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Abstract 

This paper commences an investigation into a new class of random point 
and set processes, obtained using a rather natural weighting procedure. Given 
a Poisson point process, on each point one places a grain, a (possibly random) 
compact convex set. Let :::: be the union of all grains. One can now weight the 
process using the exponential of a quermass functional of ::::. If the functional 
is the area functional then we recover the area-interaction point process. New 
point processes arise if we take the perimeter length functional, or the Euler 
functional (number of components minus number of holes). The main question 
addressed by the paper is that of when the resulting point process is well-defined: 
geometric arguments are used to establish conditions for the point process to be 
stable in the sense of Ruelle. 

Key words: area-interaction point process, Boolean model, germ-grain model, Mar­
kov point process, Minkowski functional, quermass integral, semi-Markov random 
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There is still a shortage of good models for use in image analysis and spatial statis­
tics. In this paper we commence the investigation of new point process and random 
set models which are constructed by weighting a Poisson point process with densities 
which are exponentials of (sums of) quermass integrals (Minkowski functionals) of a 
Boolean model based on the point process. These functionals are obtained from lo­
cal geometric measurements including set volume and integrals of curvature over the 
boundary, and include the Euler-Poincare characteristic. 
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In the point process case the model under investigation generalises the Widom­
Rowlinson 'penetrable spheres model' from statistical physics and the area-interaction 
point process (from spatial statistics). 

In this paper our main focus will be on the conditions under which planar quermass­
interaction processes are stable (and hence exist) for all values of the weighting param­
eter. This has already been established for the special case of area-interaction [4]: we 
shall establish it in greater generality, and in particular under reasonable conditions 
for an interesting "topological" weighting based on the Euler-Poincare characteristic. 
Our arguments are basically geometric covering arguments of a rather non-standard 
form, essentially elementary but of some intrinsic geometric interest. In further papers 
we plan to develop inferential and simulation theory as well as to explore the utility of 
this class of models in applications. 

The paper is divided into 7 sections: §1 covers preliminaries on relevant concepts 
from stochastic geometry; §2 defines quermass-interaction point processes; §3 describes 
quermass-interaction random sets and germ-grain models; §4 begins the discussion of 
the important planar case, which introduces the main question to be dealt with in 
this initial study, namely the range of permissible parameter values under which one 
can weight using the Euler-Poincare characteristic; §5 considers the case when grains 
are (planar) disks, in which case it turns out such weightings are always possible; §6 
considers the case when grains are convex polygons, in which case it turns out such 
weightings are always possible if there is a lower bound on interior angles and side­
lengths (otherwise weighting towards negative values of the characteristic produces 
divergence); finally §7 provides a conclusion indicating our plans for future investigation 
of these point processes, including simulation and inference issues. 
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this project was funded by the EU research grant ERB-CHRX-CT94-0449. MNMvL's 
work was funded by grant SCI/180/94/103 of the Nuffi.eld foundation. We also gladly 
acknowledge helpful remarks and discussions with Mike Alder, Ilya Molchanov, Jesper 
Mr6ller, Dan Naiman and Henry Wynn. 

1 Preliminaries 

In this section we briefly summarize relevant facts from the theories of Markov point 
processes, Boolean models, and quermass integrals. 

1.1 Point processes 

The basic benchmark process is a. (stationary) Poisson point process in a bounded 
observation region A. This can be understood to express spatial independence in the 
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sense that points do not interact with each other. Formally, given that there are n 
points, these are independent and uniformly distributed over A. The total number of 
points in A is Poisson distributed with mean proportional to the area of A, giving the 
process its name. The constant of proportionality is called the intensity. The area 
measure can be replaced by any finite diffuse measure µ, yielding an inhomogeneous 
Poisson point process with intensity measureµ. 

The benchmark Poisson point process can be used to define other processes by spec­
ifying their density p( ·) with respect to the benchmark process. Such point processes 
may be viewed as weighted Poisson point processes. For a process defined in this way, 
the distribution ( q0 , qi, q2 , ••• ) of the total number of points is given by 

qn e-µ~A) f · · · f p( {xi, ... , Xn}) dµ(x1) · · · dµ(xn) 
n. JA JA 

and, given N = n, the joint conditional probability density of the point pattern is 

(Here the reference measure is provided by the distribution of n independent and 
identically distributed points distributed uniformly on A.) 

It will be convenient to impose conditions on the density. Given a neighbourhood 
relation ,....,, a Markov point process (following Ripley and Kelly (43]) satisfies 

(Ml) p(x) > 0 implies p(y) > 0 for ally C x; 

(M2) if p(x) > 0, then the Papangelou conditional intensity 

.X(u;x) 
p(x U {u}) 

p(x) 

depends only on u and { Xi : u ,...., xi}. (The ratio p( x U { u}) / p( x) is defined to be 
zero when p(x) vanishes.) 

Note that the density p(x) can be reconstructed from the Papangelou conditional in­
tensity up to a constant factor (and thus is completely defined, since it must integrate 
up to 1). 

The famous Hammersley-Clifford theorem (5, 6, 8, 14, 41, 43, 49] then gives a simple 
interpretation in terms of interpoint interactions. A process with density p is a Markov 
point process if and only if 

p(x) II q(y) 
cliquesys;;x 

II 
cliques y~x 

Y-#0 

q(y) 

for arbitrary non-negative interaction functions q( · ), save that a = q(0) is determined 
by the requirement that the total integral of p equals 1. 
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Because of this property, Markov point processes are natural models for problems 

involving derivation of conditional probabilities and also are easy to simulate using 
Markov chain Monte Carlo methods, and hence are amenable to iterative statistical 

techniques (ICM etc) [7, 9, 13, 27, 31). 
A generalisation can be obtained by allowing the neighbourhood relation to depend 

on the configuration (Baddeley and M11Sller [5]). See also section 3.5. 

1.2 Boolean models 

When considering random sets we can use the Boolean model as a benchmark process 

instead of the Poisson point process. Indeed the Boolean model can be viewed as a 
Poisson point process on a suitable space (of non-empty compact (often convex) sets). 
Here we will describe the Boolean model from the related germ-grain perspective. 

A set, called a grain, is placed at each point of a (possibly inhomogeneous) Poisson 
point process of germs in Euclidean space. Different random grains are random convex 
compact sets which are independent of each other (conditional on the realization of the 
point process of germs) with a distribution which depends continuously on the location 
of the respective germ (here of course we use the topology of weak convergence for 

probability measures on C(K) the family of compact convex sets, metrizing C(K) with 
the Hausdorff metric distance between two compact sets Kand L given by dist(K, L) = 
inf {r : I< C L ffi B(o, r ), L C K E9 B( o, r)}, for B( o, r) the (closed) ball of centre o and 
radius r ). (Here the Minkowski sum A EB B of two Euclidean sets A and B is given by 
A EBB= {a+ b: a EA, b E B}.) The two most important examples are 

(a) Different grains are independent both of each other and of locations, and follow 
the same distribution v, 

(b) A grain depends continuously (Hausdorff metric) on the location of the respective 
germ. 

Either way, this produces a marked Poisson point process, by marking the germ process 
with the grains. Finally, the Boolean model is the random set obtained by the union of 
all the grains. In this paper, unless specifically stated otherwise, we will assume that 
the grai~s are v-almost surely ovoids (that is to say, nonempty convex corn pact sets). 

By vrrtue of the Choquet theorem [29, theorem 2-2-1), a random closed set 3 is 
determined by its avoidance function on K, 

Q(K) = lP(2 n K = 0). (1) 

For a Boolean model based on a homogeneous Poisson point process with random 
grains (case (a)), 

Q(K) = exp [-PlEvd(K EB Z)) (2) 
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where lE denotes the expectation with respect to v of the typical grain Z, and /3 is the 
intensity of the underlying Poisson point process. 

We should distinguish between the case where we can observe both the germs 
and the grains (for example in the area-interaction point process model described be­
low where the configuration of grains can be deduced from the configuration of germ 
points) and the random set case where only the union of the grains is observed and not 
the underlying germ process. This distinction has important consequences for statis­
tical inference, which has to be based only on observable quantities, though it largely 
does not affect the arguments of this paper which focus on stability and existence 
considerations. 

