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1 Introduction 

In [15] we introduced a new statistic J(t) for the analysis of spatial interaction in (single-type) 
stationary point patterns N on a complete seperable metric space ( X, p) (usually Rd with 
the Euclidean metric). It is defined by 

J(t) = 1 - G(t) 
1 - F(t) 

for all t ~ 0 for which F(t) -:/= 1. Here F denotes the empty space function 

F(t) = !P(p(y, N) :$; t), 

(1) 

the distribution function of the distance of a fixed point y to the nearest point of N [8]. 
Further 

G(t) = f'Y(p(y,N\ {y}) ~ t) 

where f'Y is the Palm distribution [7, 14, 22] of N at y, which can intuitively be regarded as 
the distribution of the entire process conditional on there being a point at y. This is called the 
nearest-neigbhour distance distribution function. For reasons of symmetry we might prefer to 
condition on the remainder of the process, i.e. N \ {y}, yielding the reduced Palm distribution 
p!y and 

G(t) = p!Y(p(y, N) :$; t). 

Note that by stationarity, these definitions do not depend on the choice of y. 
Useful properties of J are (a) J(t) is constant fort greater than the effective range of in­

teraction, (b) J(t) > 1 indicates the process tends to give ordered patterns; J(t) < 1 suggests 
clustering and ( c) the J-function of the superposition of two independent point processes is 
an appropriately weighted convex combination of the J-functions of the component processes. 

The aim of the present paper is to adapt the J-function to multivariate point processes 

mEN. 
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Here each of the X; is a configuration of points in (say) Rd, and we can distinguish between 

points coming from different components X;. Multivariate patterns arise naturally in a wide 

variety of applications. In forestry, several species of trees coexist in a given field; in ecology 

one may be interested in the interaction between animal species; in microscopy the spatial 

arrangement of different cell types gives information about tissue strength or disease etcetera. 

Statistical inference for multivariate patterns is usually based on cross versions of the 

familiar single-type summary statistics F, G or K [19]. For instance, G;j(t) [8] denotes, 

roughly speaking, the probability of:finding a type j-event within distance t of a type i-event. 

In order to give a more rigorous definition, let p!(y,i) denote the Palm distribution of Y with 

respect to an event with mark i at y. Then 

Gii(t) = p!(y,i)(p(y, Xj)::; t). 

By stationarity, this definition is independent of the choice of y. 

We will need the following multivariate version of the fundamental N guyen-Zessin formula 

[24]. Assuming the conditional intensity Ay( (y, i); Y) of Y exists, it satisfies 

.X;E!(O,i) f(Y) = E[.Xv((O, i); Y)J(Y)] (2) 

for any nonnegative measurable function f on the space of realsations of Y. In particular, 

choosing f = 1 yields 
A; = E.Xy((O, i); Y) = E>.;(O; X;). 

Indeed, 

E[.Xv((O, i); Y)IX;] = .X;(O; Xi) a.e. 

by equation (2). If we define 

.X+(O; Y) = .Xy( (0, 1 ); Y) + .Xy( (0, 2); Y) 

to be the Y-conditional intensity of a point of either type at 0, it follows that 

E[.X+(O;Y)IX] = .X(O;X) a.e. 

where X denote the unmarked points X 1 U X 2 • 

(3) 

Dependence between the components may be investigated by comparing a test statistic 

estimated from the superposition data X to the value that would have been obtained if 

X1.X2 satisfied an appropriate independence assumption. For instance, one could subtract 
the empty space function of the superposition from 

1 - ( 1 - F1 ) ( 1 - F2) 

where Fj, j = 1, 2, denotes the marginal empty space function of Xj or study the sign of [16] 

T = log(l - F) - log(l - F1 ) - log(l - F2 ). 

Our proposal is to exploit property ( c) above to base inference on the J -statistic which 

~as the _advantage of simultaneously providing information on the type and range of spatial 
mteract1on. 

