (x, y) is quasiminimal, then 

for all i ~ 1. 

Proof : We only need to prove the lemma for i = 1, as the general case 
follows using Lemma 3. However, the case i = 1 follows directly if we use 
the same coupling as in the proof of Lemma 3. D 

We are now ready to describe the algorithm for exact simulation. For 
i = 0, -1, -2, .. ., let Z;,,; and Z;,y be independent Poisson processes on 
A with respective intensities /31 and /32. Let k1 , k2, ... be a strictly in­
creasing sequence of positive integers, and let (x, y) and (x', y') be fixed 
elements of n~ such that (x, y) is quasiminimal and (x') y') is quasimax­
imal. Then for i = 1, 2, ... we generate two coupled Markov chains in 
accordance to the two-component Gibbs sampler by setting 

(; X-k,,i ¥_k;) = (x, y), (; X~k, ,i Y.'..k.) = (x', y') 

and for j = 1, . .. ,k;, 

Clearly (;Xj-k,,iY;-d :=:: (iXj_k) Yf-k;) for all j = 0, ... , ki. Letting 

I= inf{i EN: (;Xo/Yo) = ('Xb,iY0)}, (taking inf(i) ==),we show 
below that I< oo a.s. We stop when i =I and set (Xo, Yo)= (1 X 0 ,1 Y0 ). 



Theorem 3 The above algorithm terminates a.s., and the distribution 
of the obtained sample (Xo, Yo) is given by {1 OJ. 

Proof: Note that for any m ~ 0 we have that if 

Z-m-1,y = 0 (17) 

then for any i such that ki 2: m we get (i X _m ,i Lm) = (i x:._m ,i Y..'..m) 
and hence also (i Xo/ Yo) = (i X 0,i Y6). That I < oo a.s. now follows 
from the observation that with probability 1, (17) occurs for some m. 
Let M denote the smallest such m. Moreover, define Markov chains 
(; x;'-k; ,i Y;~k,), j = 0, ... , k;, i = 1, 2, ... , in exactly the same way as the 

chains(; X,i Y) and (i X 1 ,i Y 1
) except that (; X~k, ,i y~'k,) = (X, Y), where 

(X, Y) follows the stationary distribution (10). Then for k; 2'. M we 
have that ;X_M = ;X~M = iX~M = Z-M,:r:· It follows then from Lem­
mas 3 and 4 and the coupling construction that (Xo, Yo)= (iX0 ,i Yo)= 
(iX~,iYd) = (;X~/Yd') when ki 2:'.: M, so (Xo,Yo) = limi-+oo(iX~',iyd') 
a.s. Hence the distribution of (Xo, Yo) is given by the stationary distri­
bution (10). 0 

Propp and Wilson give an argument for preferring the sequence k; = 
2;, and we have used the same in our simulation studies. 

Fixing the dimension d 2: 2, let us say d = 2, it is known that phase 
transition behaviour occurs in the penetrable sphere model in the sym­
metric case f3 = log 7, whenever f3 is very large, and does not occur 
when /3 is very small. This is a consequence of the phase transition be­
haviour in the mixture model (10), which was demonstrated by Ruelle 
[31] and later in [6] and [12] using percolation arguments analogous to 
the random-cluster derivation (see e.g. [5]) of the phase transition occur­
ring in Ising and Potts models. Similarly as in the Ising/Potts models, 
phase transition means that infinite-volume limits fail to be unique. In 
particular, realisations tend, even for large systems, to be dominated by 
a single type of point (despite the symmetry of the model). 

One would believe that the occurrence of phase transition is monotone 
in f3, so that there exists a f3c such that 

{ > f3c ~ phase transition 
/3 < f3c ~ no phase transition 

but this is not known. Of course, this is a statement about infinite volume 
limits, but the effect should be visible already for moderately large A. A 
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measure of the amount of consensus is the fraction <P of pairs of points 
that are of the same type, i.e. 

where ni is the number of points of type i, and n = n1 +n2. Note that <P 

is undefined when n = 0, 1. In these cases, we will arbitrarily set <P = 0. 
For large systems, one expects the following behaviour. When f3 < f3e, 
<P should be close to ! with high probability, it should start increasing 
rapidly as f3 approaches /3e, and tend to 1 as f3-+ oo. 

We have simulated independent samples from the symmetric mixture 
model using our exact simulation procedure for various values of /3 and 
R. We took A= [O, 1)2 with the restricted Lebesgue measure. 

Figure 1 depict simulated mean and quantiles of <P over 100 simulation 
against the canonical parameter () = log f3 of the mixture distribution 
(considered as an exponential family). It can be seen that for small 
values of 0, indeed the Monte Carlo approximation of Ee<P is close to 1/2, 
increasing to 1 as () increases. The rapid increase becomes more aparent 
when the interaction range is smaller - or equivalently, the window size 
is bigger. 