1.3 Quermass integrals 

The quermass integrals or Minkowski functionals are fundamental concepts of geometry 
[15, 48] generalizing (in the planar case) the notions of area and perimeter. In d 
dimensions and for r :::.:; d - 1, they are defined for ovoids (convex compact sets) 
KE C(K) by 

(3) 

where Lr is the class of all r-dimensional subspaces S, µr is the unique probability 
measure on Lr that is invariant under rigid motions, proj 5 .L is the map projecting onto 
S.l. the subspace orthogonal to S, and Vj is Lebesgue measure on j-dimensional space. 
Finally, bd = 7rd/2 jf(l + d/2) denotes the d-volume of the d-dimensional unit ball. (If 
r = d then we set Wj(·) = bd.) Simple Haar measure considerations show that it is 
equivalent to define Wrd( K) for r :::.:; d - 1 as the unique invariant measure on the family 
of all affine r-dimensional subspaces intersecting K, normalised so that the unit ball 
has quermass integral bd. 

A different but still equivalent definition is via the Steiner formula 

Interesting special cases include the following: 

Wg(K) is the Lebesgue measure vd(K) of I<; 

d x Wl(I<) is the surface (hyper-) area of I<; 

d x W2d(K) is the mean integrated curvature over the boundary of K; 

and Wj_ 1 (I<) = (bd/2) x b(K) is proportional to the mean breadth b(K) of the 

ovoid I<. 
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If the boundary 8K is sufficiently regular (for example if it is possible to define 
at each point t E 8K the d - 1 main curvatures) then the Minkowski functionals 
admit simple integral representations using symmetric functions of these curvatures 

(see Matheron [29]). Thus for example 

d x Wt(K) 

where m(t) is the mean curvature at t. 

f m(t)dt 
JaK 

Let 'I/; be a functional defined for all ovoids. It is called C-additive if 

for any ovoids Ki, K2 E C(K) for which the union is again an ovoid (K1 U1<2 E C(K)). 
The Minkowski functionals are C-additive, and also increasing, continuous with respect 
to Hausdorff distance and invariant under rigid motions. Hadwiger's characterisation 
theorem delivers a converse to this observation: any sufficiently well-behaved ovoid­
functional can be written as a linear combination of Minkowski functionals. More 
specifically 

Theorem 1.1 (Hadwiger's characterization theorem [15]) Suppose that 1jJ is a 

C-additive ovoid functional (hence 'l/;(K) is defined for J{ E C(K)) which is continuous 

with respect to the Hausdorff metric on C(K) and is invariant under rigid motions. 

Then it can be written as a linear combination of quermass integrals 

where the coefficients ar are uniquely defined. (If "continuous" is replaced by "increas­

ing" (with respect to set-inclusion) or "non-negative" then the same statement holds 

under the further condition that the ar are non-negative.) 

We intend to use quermass integrals to weight Boolean models. Hence we will be 

interested in evaluation of quermass integrals on locally finite unions of convex compact 
sets, which form the convex ring 'R. The quermass integrals can be extended onto the 
convex ring in several ways. The most direct is the additive extension 

= _bbd /, ( { x(K n Sx)dx) dµr(S) 
d-r Lr Jsl. 

where X denotes the Euler-Poincare characteristic, and Bx the translation of the sub­
space S using the vector x. This equals 1 for any ovoid; while for any K = Uf=1 Ki (for 
Ki E C(K)) we have an inclusion-exclusion formula: 

x(K) I: x(Ki) - I: x(Ki1 n Ki2 ) + · · · + (-1)P+1x(K1 n ... n Kp). 
i i1 <i2 
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In particular the right-hand side does not depend on the particular representation 
K = Uf=1Ki: thus the inclusion-exclusion formula can be used to define the additive 
extension of quermass integrals. An equivalent definition uses the (generalised) Steiner 
formula 

j x(K n B(x, t))dx 

This extension is by no means unique; another possibility is to require the original 
Formula (3) to hold for all I< in the convex ring, resulting in a different extension. But 
the Euler-Poincare extension has a useful relationship to 'number' which is exploited 
in various applications of stochastic geometry; in the planar case w:(l<)/7r is equal to 
the number of components of]{ minus the number of holes of K. (For an example of 
this in the theory of high-level excursions of random fields, see Adler [I, chapter 4)) 

Yet another possibility (albeit computationally more involved) is the positive ex­
tension, defined via a different generalised Steiner formula 

j n( K; r; x )dx 

where n( K; r; x) is the number of projections y E K (points in K locally closest to 
x) lying within distance r of x (see Matheron [29, (4-7-8)] also Schneider [48]). A 
significant subtlety in this definition is that it is possible to have n(K; r; x) > I for 

x E int(K). The w:(K) defined here satisfy 

for any compact convex sets K1 , ••• , Kn. However in the following we shall focus our 
attention mainly on the simpler and more intuitive additive extension. 

It is important that W: (-) = W,'.'( ·) for r = 0, 1. 

2 Quermass-interaction point processes 

We now introduce the idea of point processes weighted by exponentials of (linear com­
binations of) quermass integrals applied to a Boolean model based on the point process 
in question. 

2.1 Notation and framework 

Let X be a locally compact complete separable metric space, for example R_d or a 
compact subset. 
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Definition 2.1 A quermass-interaction point process on X has density p(x) with re­
spect to a (possibly inhomogeneous) benchmark Poisson process on X (of finite intensity 

measure µ), where p(x) is given by 

(4) 

Here /3 and I are strictly positive model parameters, x = { X1, ... , Xn} is the configura­
tion in question, and Ux is the set union Uf=1 Z(xi) where the Z(xi) are independent 
random compact convex sets (conditioned on the realization x of the Poisson point 
process) such that the distribution of Z(x) depends continuously on x. 

Here of course we use the topology of weak convergence on C(K) using the Hausdorff 
metric. When the Z(x) have degenerate distributions then we may suppose Z : X ---i­

C(K) is a continuous set-valued function using the Hausdorff metric. 
Note that we can absorb f3 into the definition of the intensity measureµ. 
Special cases of this model have been discussed in the literature. Widom and 

Rawlinson [54] (see also [18, 44, 45]) introduced "penetrable sphere" models for liquid­
vapour transitions in statistical physics. This is the special case of ( 4) in which I > 1, 
r = 0 and Z(u) = B(u, t) the closed ball of radius t. Hence the model describes 
attraction by spherical molecules. 

The area-interaction process [4] is a generalisation of the Widom-Rowlinson model 
which includes inhibition models, and which has r = 0 and general (not necessarily 
convex) Z, but also allows the replacement of area by any finite Borel regular measure. 
It has an intriguing relationship to "selfish herd" arguments in theoretical biology [17]. 
Note that even though the perimeter (case r = 1) is a positive functional it is not a 
measure, and so the corresponding quermass-interaction point process is not included 
in the area-interaction case. 

Area-interaction models are Markov in the sense of Ripley and Kelly with respect 
to the overlapping object relationship [3): 

u ""' v if and only if Z ( u) n Z ( v) =J 0 

and satisfy Ruelle's stability condition for all values of I· This condition requires that 
the energy E(·) = -log(p(·)/p(0)) is bounded below by a linear bound in the number 
of points: 

E(x) > -Bn(x) (5) 

for some B > 0. Indeed, the area-interaction density with respect to a Poisson(,8) 
process (restricted to a bounded window, as is always the case here) is uniformly 
bounded. 

Care is needed in the interpretation of this if Z ( :x) is random, since then the neigh­
bourhood relationship ,...., will also be random, thus linking to the setting of [5]. 
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An non-stable point process using the attractive version of the Strauss weighting 
[50] is obtained by considering a process conditioned on having exactly n points and 

then randomizing n using a Poisson distribution. This model resembles a quermass­

interaction density but uses a weight based on the number of pairs of points less than a 
distance r apart. However if the attractive version of the Strauss weighting is applied 
directly to a Poisson process then the weighting diverges (as shown by Kelly and 
Ripley [22]). Indeed Ruelle [46, §3.2] shows that, for (upper semi-continuous) pairwise 
interaction processes, unless the energy is stable the weight functional will diverge 

for a motion-invariant point process extending over the whole of space. Gates and 
Westcott [12] show that, even in a bounded window and conditional on the number of 
points, unstable point processes may yield problems in simulations (published examples 
are typically not yet in equilibrium, and results will be very sensitive to boundary 
conditions) and approximations of the partition function can be wrong by many orders 

of magnitude. See also M0ller [30]. 
Before we start to investigate quermass-interaction point processes we must carry 

out the tedious chore of establishing the (obvious) measurability of the density. 

Lemma 2.2 In the case when Z(x) is non-random, the quermass-interaction density 

is measurable with respect to Nf, the Borel a-algebra corresponding to the weak topology 

on the space of all integer-valued simple finite measures 911. 