The plan of this paper is as follows. In Section 2 we fix notation and give the main 

definitions. In Section 3 we show that the proposed statistics are computable for a wide 

range of models, and in Section 4 we give some applications to bivariate data sets. 
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2 Definitions and notation 

Throughout this paper we are concerned with the dependence structure in jointly stationary 
point processes Y = (Xi, X2). For details of point processes, see [6, 7, 8, 20, 22]. 

Recall that for independent stationary point processes Xi and X 2 with intensities Ai, >.2 

and J-statistics Ji ,J2 the J-function of the superposition X = Xi U X 2 is 

)q >-2 
>.i + -\2 Ji+ >.i + -\2 J2, (4) 

a convex combination of the J-functions of the components [15, Theorem 2]. This motivates 
the following definition. 

Definition 1 Let Xi and X2 be jointly stationary point processes with intensities >.i, >.2 and 
J-statistics Ji,J2. Write J(t) for the J-function of X = Xi UX2 and let Jc(·) be defined as 
in (4). Then we define 

I(t) = Jc(t) - J(t) 

for every t for which J, Ji and J2 are well-defined. 

The type of spatial correlation is indicated by the sign of Jc(t)-J(t). Note that if X1 and 
X 2 are independent, Jc - J = 0. A positive value indicates positive correlation between the 
components, a negative sign suggests negative correlation. A heuristic explanation is that in 
case of negative dependence the superposition has relatively large inter-event distances due 
to the larger distances between type 1 and type 2 points. Hence Gi(t) > G(t), G2(t) > G(t), 
where Gi denotes the G-function of Xi. On the other hand, the point-event distances in the 
total configuration are relatively small, as type 1 points tend to fill the space left by type 
2 points and vice versa. Hence F1 (t) < F(t), F2(t) < F(t), again writing Fi for the empty 
space function of component process Xi. Thus 

1 - Gi(t) < 1 - G(t) = J(t) 
1- Fi(t) 1- F(t) 

and hence Jc(t) < J(t). The case of positive correlation can be dealt with similarly. 

Definition 2 For jointly stationary point processes Xi, X2 define 

J· ·(t) = 1 - Gii(t) 
iJ 1 - Fj(t) 

{i,j E {1, 2} different) for all t ~ 0 for which Fj(t) < 1. 

(5) 

In words, Jii compares distances to the nearest type j-event from a type i-event to those 
from an arbitrary point in space. Note that the definition is not symmetric in i and j. While 
this may be undesirable in inference, it may be easier to interpret, expecially when considering 
qualitatively different point patterns. 

Analogous to the univariate case, values of Jij > 1 indicate inhibition between type i 
and type j, while values less than 1 suggest positive association. Heuristically, if there are 
relatively few type j-events within a radius r of a type i-event, we have Gij(t) :::; Fj(t) and 
hence Jij > 1. A similar argument holds for the clustered case. 

Restricting to i and j different is no loss of generality as Jii( ·) = Ji(·). 
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Definition 3 For jointly stationary point processes X1, X2 and unmarked points X = X1 U 

X2 define 
,. p!(o,i)(X n B(O, t) = 0) 

J·i(t) = IP(X n B(O, t) = 0) 
(6) 

for all t for which F(t) = JP(X n B(O, t) =/= 0) < 1. 

For an interpretation of this definition, see Lemma 3. 

In the remainder of this Section we collect primary properties of the statistics introduced 

in Definitions 1-3. 

Lemma 1 Let X 1 and X 2 be two independent stationary point processes on Rd. Then 

1. for every t for which I(t) is well-defined, I(t) = O; 

2. for every t for which Fj(t) < 1 (j = 1, 2), J12(t) = J21(t) = 1; 

3. for every t for which F(t) < 1, J'i(t) = Jj(t), j = 1,2. 

Proof: We already saw property 1 ( cf. (15]). For 2 use the fact that for independent point 
processes, 1 - Gij(t) = 1 - Fj(t) [8, p. 92] or (6, p. 700]. Finally for 3, eg. 

fl(t) = IP(X2 n B(O, t) = 0)1P'0(X1 n B(O, t) = 0) = J (t). 
IP(X1 n B(O, t) = 0)1P(X2 n B(O, t) = 0) 1 

0 

Lemma 2 Let X1 and X2 be stationary point processes. Then 

and 

This result should be compared to similar expressions in the univariate case, see [15]. 