The phase transition behaviour can also be observed from plots of 
the fraction p = max(n1, n2)/(n1 + n2) of points of the most frequent 
type. Plots of the Monte Carlo mean of p {Figure 1) look very similar 
to the plots for</>, and with increasing(), the histograms of p (which we 
omit) become bimodal, due to the fact that realisations tend to consist 
predominantly of one type. 

Examples of simulated realisations of point patterns for 0 = log(30), 
log(80) at radius R = .2 and for () = log(lOO), log(200) at radius R = .1 
can be seen in Figure 2. This figure also shows that for larger B, one of 
the components dominates. 

Finally, in Figure 3 we plotted Monte Carlo estimates of Eel = 
E8 log ki, the expected number of steps until coalescence. The plot 
demonstrates the feasibility of exact simulation: for small to moderate 
(}, convergence is reached in only a few steps. However, as () approaches 
phase transition, the number of steps needed to obtain coalescence in­
creases rapidly. 
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Figure 1: Monte Carlo estimates of the means of </> (left) and p (right) as 
a function of 8 (solid line) at interaction radius R = .2 (top) and R == .1 
(bottom). The dotted lines denote the .5, .25, .75 and .95 quantiles. 
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Figure 2: Realisation of the mixture model with /3 = 30, R = .2 (top left), 
f3 = 80, R = .2 (top right), (3 = 100, R = .1 (bottom left) and /3 = 200, R = .1 
(bottom right). 
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3: Monte Carlo estimates of log k1 as a function of 8 at interaction 
R = .2 (top) and R = .1 (bottom). 
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6 A Swendsen-Wang type algorithm 

In this Section we present an algorithm which is similar to one of Swend­
sen and Wang [34]. This algorithm has independently been discovered 
by Chayes and Machta [7]. 

The algorithm works for the important symmetric case f31 = f32 = f3 
of the mixture model (and hence also for the area-interaction model with 
I= eP a.nd for the continuum random-cluster process with/= ~). 

Initialising with a.ny (x, y), an iteration of the algorithm consists of 

l. choosing a new value of ( x, y) according to its conditional distri­
bution given x U y, i.e. flipping a fair coin independently for each 
connected component of Uxuy to determine whether the points 
should be of the first or the second type; 

2. replacing y by a Poisson (/3) process on A \ Ux. 

It is immediate that the mixture measure given by (10) is invariant 
under step 1 of this algorithm, and we have already seen in Section 4 
that it is invariant under step 2. The algorithm can also be extended to 
the case of a multitype point process (16), and also to the / < 1 case of 
the continuum random-cluster model, even when 1-1 is not an integer. 
In the latter case, the algorithm goes as follows. First paint the points 
of each connected component red with probability / (independently for 
different connected components), and then replace all the red connected 
components by a Poisson ((3) process on the part of A not occupied by 
the remaining connected components. 

We believe (although we have no rigorous justification) that this al­
gorithm approaches stationarity much faster and mixes better than the 
two-component Gibbs sampler when (3 is large (i.e. in the phase transi­
tion region of the parameter space). The reason should be that when the 
Gibbs sampler starts with a configuration with mostly points of the first 
(or second) type, then it will tend to stay in this state for an astronomical 
amount of time provided that f3 is large and A is large compared to a disc 
with radius R, while the Swendsen-Wang type algorithm will jump back 
and forth between the two states. One might suggest that the slowness of 
the Gibbs sampler could be solved by allowing x and y to change places 
occasionally, but this is presumably not the case, the reason being the fol­
lowing. Suppose (3 is large and A= [-M, M]2, where M >> R, and we 
start with a "dense" crowd of points of type 1 in [-M, M] x [-M, 0] and a 



similar crowd of points of type 2 in [-M, M] x [O, M]. This highly improb­
able type of configuration will remain for a long time using the modified 
Gibbs sampler (although the two types will sometimes interchange re­
gions), while on the other hand the Swendsen-Wang type algorithm does 
not seem to exhibit such a phenomenon. 

It would be very nice ifthe Swendsen-Wang type algorithm could be 
combined with the ideas of the previous section in order to obtain ex­
act samples, but unfortunately it seems very difficult to find any useful 
monotonicity property of the algorithm. Propp and Wilson [26] make a 
similar remark about the original Swendsen-Wang algorithm. They are 
still able to obtain exact samples in reasonable time also in the phase tran­
sition regime by simulating the Fortuin-Kasteleyn random-cluster model 
rather than the Ising/Potts models directly. The corresponding thing to 
do here would be first to simulate the continuum random-cluster model 
and then to update the components as in step 1 in our Swendsen-Wang 
type algorithm but, in the absence of any simple monotonicity relation 
in the continuum random-cluster model, we cannot see any suitable way 
of doing it. 
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