Remark: A similar measurability result (more tedious to state) follows for random 

Z ( x) by a routine variation of the argument given below. 
Proof : We follow the general approach of [4, Lemma 2.1], but care has to be 
taken because the general quermass integral is no longer monotonic. To show the 
measurability of the density 

it suffices to consider Wrd(Ux), since n(x) will be NI-measurable. Now following The­
orem 1.1, from the integral expression for the additive extension Wrd( ·) and an inte­

gration argument (using 1.3), it suffices to show measurability of x(Ux n S) where x is 
the Euler-Poincare characteristic on a subspace S. But this measurability follows by 
the inclusion-exclusion formula immediately following the additive expression, and by 
the fact that (A, B) 1-+ An Bis upper-semicontinuous. (For the upper-semicontinuity 
of intersection, see Corollary 1 to Proposition 1-2-4 in Matheron [29].) D 

There is a similar and routine argument which yields measurability when the quer­

mass integral is replaced by the positive extension. 
We turn to the issue of when the quermass-interaction density is integrable, which 

is the main question addressed by this paper. 
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Note that the energy is 

-n(x) log,B + W!(Ux) log I· 

The stability condition for/ > 1 amounts to 

Wj(Ux) > -Bn(x) 

whilst for/ < 1 we need 
w:(Ux) < Bn(x) 

(for some B > 0). Since the f3 term is linear in n(x), it will not affect questions of 
stability. 

We note in passing that the positive extension of Minkowski functionals always 
produces stability: 

Lemma 2.3 Assume the positive extensions w;(-) of the Minkowski functionals are 
used. Then a quermass-interaction process with / ~ 1 is stable. If W; ( Z (a)), a E .X 
is bounded above then the quermass-interaction model with r < 1 is also stable. 

Proof: For I 2: 1, any B satisfies the stability equation. For/ < 1, use subadditivity 
(1.3): ifx= {xi, ... ,xn} then 

< 

0 

In fact even more can be said for the perimeter interaction when the grains are disks 
of constant radius. Stability follows as a consequence of work by Baddeley and Gill 
[2], which actually proves the stronger result of a uniform bound on the density with 
respect to a Poisson process over a compact region, by geometric reasoning involving 
the correspondence of the exposed boundaries to the sectors which they define. Com­
plementary geometric arguments yield a uniform bound on the Papangelou conditional 
intensity [25]. 

Corollary 2.4 Under the conditions in the previous Lemma, when the positive exten­
sion is used the quermass-interaction density is always integrable. 

The situation is much more interesting for the additive extensions, (except for 
r = 0, 1 in which case the positive and additive extensions are identical). We shall 
focus on the planar Euler-Poincare characteristic, so d = r = 2. Further interest is 
added to this case by the considerations 
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This provide a topological weighting, in the sense that the weighting depends only on 
the topology of the union of grains; 

There is a weak link to Markov-like properties described in the next sub-section. 

In this case Wrd(K)/7r equals the number of components of]{ minus the number of 
holes of K. Clearly n(x) provides an upper bound, hence the associated 'repulsive' 
quermass-interaction process is stable. For the 'attractive' counterpart I> 1, we need 
an upper bound on the number of holes. This problem is dependent on the geometry 
of the grains and is treated in Sections 4, 5, 6. 

2.2 Markov properties 

As with the area-interaction model [4), the quermass-interaction generalisations are 
Markovian (this is also true for the positive extension). 

Theorem 2.5 Whenever p(·) is integrable then it is Markovian in the Ripley-Kelly 
sense with respect to the overlapping objects relationship. 

Proof : Property (Ml) of the definition of a Markov point process is straightforward, 
so it suffices to establish property (M2). 

The case r = 0 has been established in [4], so we can assumer > 0. First observe 
that since both /3 and I are positive, the hereditary property is trivial. The result 
follows by considering the log probability ratio (which is to say, the log Papangelou 
conditional intensity): we apply the inclusion-exclusion law to W,=i(Ux U Z(a)). 

1 p(x U {a}) 
- og p(x) [wrd(Ux U Z(a)) - w:(Ux)] log/ - log~ 

[w:(Z(a)) - w:(Z(a) nUx)] log1 - log~ 

[w:(z(a)) - w:(z(a) n ylja Z(y))] log 1 - log~. 

Thus the Papangelou conditional intensity for adding a to x depends only on the 
sub-configuration of points of x neighbouring a. Hence (M2) follows. (There is a 
corresponding and straightforward argument for the positive extension, depending on 
the fact that for Xi for which Z(xi) n Z(a) = 0 the exposed boundary in x u {a} is the 
same as in x, so that a similar cancellation occurs.) D 

This makes strict sense only when the grain Z(x) is non-random. More generally, 
one can argue as above for the density of the marked point process or germ-grain 
process as appropriate. 
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If it can be shown that the grain is always contained in a disk centred on o of fixed 
radius r then the above argument establishes a local Markov property with respect to 
the conventional neighbourhood relationship x"' y when x, y are closer than 2r. 

A fortiori the process is nearest-neighbour Markov with respect to the connected 
component relation of Baddeley and M0ller [5]. Note also that Mll>ller proposed a 
model in which the weighting is carried out by counting connected components instead 
of the Euler characteristic. In Mll>ller's model the Markov property is replaced by a 
nearest-neighbour Markov property. 

By the Hammersley-Clifford theorem (see §1.1 above), the density p(·) can be writ­
ten as a product of clique interaction terms 

p(x) = II q(y) 
ys;x 

where q(y) = 1 unless Yi,..., Yi for all elements of y. The interaction functions resemble 
those of the area-interaction model. For the additive case, or for r = d, 

q(0) - a 
q( {a}) _ 131 -W!(Z(a)) 

({ }) _ 'Y(-l)"W,!'(n~=l Z(y;))., q Yi,···, Yk (6) 

(for positive extensions one can replace w:(z(a)) by a boundary integral.) In par­
ticular, the model has ( numerica~ interaction of all orders, but note that the model 
interaction can be considered to be pairwise where the interactions combine according 
to Boolean logic rather than arithmetic. 

In the case where the grain depends continuously on location the process moreover 
satisfies a spatial Markov property (see [23, 43]). Define the dilation of a set E ~ X 
by 

Dz(E) { u E X : there is e E E such that Z ( u) n Z ( e) =I 0} . (7) 

If Z(a) = a ED Z0 this becomes the classical dilation of mathematical morphology. 
Then the spatial Markov property states that the restriction of the process to E is 
conditionally independent of the restriction to Dz(El given the information in Dz(E)\ 
E. 

Reverting to the case when the grain Z(u) is a random ovoid, we may view the 
process as a germ-grain process in the sense of [51, Section 6.4]. Write X = {[x; Z(x)]}. 
Suppose that the grains Z(x) are observed. The distribution of X is obtained from that 
of a benchmark marked Poisson process (of finite total intensity, each point x marked 
by its grain Z(x)) by using a weighting factor exp(-7/i(U)) where 

U - LJ{Z(x): [x; Z(x)] EX}. 

It is interesting to note that we can rephrase C-additivity of a functional 'ljJ : 
C(J<) ~ R in terms of multiple conditional grain intensities, and thus motivate the 
study of quermass-interactions. 
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Definition 2.6 Consider the procedure of augmenting X by adding k new points 

{[u1; Z(u1)], ... , [uk; Z(uk)]} 

to X. Set U = U{Z(x): [x; Z(x)] EX} and V = Z(u1)U ... UZ(uk)· Then the multiple 
conditional grain intensity is 

.\(V;U) exp(-(t/;(U UV) - tf;(U))), 

the ratio of the density of the augmented process to that of the unaugmented process. 

Of course the notion of multiple conditional grain intensity is closely related to that 
of n-fold Palm distribution (see [21]). 

Consider the effect of a localization condition, encapsulating the idea that the ad­
dition of V depends only on Un V and V. This forces tf; to be a valuation ([28, page 
171]) on the class .C of finite unions of possible grains. If either we can assume this 
class to be the convex ring or the family of polyhedra, or we can use it to approximate 
the convex ring appropriately, then we can limit the form of possible ?/; by applying 
characterization theorems for valuations. 

Lemma 2. 7 Suppose that X = {[x; Z(x)]} is a germ-grain process, produced from an 
{inhomogeneous) marked Poisson process by a weighting e-.P(Ux) depending on Ux = 
Uf=1 Z(xi). If the multiple conditional grain intensity (2.6) localizes: 

>.(V;U) exp(-( a(V) - (3(U n V))) (8) 

for functionals a defined on .C, f3 defined on .C2 = {Un V : U, V E C} then the functional 
tf; may be taken to be a valuation on .C and indeed 

tf;(U UV) tf;(U) + tf;(V) - tf;(U n V) 

whenever u' v' u n v belong to .c. 