Proof : Use the Nguyen-Zessin formula (2) taking f(Y) = l{Xj n B(O, t) = 0} or 
f(Y) = l{Xj n B(O,t) = 0}/.Ay((O,i);Y). o 

In contrast, the following lemma shows that using the I-statistic involves computing 

(7) 
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Lemma 3 For any t for which I( t) is well-defined. 

Proof: Write V for the event {X n B(O, t) = 0}. Note that 

E[>.+(O; Y)Ili'] = E[>.(O; X)Ilv] 

as n v is X-measurable ( cf. equation (3)). Hence 

J(t) = 
1 E[>.(O;X)Ilv] 1 E[>.+(O;Y)Ilv] 

= .\1 + >.2 P(V) >.1 + .\2 P(V) 
>.1 1-Gx1x 1 (t)+ .\2 1-Gx1x 2 (t) 

>-1 + >-2 1 - Fx(t) .A1 + .A2 1 - Fx(t) 
= 

where 1 - G x1x. (t) = p!(O,il(V) denotes the conditional probability of no point of either 
type in B(O, t) given an event of type i at 0. By arguments similar to those in Lemma 2, 
1-Gx1x (t) 'i 

l-Fx('t) = J· (t) and the result follows. o 

An expression for I(·) in terms of correlations is obtained by noting that (say) J1 (t)-J'1 (t) 
can be written as 

Cov (.X1(0;X1),l{X1 nB(O,t) = 0}) 
.X1P(X1 n B(O, t) = 0) 

Cov (>.y((O, 1); Y), l{X n B(O. t) = 0}) 
>.1P(X n B(O, t) = 0) 

Lemma 4 If 

E[>.1(0; X1)IX1 n B(O, t) = 0] ~ E[.Xy((O, 1); Y)IX n B(O, t) = 0] 

and 

E[>.2(0; X2)IX2 n B(O, t) = 0] ~ E[>.y((O, 2); Y)IX n B(O, t) = 0] 

then l(t) ~ 0. Reversal of signs gives a similar condition for l(t) ~ 0. 

In words, if additional conditioning on no type 2-events in the vicinity makes the likelihood 
of a type 1-event smaller, there is positive association; conditioning increasing the likelihood 
suggests negative association between the component processes. In principle, mixtures of 
different signs are possible. In that case the largest in absolute value dominates. 

Lemma 5 

J12(t) ~ 1 {:} Cov(.Xy((O,l);Y),l{X2 n B(O,t) = 0}) ~ O. 

and 

/ 1(t) ~ 1{:}Cov(.\y((O,1); Y), l{X n B(O, t) = 0}) ~ 0. 
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Proof : Note that 

J12(t) 2 1*E[Ay((O,1); Y) l{X2 n B(O, t) = 0}] ~ A1 P(X2 n B(O, t) == 0). 

Similarly 

l 1(t) 2 1~E[Ay((O,1); Y) l{X n B(O, t) = 0}] ~ A1 P(X n B(O, t) == 0). 

D 

Regarding the interaction range, we have the following results. 

Lemma 6 Let X be a stationary point process that is the superposition of two stationary 
point processes X1 and X2. Write A(·;·) for the conditional intensity {14} of the unmarked 
superposition process, and Ai for the conditional intensity of Xi, i = 1, 2. If A(O; X) = 
A(O; 0) whenever 1 {X n B(O, r) == 0} for all r 2 Rs, and moreover Al(O; X) == Al(O; 0) when 
1 {X n B(O, r) == 0} (all r ~ R1) and A2(0; X) = .l.2(0; 0) when 1 {X n B(O, r) = 0} (all r 2 
R2) then 

I(t) = .l.1(0; 0) + A2(0; 0)- A(O; 0) 
.l.1 + .A2 

Proof : By Theorem 1 in [15] 

J(t) = Al -X1(0; 0) + A2 A2(0; 0) .X(O; 0) 
-X1 + A2 A1 A1 + .l.2 A2 A1 + .l.2 

and the result follows. D 

Lemma 7 Let Y = (Xi, X2) be a jointly stationary point process whose conditional intensity 
.l.((O, i); Y) (i E {1, 2}) exists and depends only on Y n B(O, R). Then fort 2 R, conditional 
on Xj n B(O, t) = 0, Ji;(t) depends on Xi n B(O, R) only. 

Proof : By Lemma 2, 

Jii(t) == E [ Ay((~ii); Y) I xi n B(O, t) = 0] 
= E [ Ay((O, i); ~in B(O, R)) I Xj n B(O, t) = 0] 
= E[Ay((O,i);XinB(O,R)) IX ( ] 

Ai in B 0, t) = 0 

D 

Generalisations to three or more components are straightforward. 
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3 Examples 

In this Section we discuss in detail a variety of multivariate point pattern models. As before, 
let Y = (Xi, X2) be a marked point process that is stationary and has stationary components. 
Write X for the superposition X 1 U X2. 

3.1 Two-type Gauss-Poisson process 

A Gauss-Poisson process [3, 17, 18] is a Poisson cluster processs in which each point of a sta­
tionary Poisson process gives birth to another point with probability P2 and with probability 
PI = 1-P2 does not have any offspring. The positions of offspring relative to the 'mother' are 
iid, with probability density h(·). The observed configuration consists of both the 'parents' 
and the offspring, if any. We modify the process, by assuming that for each observation we 
can see whether it is offspring (type 2) or not (type 1). 

Lemma 8 For a two-type Gauss-Poisson process, 

2p2 11 I(t) = . 2 h(x)dx. 
P1 + P2 B(O,t) 

Proof: Both X 1 and X 2 are stationary Poisson processes, hence Jc = 1. Furthermore, the 
superposition is a cluster process and we can invoke a formula by Bartlett [2, p. 8-9] to see 
that J(t) is the probability of there being no other point of the same cluster in a ball with 
radius t of a given point. This probability is 

Pt + 2P2 (1 -! { h(x)dx). 
PI + 2p2 P1 + 2p2 JB(O,t) 

Hence 

l(t) = 2P2 J r h(x)dx. 
Pl + 2p2 }B(O,t) 

0 

Note that I is non-negative, increasing and bounded above by Pi :r~P-i. If h( ·) is concen­
trated on B(O, R), then I(t) = I(R) for all t 2: R. 

Lemma 9 For a two-type Gauss-Poisson process, 

2p2 11 J12(t) = J21(t) = 1- h(x)dx. 
P1 + 2p2 B(O,t) 

Proof: By independence of clusters in a Poisson cluster process, 

p!O,l(X2 n B(O, t) = 0) 

= p!O,l( no type 2 associated point ; no type 2 point from another cluster ) 

( 1 - 2P~ I r h(x )dx) (1 - F2(t)). 
PI + P2 lB(O,t) 
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For 1 - G21 ( t) we can use the same argument by noting that the process can be seen 
as a Poisson cluster process with parents X2 and displacements -V, where Vis a random 
variable with probability density h. D 

The functions J12 and J21 are decreasing to ~ and do not exceed 1, suggesting 
P1 P2 If 2 . attraction between type 1 and type 2 points as expected. type pomts are scattered 

within a ball ofradius R of type 1 points, Jij(t) = ~fort ~ R. 

3.2 Bivariate Poisson processes 

A bivariate Poisson process is a two-type process in which the marginal distribution of each 
of the components is that of a stationary Poisson process. The dependence structure is not 
specified. 

3.2.1 Linked Poisson 

A linked Poisson process [9] is constructed by associating with each type 1 event in a sta­
tionary Poisson process a type 2 event; the displacements are iid, with density h. A useful 
rephrasing is as a Poisson cluster process, where each cluster contains exactly two points: the 
parent x (say) and one daughter at x + v, where v has probability density h( · ). Note that 
this is a special case of the two-type Gauss-Poisson process described above (p2 = 1). 