Proof: We may suppose (without loss of generality) that t/;(0) = 0, since this can be 
absorbed in the normalizing constant. Also without loss of generality we may assume 
that (3(0) = 0. 

Set V = Z1 u ... u Zk and observe that from the localization of multiple conditional 
grain intensity (8) we have 

tf;(U U V) - tf;(U) a(V) - (3(U n V) 

for any finite union U of grains. 
If U = V = Z1 U ... U Z k then 

0 = ?,b(V) - tf;(V) a(V) - (3(V) 



and therefore a(V) = ,B(V). 
If U = 0 then 

tji(V) = t/;(V) - tji(0) = a(V) - ,8(0) 

and therefore a(V) = ~(V). 
Consequently we discover that 'ljJ is a valuation on the family .C [28, page 181]: 

~(U u V) = 'ljJ(U) + 'ljJ(V) - 'ljJ(U n V) 

whenever U, V, U UV, Un Vall belong to .C. 
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Suppose the additional conditions hold that t/J is motion invariant and extends 
as a valuation to the whole convex ring. If also tP is a continuous function when 
restricted to convex compact sets then Hadwiger's characterization result (Theorem 
1.1) immediately shows us that ~is a linear combination of quermass integrals: 

exp(-'!jJ(Ux)) = exp(- LarW:((Ux))). 

This provides some motivation for the study of quermass-interactions as related to the 
question of whether the multiple conditional grain intensity localizes as in Definition 
2.6. 

It is reasonable to ask for an appropriate continuity requirement on 'ljJ, such that if 
the family C of finite unions of grains is sufficiently rich then 'ljJ extends as a valuation 
to the whole convex ring. Work is in progress to elicit such a condition, which should 
certainly apply when .C is the family of finite unions of disks of arbitrary radii, as 
studied in Section 5. Note that if C is the family of finite unions of convex polygons 
of positive area (as might be appropriate in the case of Section 6) then it is easy to 
formulate a suitable condition. 

3 Quermass-interaction random sets 

In the previous sections we were concerned with models for point processes on Rd_ 
These can be used to build random set models analogous to the way a Boolean model 
is constructed from a Poisson germ process. 

Definition 3.1 Let X be an integrable quermass-interaction process on a bounded sub­
set A ~ JR.dJ with density 

p(x) ex 1-w:i(ux) 

with respect to an {inhomogeneous) Poisson process on A of finite intensity measureµ. 
(Integrability here means the density is integrable) Then 

n 

2=Ux = LJ Z(xi) 
i=l 

is a random set, a querrnass-interaction random set. 
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As in the Boolean model, the component grains Z ( x;) are not observable since their 
boundaries may be occluded by other grains. Indeed, there is no way of determining 
even the number of germs giving rise to a union set 3, complicating estimation of model 
parameters (see later). 

We need to check that the random set is well-defined, which is to say that "hitting 
events" such as {31t K}, the event that the set 3 has non-void intersection with the 
set ]{, are weakly measurable. 

Lemma 3.2 The quermass-interaction random set (Definition 3.1) is well-defined. 

Proof: We have to prove that {311' K} is measurable for all K E K,. As Z(·) is 
continuous, 

L ={a EA: Z(a)nK #-0} 

is closed in A. Hence 
{31)- J<} = { x E 1)11 : n(xL) = 0 r 

is closed, hence measurable. 0 

The quermass-interaction point processes are Markov with respect to the overlap­
ping objects relation and satisfy a spatial Markov property 

X n E 1- X n Dz(EY X n Dz(E) \E. 

In words, the random point pattern X n E is independent of the random point pattern 
X n Dz(E)c when conditioned on the realization of the "frontier" point pattern X n 
Dz(E) \E. 

This property has an implication for the induced random set, 

X n Dz(E) \E. (9) 

Unfortunately we cannot in general choose the conditioning event to depend on 3 n 
Dz(E) \ E rather than the (typically unobservable) X n Dz(E) \E. 

It is possible to derive a random set Markov property in the 1-dimensional case. 
For example in Rd, Matheron defines two compact sets /{ and K' as separated by 
another compact set C E K, if any line segment joining x E K with x' E ]{' hits 
C. Furthermore, the random set 3 is said to be semi-Markovian if (9) holds for any 
E, FE K, separated by G E JC and the conditioning is on:=: n G = 0. It is then easy to 
show that the 1 dimensional quermass-interaction random sets (3.1) are semi-Markov. 

No such result can be expected in higher dimensions, as separation no longer implies 
topological separation. 

Finally we turn to non-deterministic grains. 
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Definition 3.3 Let 
p(z) O./-W~(Uz) 

be a marked point process on Ax C(K') defined by its density with respect to a Poisson 

(µ x v) process, where µ is the (finite) intensity measure for the unmarked Poisson 

process, and v is any probability measure on C(K'). Then 

n 

= u X; EB K; 
i=l 

is called a quermass-interaction random closed set model with random grains. 

Note that the random marks will not be independent under the weighted proba­

bility distribution. The marginal germ process of Z yields a further generalisation of 

quermass-interaction point processes, but we will not discuss this here, as the random 

set approach seems more natural. 

Lemma 3.4 The random set 3 (Definition 3.3) is well-defined. 

Proof: Observe 
{21[ K} 

where 
L = {(x,Z):xEBZnK=;f0}. 

As the mapping f : X x C(K') ~ C(K') (x, Z) 1-+ x EB Z is continuous, L is closed. 
Thus {3 if I<} is weakly measurable by definition. O 

4 Planar case: counterexamples 

In this section we consider in detail the two-dimensional case d = 2 of additive 
quermass-interaction point processes in the plane. In this case, for K E C(X:), we 
have 

vz(K) = area 

W12 (K) l U(l ) l . 7r 2 { = 2 perimeter = "2 mean breadth 

Wf(K) = 7r 

'.\nd we study the point process whose density with respect to a Poisson point process 

ff Boolean model / marked Poisson point process, if the grains are random) is given 
y 
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In the instances r = 0 and r = 1, the functional w; is positive, both extension 
methods coincide, and Lemma 2.3 leads to the simple conclusion that integrability 
holds for all values of/ (at least for bounded convex grains as above). So it remains 
to consider the case r = 2. 

Here the extension methods do not coincide and we have to argue in detail. The 
additive extension of W:i has a simple interpretation: it is proportional to the Euler­
Poincare characteristic x ("the number of components minus the number of holes" for 
this planar case). In fact W:f(K) = 7rX(K). For Ruelle stability (5) to hold for all 
parameter values, we require 

(10) 

where B1, B2 are positive constants and 3 = Ux. The right-hand inequality is immedi­
ate from C-additivity, but the left-hand inequality is actually false in general (see the 
counterexamples below). Let us examine what can go amiss. First note that if I= 1 
then the weighting has no effect and everything is trivial. The case I < 1 (inhibition) 
is also clear: 

So the process is then bounded above by a Poisson process with intensity measure ,-'lr µ(X) and therefore is integrable and indeed stable. However stability does not 
hold in general for the clustered case of 7 > 1, as we now show by exhibiting coun­
terexamples. 

The first counterexample is suggested by the observation that n lines in general 
position in the plane produce (n - l)(n - 2)/2 (bounded) holes. (Proof by induction: 
adding a line in general position to an assembly of n lines in general position produces 
n - 1 new bounded holes.) 

Counterexample 1: Poisson line process in the plane. Let the germ process 
be an inhomogeneous Poisson point process <P of finite total intensity. Let the typical 
grain be a line randomly oriented with some fixed directional distribution. Suppose 
that the intensity measure of the resulting line process is diffuse and bas topological 
support containing two lines which intersect (of course this second requirement will be 
fulfi.lled unless all lines in tbe process are almost surely parallel!). Then the expectation 

(11) 

is infi.nite if 7 > 1. 

Since W{(3)/7r = x(3) is "the number of components minus the number of holes" 
this means that we cannot weight the model towards having more holes than would be 
expected in the unweighted (Poisson) case. 
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Proof: Note that -x(3) is bounded above by the number of holes in 3. The topo­
logical support condition means that we can choose two compact sets I<1, K2 in line 
space such that (a) the intensity measure charges both K1 and K2, and (b) all lines 
in ](1 intersect all lines in !<2 • We condition on the event that all lines of the process 
belong to K1 U K2 • Under this conditioning event (which is of positive probability) 
the number of holes is given by (N1 + l)(N2 + 1) where Ni is the (random) number 
of lines in Ki and has a nondegenerate Poisson distribution. But this means that the 
expectation in Equation (11) is infinite, because the moment generating function of the 
product of two non-degenerate Poisson distributions is infinite for positive argument. D 

It might be objected that the above counterexample uses non-compact grains. Basic 
arguments using Boolean models readily yield the following localization and condition­
ing argument which replaces unbounded lines by bounded line segments. 

Counterexample 2: Poisson segment process in the plane. Let the germ pro­
cess be an inhomogeneous Poisson point process ~ of finite total intensity. Let the 
typical grain be a line segment randomly oriented with some fixed directional distribu­
tion. Suppose tha.t the intensity measure of the resulting line segment process is diffuse 
and has topological support containing two line segments which intersect. Then the 
expectation 

E{ exp (-(ln1) x Wf(3))} (12) 

is infinite if/ > 1. 

Proof : We can argue exactly as in Counterexample 1, except that this time the 
topological support condition allows us to choose compact sets in segment space K 1 

and K2, such that (a) the intensity measure charges both ]{1 and K 2 , and (b) each 
segment in K 1 intersects all segments in K 2 • D 

The problems in the above two counterexamples appear to be related to the patho­
logical "sharpness" of the grains, and in particular to the fact that they have negligible 
area. A natural condition to exclude this pathology is to require a lower bound on the 
internal angles of convex polygonal grains. 

Definition 4.1 A convex grain G is said to satisfy a "local wedge condition of angle 
</> > O" if for any pointw E 8G there is a disk B(w,r) (centred at w, of positive radius 
r = r(w)} such that B(w,r) n G is a sector of the disk of angle at least</>. {No lower 
bound is placed on the radius of the disk, other than the requirement that it be positive.) 

Note _that a convex grain satisfying this condition is automatically polygonal. 
Here is a counterexample to show that care is required even when the grains satisfy 

a local wedge condition. 
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Figure 1: How to build configurations of n polygonal grains which create O(n2 ) holes 
(pentagonal case). We can arrange k = n/2 pentagons one on top of the other so that 
by adding r = n/2 other polygons we can create n/4 holes per polygon. 

Counterexample 3: Boolean model with convex grains satisfying a local 
wedge condition. In general the weighting need not satisfy the stability condition 
wben I> 1. 

Proof : The grains are regular k-gons, of varying side-number k (k > 3) and size. 
To establish failure of stability, we have to show how to construct configurations of n 
grains which possess O(n2 ) holes. 

Fix k > 3, r > 1 and set€= (r - l)7r/(k(k - 1)2). Notice that the local wedge 
condition is satisfied for <P = 7r /2, since k > 3. 

Consider r similar k-gons, of which the first is inscribed in a circle of unit radius 
centered on the origin o, and such that the ith k-gon is obtained from the first by 
rotation about o through an angle of ( i - 1 )€ and scaling (again about o) by a factor of 
sec((i-1)€). At each vertex of the first k-gon place a square with sides of unit length, 
tangent to the inscribing circle at the midpoint of a side. (See Figure 4 for the case 
k = 5, r = 5.) 

For all sufficiently large k, each square intersects each of the k-gons at a vertex, 
and none of the intersections of squares with k-gons are covered by other squares or 
k-gons. (This follows from the observation that the k-gons intersect in singleton sets 
with lines through vertices of the first polygon which are perpendicular to radii of the 
circle which it inscribes.) Consequently this configuration of r -1 k-gons and k squares 
creates at least k(r - 1) holes. Setting k = r = n/2 for even n delivers the required 
violation of stability. D 
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It is important to note that the above counterexample works only if we allow polyg­
onal grains of arbitrarily small sidelength. Later on we shall see that an additional 
lower bound on sidelength (obtained by requiring a uniform local wedge condition) is 
sufficient to ensure stability for polygonal grains. 

In this paper we confine ourselves to the planar case, which is the case of principal 
importance for image analysis (though not for physics!). However it is interesting to 
note that things can go even more badly wrong for the Euler-Poincare characteristic 
in the spatial case. 

Counterexample 4: Process of flats in space. Divergence can occur for all pa­
rameter values except for the trivial (unweigbted) case of/ = 1. Take the Poisson 
point process <I> of germs to be inhomogeneous and of finite total intensity. Fix an 
orthonormal basis. Let the typical grain be a "flat" or 2-plane, normal to a vector 
chosen randomly from the orthonormal basis. Suppose that the intensity measure of 
the underlying flat process is diffuse. Then the expectation 

(13) 

is finite if and only if/= 1 (the trivial unweighted case!). 

Proof : First note that Wt(=:) is no longer proportional to the number of holes 
minus the number of components, but is proportional to the three-dimensional Euler­
Poincare characteristic. However (in the simple case which we have chosen to consider) 
it is easily computed from first principles using the inclusion-exclusion formula of C­
additivity. Let Ni, N2, N3 be the numbers of flats normal to each of the three basis 
vectors. Then 

Wi(2) (N1 + N2 + N3)- (N1N2 + N2N3 + N3N1) + NiN2N3 

(N1 - l)(N2 - l)(N3 - 1) + 1 

(since intersections of more than three flats will be almost surely void, because the 
underlying intensity measure of the flat process is diffuse). It suffices to show divergence 
of IE{ 1-(Ni-l)(Nrl)(Nrl)-1}. 

Suppose that / < 1. Then 

> 

where the divergence follows from Stirling's formula. 
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Suppose / > 1. Then consider the bound obtained by restricting the above expec­
tation to the event, which is of positive probability, that N3 = 0. We have 

lE { 1 -(N1-l)(Nrl)(N3-l)-l} > lE { 1 -(N1 -1)(N2-l)(N3-l)-1 IN3 = 0} X IP' {N3 = O} 

). n1 ..\ n2 I: 1:e-l-A1-A2 1 I \ /(n1-l)(nrl) X JP {N3 = O} 
n1 n2 n1.n2. 

).n ).n L e-l-.A1->-2--1.!f1(n-1)2 X lP {N3 = O} oo 
n n. 

> 

where once again the divergence follows from Stirling's formula. D 

Naiman and Wynn have generously contributed the following counterexample, which 

shows that in 4-space one cannot expect convergence for all parameter values even in 
the well-behaved case of balls of unit radius. 

Counterexample 5: Unit balls in 4-space. Consider the Boolean model 3 based 

on an inhomogeneous Poisson process of finite total intensity in 4-space with grains 
which are unit balls. Suppose that the intensity measure has a density which is constant 
over the ball centred on the origin and of radius 0. Then for I < 1 the distribution 
produced by weighting using 

is not stable in Ruelle's sense. 

-W4('=) I 4 - (14) 

Proof: First note that W44(3) is proportional to the Euler-Poincare characteristic of 

Consider the ensemble of 2n balls of unit radius, of which the first n are centred 

respectively at ( v'2 cos(2k7r Jn), v'2 sin(2br Jn), O, 0) for k = 1, ... , n, and the second n 
are centred respectively at (0, 0, v'2 cos(2k7r Jn), v12 sin(2br Jn)) fork= 1, ... , n. (The 

condition on the density of the intensity measure is imposed in order to ensure that 
such a configuration is feasible for 3.) The first n balls form a sub-ensemble whose 

union is homotopic to a circle (for large enough n) and therefore has Euler-Poincare 
characteristic 0, and similarly for the sub-ensemble of the other n balls . 

However intersections between balls from the first and second sub-ensembles are 
pairwise only, and are singleton sets. It follows from the inclusion-exclusion identity 

that the Euler-Poincare characteristic of the union of all 2n balls is -n2 • Hence Ruelle 

stability fails. D 

It is an open question whether stability fails for the weighting ,-wf (=:) (case I < 
1) when 3 is the Boolean model produced by using unit balls in 3-space. However 
Naiman and WSK have independently produced a counterexample for the case of balls 

of random radius in 3-space, based on Diagram 4.7.1 from [39] (see also [26]). See 

Figure 4 for an indication of the construction. 
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Figure 2: Vertical section view of 2n balls of varying radius in 3-space, whose union has 
Euler-Poincare characteristic 1-n2• First arrange n unit-radius balls in an overlapping 

horizontal ring (two of these seen in section as dark circles). Then build a fan of n 

balls with centres located along axis of symmetry, so that the balls in the fan form a 
connected union and each ball in the fan touches each of the first n balls in one point 
only. 