Lemma 10 For a linked Poisson process, I(t) = J fB(O,t)h(x)dx. 

Proof: Since the marginal processes are Poisson, J 1 = J2 E 1 and hence Jc(t) = 1 for 
all t ~ 0. To find the J-function of the superposition we use the interpretation above as a 
Poisson cluster process. Then, 

J(t)=Co(ZnB(O,t)={O})=l-/ { h(x)dx 
h(o,t) 

where Co is the Palm distribution at 0 of the typical cluster Z. 0 

In particular, the I-function is non-negative, suggesting positive association between type 
1 and type 2 points (as expected). The function is increasing and bounded between O and 1, 
since h is a probability density. Furthermore, if the secondary points are scattered within a 
ball of radius R, that is h( ·)is concentrated on B(O, R), I(t) = 1 for all t ~ R. 

Lemma 11 For a linked Poisson process, J12(t) = J21 (t) = 1 - J fB(O,t) h(x)dx. 

Proof: We need to compute 1- Gl2(t). As follows, 

1- G12(t) = p!o,1(X2 n B(O, t) = 0) 

= P10'1( no type 2 associated point ; no type 2 point from another cluster ) 

= (i -j k(o,t) h(x)dx) (1-F2(t)). 
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For the last equation we need the fact that in a Poisson cluster process, different clusters are 
independent (Slivnyak theorem). 

For 1 - G21(t) we can use the same argument by noting that the process can be seen 
as a Poisson cluster process with parents X 2 and displacements -V, where V is a random 
variable with probability density h. D 

In particular, both J 12 and J21 are decreasing and less than or equal to 1 (since h is a 
probability density). H we assume that his concentrated on a ball B(O, R), again Jij(t) = 0 
for all t ~ R, mirroring the results for a univariate Poisson cluster process [15]. 

3.3 Bivariate Cox processes 

A bivariate Cox process [5, 10] is defined by a joint distribution of two random measures 
(Ai, A2). Conditional on (Ai,A2) = (>.1, >.2), type 1 and type 2 events form a pair of inde­
pendent inhomogeneous Poisson processes with intensity measures >.1 and >.2. We assume 
that Ai is absolutely continuous, and will interpret >..i as an intensity function. 

3.3.1 Linked Cox 

An example of positive dependence between the random measures is a linked Cox process [5] 
where A1 = vA2 for some fixed positive constant v. 

Lemma 12 Assume (Xi,X2) is a linked Cox process on R 2 with a 'mixed Poisson' law 
A2 = am, for some non-negative random variable a with finite positive expectation and 
where m is Lebesgue measure. Then 

v [Eae-va?rt2 Eae-(l+v)a?rt2 l 
I(t) = Ea (1 + v) Ee-Va11't2 - Ee-(l+v)a11't2 

1 [Ea:e-a11't2 Ea:e-(1+v)a11"t2 l 
+ Ea (1 + v) Ee-cit?rt2 - F.e-(l+v)a?rt2 · 

Note that Ee-a1l't2 = L(rrt2 ), the Laplace transform of a evaluated in rrt2 • 

Generalisations to higher dimensions are straightforward; in the general case (A1, A2) are 
stationary random measures, a-weighted means have to be replaced by expectation under 
the Palm distribution at 0 of the random measure A2. 
Proof: By the superposition property of independent Poisson processes, X1 UX2 is a mixed 
Poisson process with intensity measure ( 1 + v )am. By Theorem 6 in [15] and the discussion 
following, 

E [ ae-(l+v)a?rt2] 

J(t) = Ea: [e-(l+v)a?rt2 . 

Similar expressions hold for J1 and h with (1 + v) replaced by v and 1 respectively. Fur­
thermore, .X1 = E[va],>.2 =E[a]. Thus 

vEa Ea 
Jc(t) = (1 + v) Ea Ji(t) + (1 + v) Ea h(t) 
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v E [ ae-vcnrt2] 1 E [ ae-Ct1rt2] 

1 + v E[a:] &-11a-?rt2 + 1 + v Ea &-a-?rt2 

0 

It can be shown that I is non-negative and converges to 0 as t - oo. 

Lemma 13 Assume (X1, X2) is a linked Cox process (A1 = vA2) with A2 = o:m, for some 
non-negative random variable a with finite positive expectation. Then 

E [ ae-amt2] E [ ae-11mrt2] 
J12(t) = Ea &-a-?rt2 and J21(t) = Eo: &-va-?rt2 · 

Proof: The marginal distribution of X2 is a mixed Poisson process, thus l-F2 ( t) = 1Ee-°'?rt2. 
The Palm distribution of the superposition given a point of type 1 at the origin is vo: weighted, 
hence 

The result for J21 follows similarly. 0 

It can be verified that J;j s; 1, suggesting positive correlation between the component 

processes. Moreover, Jij is decreasing with limt_..00 J12(t) = limt-+oo J21(t) = ess~f °'. 

3.3.2 Balanced Cox 

An example of negative dependence is formed by the class of balanced Cox processes [10] 
where 

A1+A2=11m, 

m again denoting Lebesgue measure. Note that the superposition is always distributed as a 
Poisson process with intensity 11. 

Lemma 14 Let (X1,X2) be a balanced Cox process on 'R2 with A2 
variable a concentrated on ( 0, v) with 0 < Ea < v. Then 

o:m, for a random 

Proof : As the superposition is a Poisson process, J(t) = 1. To compute the convex 
combination 

11 - Ea E [(v - o:)e-(11-a-)7rt2] +Ea E [ae-0<1!"t2] 

v (v - Eo:)Ee-(v-a-)7rt2 11 Ea Ee-a-1rt2 

1 E [ (v - o:)c(11-a-)?rt2] 1 E [ o:C°'7rt2] 

11 JE;e-(v-a-)?rt2 + ; JE;e-a-7rt2 
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= 

0 

Moreover, I(t) :::; 0 (indicating negative dependence) and decreases to (essinf a - esssup 
a)/vast-+ oo. 

Lemma 15 Let (X1,X2) be a balanced Cox process with A2 =am, for a random variable a 
concentrated on (0, v) with 0 < Ea < v. Then 

and 
E [ ae-(v-a)1T"f'] 

J21 ( t) = -Ea-=-Ee---( ll---0!-)7r-t.::..2 

Proof: The marginal distribution of X 2 is a mixed Poisson process; thus 1-F2(t) = &-a1rt2 • 

The Palm distribution of the superposition given a point of type 1 at the origin is v - a 
weighted, hence 

E [ ( v - a )e-a7rt2] 

1 - G12(t) = E(v _a) 

The result for J21 follows similarly. 0 

We can verify that Jij ~ 1, indicating negative correlation between the component pro­
cesses. For example consider J21 . Then 

E [ ae-( v-a )7rt2] 

Ea JEe-(v-a)7rt2 = 

> 

E [Cv - a)e-(v-a)7rt2] v 
- +-Ea JEe-(v-a)7rt2 Ea 

(v - Ea:) Ee-(11-a)7rt2 v Ea: 
- +-=-=L Ea JEe-(v-et)7rt2 Ea Ea 

Moreover, both J12 ( ·) and J21 ( ·) are monotonically increasing with limits v-~:~~f °' and 
esssup a . 1 !Ea respective y. 