These counterexamples show that even in the planar case some conditions are 
needed if the range of I is to be unconstrained. On the other hand they appear 
somewhat pathological. Note that the problems are local (the treatment of the line 
process case makes this clear) and appear in Counterexamples 1, 2, 4 to be related 
to the "sharpness" of the constituent grains, while Counterexample 3 shows problems 
arise when grains of "small" sidelength are allowed. 

There are two positive results which cover an important range of practical examples, 
and which serve to clarify the sense in which the above counterexamples are patholog­
ical. These cover the complementary cases of (a) random disk grains and (b) random 
polygon grains which are neither too sharp nor too small. We deal with these results 
in the two following sections. 

As a final remark on the topic of counterexamples, note that it is natural to enquire 
whether the divergence (in d == 2 at least) can ever occur if the grains are non-random. 
Divergence can occur for simple non-convex non-random grains: consider the case of 
a grain composed of intersecting horizontal and vertical line segments, and apply the 
ideas underlying Counterexample 2. In the case of convex non-random grains which 
a.re polygons, one can argue that either the grains are parallel line segments or parallel 
lines (in which trivial case stability is immediate, as there will be no holes!) or they 
must satisfy a uniform local wedge condition (given below as Definition 6.1 ), in which 
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case stability follows from the arguments in Section 6. The case of non-polygonal 

convex non-random grains is currently open, with the exception of grains which are 
disks, which case is covered by the results in the following section. 

5 Planar case: when grains are disks 

In this section we show that if the Boolean grains are random disks then the Euler 
quermass-interaction is stable, and hence convergent for all parameter values. Re­
markably, no size constraint is required: the disk radii can be random and need only 
be strictly positive. This is particularly striking in the light of Counterexample 3 
above, which suggests that stability problems arise when side length is small. Here we 

see such problems need not occur at th.e limit! The argument is strictly geometrical, 
and is to be found in the theorem below: an ensemble of N disks has a union with at 
most 2N - 5 holes. 

If the disks are of constant size then there is an easy argument using the Dirichlet 
tessellation based on the disk centres. Let B(x1,r1 ), B(x2 ,r2 ), ••• , B(xN,rN) be the 
(closed) disks. In each component of the complement of Ui B(x;, r;) there must be at 
least one node of the tessellation (a node is a vertex of the planar linear graph formed 
by the tessellation, including the "vertex at infinity"), for otherwise the boundary of 
this component would have to be made out of the boundaries of at most two disks 
(which would force the "vertex at infinity" to belong to the complement). Hence the 
number of holes in the union Ui B(xi, ri) is dominated by the number of nodes of the 
Dirichlet tessellation, which by planar graph theory (using the Euler formula; see for 

example [55, Theorem 13A]) is itself dominated by the bound 2N - 5, since N is the 
number of faces of the tessellation (note the bound is not 2N - 6, as we exclude the 
hole at infinity). 

Unfortunately this simple argument appears not to generalize, being tied to the 
Euclidean metric structure underlying the definitions of a disk and of a Dirichlet tes­
sellation. For disks of arbitrary radius we have to argue carefully about how to reduce 
the union of disks to a planar network without decreasing the number of holes. The 

reduction uses line segments connecting certain of the disk centres (together with some 
polygons): the main technical issue is to choose a set of such line segments which leave 

connectivity unchanged and which do not cross each other. Naiman and Wynn have 
recently discovered a delightful argument deriving Theorem 5.3 from their work on 

abstract tube theory [33, 35], based on an algebraic topology argument related to the 
Morse inequalities. However the argument given below is more self-contained, and in 
particular avoids algebraic topology. 

We commence by introducing some notation and proving a couple of preliminary 

lemmas. 
Consider an ensemble B(x1 , ri), B(x2, r2), ... , B(xN, rN) of N overlapping closed 

disks of varying sizes all lying in the plane. Set 'D to be the union of the disks, and 1J0 



24 

Figure 3: A typical field of overlapping disks B(xi, r1), B(x2, r2), ... , B(xN, TN) of 
varying sizes. 

to be the union of the interiors of the disks, so that 

N 
v - LJ B(x;,ri) 

i=l 
N 

'Do - LJ int (B(xi, r;)). 
i=l 

We suppose that they are placed in general position, so that no more than two disk 
boundaries intersect at any given point, and so that if two disk boundaries do intersect 
then they intersect at two distinct points. Figure 3 illustrates a possible arrangement: 
close inspection will reveal that the disks here are in fact in general position! 

Each pair of overlapping disks B(xi, ri), B(xj, ri) has boundaries intersecting in 
two points xij, xt, where the sign is chosen by an arbitrary convention so that if i < j 
then xt is on the clockwise side of B(xi, ri) n B(xj, ri) when viewed from the centre 
of B(x;, ri)· 

For each point of intersection xt of the boundaries of two disks B(xi, ri), B(xj, ri ), 
if x~ is not covered by V 0 then define Ti} to be the closed triangular region with 
vertices at xTj and the centres of B(xi, ri), B(xj, ri)· Define Sij to be the line segment 
running between the centres of B(x;, r;), B(xj, ri ). 

We say that Ti] is not defined if the corresponding xt is covered by 1)0 • We say 
that S;i is not defined if both the corresponding xt and xij are covered by 'D0 . 

Figure 4 illustrates the definition of xt, T;j and sij· Note that if TS (respectively 
T;j) is defined then xt (respectively xij) is a "corner" of the union 'D. We now make 
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Figure 4: The closed triangular region Tit with vertices at xt and the centres of 
B(xi, ri), B(xj, ri ). In this example Tij is not defined, since xij is covered by the 
interior of a third disk B(xk, rk)· 

some observations about these triangular regions. Firstly we note that they serve 
as "dead areas" for disks, in the sense that if a B(xk, rk) overlaps a T/j (for i, j, k 
distinct) then it cannot contribute any exposed Xkt· This follows readily from geometric 
intuition, but here we give a rigorous proof based on homogeneous coordinates. 

Lemma 5.1 IJTi} {respectively Tij) is defined then any further disk B(xk, rk) with cen­
tre in TS (respectivelyTij) must be wholly contained inint (B(xi,ri))Uint (B(xj,rj)). 

Proof : Without loss of generality consider Tij. Because TS is defined, xt must lie 
outside B(xk, rk) (recall that the disks are placed in general position, so we can replace 
int (B(xk, rk)) by B(xk, rk) here). (Figure 5 illustrates the situation.) 

Choose coordinates such that xt = 0 and the centres of B(xi,ri), B(xj,Tj) are at 
a, b respectively. If the centre of B(xk,rk) lies in Tit then it is at .Xa+µb, for .X+µ < 1, 
.A > 0, µ 2::: 0. (In fact .A, µ, 1 - .A - µ provide a system of homogeneous coordinates 
for the centre of B(xk, rk).) 

Consider a point y lying outside the interiors of both B(xi, ri) and B(xj, ri)· This 
means 

liy-ali 
llv- bll 

and on squaring and simplifying we find 

llYll 2 - 2{y, a) 

> 
> 

llall, 
IJblJ, 

0, 
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Figure 5: An argument using homogeneous coordinates, based on 0 = xt and the 
centres of B(xi, ri) and B(xj, rj), shows that if TiJ is defined, and if B(xk, rk) is centred 
in TS, then B(xk, rk) is contained in the union of the interiors of B(xi, ri) and B(x;, ri ). 

llYll 2 - 2(y, b) > o. 

Hence we deduce 
(,\ + µ)llYll 2 - 2(y, (,\a+ µb)) > 0 (15) 

(note that ,\ and µ are both nonnegative!) and therefore, because,\+µ 5 1, 

llY - (,\a+ µb)ll > 11,\a + µbll · (16) 

But B(xk, rk) must not contain xt, and this means that its radius must be strictly 
less than 11,\a+µbll- Soy must lie outside B(xk, rk), and so B(xk, rk) must be contained 
in int (B(xi,ri)) U int (B(xj,rj)). O 

Therefore no Til"t or Skl can be defined for such a B(xk, rk); Tij is a "dead area" for 
disks. A similar argument holds for Tij. 

Secondly we note that no two of these "dead-area" triangles can have overlapping 
interiors. 

Lemma 5.2 No two triangles T/j, TT~ can have overlapping interiors. {Here the ± 
superscript refers systematically to one of+ or - in each o1 the two cases of T-:; T±). 

i3 1 rs 

Proof: Let c;, c;, c,., Cs be the centres of disks B(xi, ri), B(x;, r; ), B(xr, rr ), B(x8 , rs) 
respectively. Let xt, x;=s be exposed intersections of the respective disk boundaries. 
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Suppose that a point u is in the interiors of both the triangle CiC·x* and the triangle 
± w d . J tJ 

CrCsXrs· e enve a contradiction from this and the requirement of the disks being in 
general position, as follows. 

First observe that by the previous lemma we can deduce that the open disk fJ of 

centre u and radius iu - xtl is contained in int (B(xi, ri)) U int (B(x5, r5)). Thus we 
can add a further closed disk B(xN+I, rN+i) to the original assembly of disks B(xi, r1 ), 

B(x2, r2), ... , B(xN, TN) without altering the union of all the disks, where B(xN+i, rN+i) 
is a closed disk of centre u and radius less than but arbitrarily close to lu - xe1. 
Consequently B(xN+i, TN+i) cannot cover x;=5 , since otherwise x~ would be covered by 
'Do = Uf::1 int (B(xi, ri)), contradicting our assertion that T!; is defined. 

Working with the new assembly B(x1, r 1 ), B(x2, r 2), •.• , B(xN, rN ), B(xN+I, TN+1), 
we can also apply the previous lemma to Tr~ and B(xN+i, rN+i), to deduce that 

B(xN+1,rN+1) ~ int (B(xr,rr)) U int (B(x 5 ,r5 )). Since the radius of B(xN+i,rN+i) 
is arbitrarily close to iu - xtl, we deduce that fJ C int (B(xr, rr )) U int (B(xs, r5 )). 

But now we have shown that the open disk fJ of center u and radius ju - xtl is 
contained in int (B(xrirr)) Uint (B(xs,rs)), while xe is not (being exposed). So xe 
lies on the boundaries of B(xr, rr ), B(xs, r5 ), as well as on the boundaries of B(xi, r;), 

B(xj, r5). At least three of these disks are distinct, so this violates the requirement for 
the disks to be in general position. We deduce that the interiors of the triangles qcixtj 
and ercsx;s are disjoint, as required. 0 

We now turn to the main result of this section. 

Theorem 5.3 For 1) a union of N closed disks in the plane, the number of holes in 

1) is bounded above by 2N - 5. 

Proof: We may suppose the disks are in general position as described at the beginning 
of this section. We use the notation established above. 

For every (exposed) "corner" xi} of 'D we have defined a "dead-area" triangle Ti7 
with vertices at xt and the centres of the two disks B(xi,ri), B(x5,rj) whose overlap­
ping forms the "corner". Moreover we have shown that the interiors of distinct defined 
"dead-area" triangles do not overlap. The resulting configuration of defined triangles 

T/j is shown in Figure 6(a). 
The "corners" of']) divide the boundary flD into "edges" (circular arcs). To each 

"edge" we can associate two bounding "corners", P1 and p2, except when the "edge" 
is a complete circle, corresponding to a disk separated from all the others (note that 
the configuration of general position removes ambiguous cases). We need not consider 
the exceptional case, as this makes no contribution to the number of holes of 'D. For 
the non-exceptional edges the corresponding triangles share a vertex which is a disk 
centre c. The non-overlapping property given in Lemma 5.2 means we can retract each 
"edge" back to the joined segments p1 -+ c-+ p2, without altering the number of holes 

of 'D. 
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Figure 6: (a): 1) together with the configuration of defined triangles T/j. 
(b ): Construction of jj from 1) by retracting the "edges" back to joined pairs of triangle 
segments. 

We can do this by the mapping F : [O, 1] x H-+ H, defined for a circular sector 

H = P1CPz by 

F(t, (r, 0)) 
99-8 

((l-t 69 )r,O) 

where we coordinatize the sector H by polar coordinates such that 

H {(r, 8) : r E [O, ro], IOI :::; Bo} . 

Call the resulting region i>. Figure 6(b) illustrates the construction. 
Now notice that each triangle T/'J can be retracted back to the line segment Sij 

running between the centres of the two .defining disks without altering the number of 
holes in f>. (This follows from general position and Lemma 5.2. Call the resulting 
region £. Figure 7 illustrates the construction. 

Finally consider the holes in £. If we replace £ by the network of line segments Sij 
then we can only increase the number of holes (points disconnected by £ will remain 
disconnected by the network). 

But we can now use planar graph theory as in the constant-radius case (Euler's 
formula as in formula; see for example [55, Theorem 13A]) to bound above the number 
of holes in the network by 2N - 5 as required. D 

We owe the application of planar graph theory here to Mike Alder: a previous 
version of the argument used a simple angle-counting argument. Note that the major 
part of the effort in the proof of an apparently simple result goes towards establishing 
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Figure 7: Construction of£ from f> by retracting the triangles T[j= back to line segments 
sij· 

that we can shrink the union of disks to a planar graph of which nodes are disk centres, 
without decreasing the number of holes. 

Arguments about the Poisson distribution lead to the following corollary, which 
applies the result to the context of our paper. 

Corollary 5.4 Let X be a point process with quermass-interaction based on a Boolean 
model:=: based on X and using random disks, with arbitrary positive radius distribution, 
and with finite intensity for the underlying Poisson germ process. The Euler-Poincare 
quermass-interaction weighting ,-Wi('3.)lrr is stable for all values of/· 

The main result of this section, Theorem 5.3, is of independent geometric interest. 
Simple periodic examples show asymptotic sharpness of the bound of at most 2N - 5 
holes for the union of N disks. 

Extreme Euler-Poincare quermass-interactions which weight "against holiness" are 
also of interest: if the intensity is high enough to force overlaps then it is an interesting 
question as to what are the most probable configurations, and indeed whether phase­
transitions appear. 

We plan to investigate both ranges of extremes using simulation. 

6 Planar case: when grains are polygons 

In this section we establish stability for the Euler-Poincare quermass-interaction when 
the typical grain is a randomly rotated polygon (or more generally a random polygon 
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which is neither too small nor too sharp). More precisely, we consider the case when 
the grains satisfy a uniform version of Definition 4.1: 

Definition 6.1 A convex grain G is said to satisfy a "uniform wedge conditio.n of 
angle ef> > O and radius r > O" if for any point w E 8G the disk B(w, r) (of radius r 
and centred at w) when intersected with G produces a circular sector B(w, r) n G of 
angle at least </>. 

This holds for example (for some r, </>)if G is a convex polygon of positive area. It 
corresponds to the wedge condition of Definition 4.1 together with a lower bound on 
side-length. 

Theorem 6.2 Let :::: be a planar Boolean model based on an inhomogeneous Poisson 
point process q> of finite total intensity, with typical grain G almost surely satisfying a 
uniform wedge condition of angle</> and radius r for some fixed r, <f. Then W:f (3) is 
bounded above and below by a constant times the total number q>(~.2) of germs. 

Proof: The proof begins with a series of reductions directed at resolving the question 
down to an unusual but deterministic geometric packing problem. 

A: It suffices to hound the number of holes. 
Arguing as before, the Euler-Poincare characteristic x(3) = W:f(3)/7r is equal to 

the number of components of :=: minus the number of holes of 2, and the number of 
components is bounded above by the number of germs <I>(~.2). It therefore suffices to 
obtain a suitable upper bound for the number of holes. 

B: It suffices to consider the case of grains which are random wedges. 
Localizing to a disk of radius r, it suffices to consider the case when G is an infinite 

convex planar wedge of angle exceeding <P > 0. To see this, note that the observation 
window can be covered by discs of radius r, and that there is a many-to-one correspon­
dence between holes produced by the various intersections of 2 with covering disks 
and holes produced by the original 2. Let N = <P(JR2) be the total number of wedges, 
equivalently the total number of germs. 

C: Discretization of wedge angle and orientation. 
It suffices to consider the case of grains which are randomly oriented wedges of 

fixed positive angle 8 /2, with clockwise-edge orientations distributed over a finite set 
of orientations 0, (), 20, ... , kB, where 58/2 <</>depends only on the original </>and k is 
given by (k + 1/2)0 < 2?r s; (k + l)B. (Here "clockwise" edge refers to the view from 
the wedge vertex. This is illustrated in Figure 8(a).) 

To analyze the discretization, note that each original wedge can be replaced by a 
shrunken wedge, sharing the same vertex and contained in the original wedge, but of 
angle 0 and of clockwise-edge orientation belonging to the finite set described in the 
above sentence. It is possible for this replacement to decrease the number of holes 

' 
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but only by at most N. In fact suppose the original wedges are Wi, ... , WN, and the 
shrunken wedges are U1, ... ,UN. Let Ui(t) be a continuously shrinking wedge, changing 
monotonically from Ui(O) = Wi to Ui(l) = Ui by reducing wedge angle while keeping 
the vertex fixed. Consider the procedure which shrinks the wedges one a.fter the other 
in order, and consider the stage at which wi is shrunk to ui. 

As t E (0, 1] increases so the number of connected components of the complement 

of (Ui<i Ui) U Ui(t) U (Ui>i Wi) (the number of holes of the union of wedges) decreases 
only when there is an exposure of the vertex of one of the wedges Ui or Wi. But this 
can happen only once for each index j in the entire sequence of shrinkages wi --+ ui, 
i= l, ... ,N. 

Consequently the total reduction of the number of holes cannot exceed N, which 
therefore does not alter the required conclusion. 

D: It suffices to bound the number of exposed intersections of edges of 
wedges. 

Except in the trivial case of:=: = 0, every hole of:=: has a boundary possessing at 
least one exposed intersection of edges of wedges (meaning an edge intersection not 
itself covered by 3). It therefore suffices to obtain an upper bound on the number of 
exposed edge intersections which is linear in N the number of germs. 

E: We need only consider the case when there are two distinct orienta­
tions of wedges. 

Let us call the collection of wedges of a given orientation a wedge packet. 
The number of wedge packets being finite and depending only on the wedge-angle 

bound </>, it suffices to bound intersections between just two wedge packets. If these 
are the same packet then all wedges are parallel. But then there can be only at most 
two exposed edge intersections per wedge and the required bound follows. 

F: For the purposes of exposition we consider only the number of exposed 
intersections of clockwise edges of wedges. 

It will be observed that the argument below applies equally to the other forms of 
intersection (counter-clockwise to clockwise, clockwise to counter-clockwise, counter­
clockwise to counter-clockwise). 

Orient the configuration so that clockwise edges of wedges from one wedge packet 
are all vertical. We call the wedges from this packet vertical. We call the wedges from 
the other packet slanted. Let V be the number of vertical wedges and S be the number 
of slanted wedges. Say that one vertical wedge is downwind of another if it is further 
from the vertex of a slanted clockwise edge intersecting both (and of course the other 
wedge is said to be upwind of the first!). This is illustrated in Figure 8(b ). 

Now we proceed to assign each exposed intersection to a unique wedge, though not 
necessarily one of the two wedges directly involved in the intersection in question. To 
do this we must distinguish two kinds of exposed intersection: 
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counterclock:wise edge 

Figure 8: (a) Illustration of clockwise and counterclockwise edges of a wedge of vertex 
angle B. 
(b) The two vertical wedges to the right are downwind of the vertical wedge to the left: 
there is one slanted wedge. 

(a) exposed intersections such that the slanted wedge has no (exposed or unexposed) 
intersections upwind on its clockwise edge; 

( b) exposed intersections such that the slanted wedge does have (exposed or unexposed) 
intersections upwind on its clockwise edge. 

We shall assign an exposed intersection of type (a) to its slanted wedge. There can be 
only one such wedge per slanted intersection, therefore the total number of exposed 
intersections of type (a) is bounded by S the number of slanted wedges. 

The total number of type ( b) intersections is bounded linearly in V the number of 
vertical wedges, as follows. 

To each type ( b) intersection we assign a predecessor vertical wedge which provides 
the first upwind intersection (exposed or unexposed!) with the slanted wedge. Now 
each vertical wedge can be predecessor to at most M(a.,O) type (b) intersections, where 

M( a, 0) [ cot(O) - cot( a.) l 
1 + cot( a) - cot(a + 0) 

(17) 

and a is the angle of intersection between the slanted and vertical clockwise edges 
(see Figure 9). This follows because exposed type (b) intersections owning the same 
predecessor wedge P must involve slanted wedges which do not overlap on L, where 
L is the vertical line determined by the most upwind of the vertical wedges providing 
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' cot a-cot a. f..------------1 
I 

1 

I 

cota.-cot(e+a.) : 

Figure 9: Space taken up by an exposed clockwise-clockwise edge intersection. 

type (b) intersections which own P. Figure lO(a, b) illustrates these considerations, 
especially the predecessor relationship. 

Note that we must have () ::; a ::; 7r - (), since we are dealing with distinct wedge 
packets and orientations are multiples of() which itself is of the form 7r /m. 

Calculus shows that the number M( a, B) in Equation (17) is bounded above for 
this range of a by [l + cot2 (())]. 

This achieves a bound which is linear in the number of wedges, as required. 
Thus the number of exposed clockwise-clockwise edge intersections between two 

distinct wedge packets is bounded above by 

(18) 

(recall S is the number of wedges in the slanted wedge packet and V is the number of 
wedges in the vertical wedge packet). 

Together with the reduction steps listed above, this establishes the result. D 

1 Conclusion 

7.1 Simulation 
There is much further work to be done on these models. For example how can they 
best be simulated? After the recent work of Propp and Wilson [42] the ambitions 
of stochastic geometers have been raised. It is no longer satisfactory to produce ap­
proximate simulations via long-run equilibria of spatial birth-and-death processes or 
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Figure 10: (a) The exposed clockwise-clockwise edge intersections owning the most 
upwind vertical wedge as predecessor are marked by stars; those on the most upwind 
wedge itself are marked by disks. 
(b) The most upwind exposed intersections of slanted wedges are marked by disks, 
others by stars. The predecessor relationship is indicated by arrows. 

Markov chains. Instead one should aim to construct simulation algorithms which sam­
ple from equilibrium exactly using reverse-time coupled Markov chains as in [42]. This 
has already been done for the area-interaction point process in [16, 24]; indeed the 
algorithms presented there generalize easily to cover a variety of other point process 
models. However the Euler weighting is less amenable, since the local energy is not 
bounded. One of us (WSK) is working on this and will report progress at a later date. 

7 .2 Inference 

For point processes the methods described in [4] can be adapted quite easily. In par­
ticular, in the planar case the proposed quermass-interaction provides an exponential 
family of 1 + 3 parameters (intensity /3 and coefficients of quermass integrals) and the 
sufficient statistic is the pair composed of the total number of objects and the vector 
of values of the quermass integral. We plan to investigate inference and maximum 
likelihood via Markov chain Monte Carlo techniques, as in [13], and by approximation 
methods as in [32, 36, 37, 38, 40]. 

The pseudo-likelihood is 

(19) 
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where >.(u; x) denotes the Papangelou conditional intensity [6, 10, 11, 19, 20, 47, 52, 53]. 
This takes on a convenient form for Markovian densities, 

..\(u;x) p(x U {u}) _ {3 -[Wf(U(x)uZ(u))-Wf(U(x\{u})] 
p( x \ { u}) - I . 

Dropping the dependence on x, we write t(u) = Wrd(U(x) u Z(u)) - w:(U(x \ {u} ). 
The task is to optimise 

log P L(x) 

The partial derivatives are 

8 
8{3 

and 
f) 

0/ 

-1 ,-t(u)du + n 
A {3 

0 

0 

and hence the pseudo-likelihood equations are similar to those of the area-interaction or 
indeed the Strauss process. Again, they are a special case of the Takacs-Fiksel method 
(for derivative type functionals). To estimate the quermass integrals it is possible to 
apply standard stereological techniques to reduce dimensions. 

It should be noted that for the random set case the unobservability issue is likely 
to make estimation very difficult. 

7 .3 Preston extensions 

One may ask whether these processes can be extended to the whole of Euclidean space. 
Following the arguments in Preston's book, as in [4], it can be shown that we can always 
extend the notion of a quermass-interaction to the whole of Euclidean space so long 
as (a) the interaction is stable, and ( b) the diameters of the grains are bounded above. 
Thus the work described above does indeed set the scene for quermass-interaction point 
processes. 

7 .4 Relationship to abstract tube theory 

We have already noted (in §5) an intriguing overlap with the work of Naiman and 
Wynn on abstract tubes and inclusion-exclusion identities (33, 35], which can be used 
to provide an alternative proof of Theorem 5.3. We hope to pursue this relationship 
in joint work with Naiman and Wynn. The intriguing question is, to what extent the 
relationship can be developed in order to exploit the results of §6 in a more general 
context, since these results currently appear to go beyond what may be obtained from 
abstract tube theory. (But see the work on Vapnis-Chervonenkis dimension in [34].) 
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