3.4 Markov processes 

Let Y = {(x;, mi)} be the marked Markov point process on a bounded subset B C Rd x 
{ 1, ... , m} with density 

p(y) CX IT,Bm; IT /m;mj(llXi - Xj\I) 
i<j 

(8) 

with respect to the law of a Poisson process [1]. Strictly speaking, the process is not stationary, 
but we will conveniently ignore this. Here without loss of generality /ij = /ji· Note that in 
general, terms /ii appear. 
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( ) d ll t 1 hich the appropriate statistics Lemma 16 For the two-type Markov process 8 an a 1or w 
are well-defined 

1. J(t) = l:i t}E [I1(x,j)EY/ij(llxll) Ix n B(O,t) = 0] 

2. Jij(t) = ~E [Il(x,k)EYlik(ilxll) I Xj n B(O,t) = 0] 

3. J!i(t) = ~~ E [ Il(x,j)EY /ij(llxl I) Ix n B(O, t) = 0] 

If /ij(llxll) =I for llxll > Tij, the formulae above reduce to J(t) =I:~ fort 2: r = max rij 
and J!i(t) = ~: fort;::: ri = maxj rij· For hj, note th.at fort 2: Tij, Jij de:,ends on Xj only 

through the conditioning. If the /ii terms are absent, it further reduces to .A; • 

Proof : It is easily seen that 

>.y((O,i);Y)=p(yu{(O,i)}) =/3i II /ii(llxll). 
p(y) (x,j)EY 

Hence, formula l. follows. Using Lemma 2, one obtains formula 2. and finally by (7), 3. 
follows. D 

In order to compute J(t) we need the marginal distributions of Xj, j = I, 2. By integration 
over x 2 , the density of X1 with respect to the reference Poisson process on B is 

where 

p(x1) = a,B~(xi) IT 111(llx1i - X1jll)I2(x1) 
i<j 

I2(xi) = j 13;(x2 ) II /22(llx2i- X2jll) II /12(jjxlk - x2i!l)d7r(x2) 
i<j k,I 

and tr denotes the law of a Poisson process on B. 
If 122 = I, X1 is nearest-neighbour Markov with respect.to Baddeley and M0ller's con­

nected component relation [l] at range 2R = 2r12. Hence fort ~ 2R, Nguyen-Zessin for 
g(X1) = l{X1nB(O,t) = 0}/>.1(0;0)and thefactthat)q(O;X1) = .X1(0;0)on {X1 n B(O,t) = 0} 
yield that J1 (t) is constant with value .Aii~; 0). 

For t < 2R, an explicit formula can be given, but is not illuminating. 

4 Applications 

In this Section we analyse four data sets with a range of correlation structures between the 
component processes, taking a Monte Carlo approach with test statistic J(t). 

We took a conditional random labelling null-hypothesis, that is given a data set consisting 
of n1 type i events ( i = 1, 2), the labels are assigned randomly without replacement. An 
alternative is to condition only on the location of the events and to sample the labels with 
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replacement. A disadvantage of the latter is that the label probabilities are unknown (usually 
estimated by Pi = ni/n where ni is the number of observed i-events and n the total number 
of events) and that the relative frequency of the labels is variable. 

In general, non-parametric sampling from the unconditional null-hypothesis of indepen­
dent components is hard. For rectangular windows, Lotwick and Silverman proposed to 
identify opposite sides to obtain a torus, and then translate one of the patterns randomly 
over the torus [16]. Note that since the locations of events vary, in contrast to the random 
labelling hypotheses above, the J-function of X = X1 U X 2 needs to be recomputed for every 
simulation. 

4.1 Ants 

Our first example considers the distribution of the nests of two ant species, Messor wasmanni 
and Cataglyphis bicolor in a field in Northern Greece [12]. The question is of interest as 
Cataglyphis ants feed on dead insects, mostly Messer ants killed by a hunting spider. For 
details see [12]. 

The original data contains 68 Messor and 29 Cataglyphis nests in an area of about 1 
hectare. This region is divided into two main parts, scrub land and field. As Cataglyphis 
ants tend not to build their nests in scrub, we only consider the field region with 32 Messor 
and 15 Cataglyphis nests. For convenience, we have rotated the data to align with a standard 
coordinate system (Figure 1). 

In Figure 2 we plotted Jc and J curves. The graphs are similar and rather close to l. 
Figure 3 shows Monte Carlo envelopes based on 99 simulations. The dotted data curve lies at 
the top end of the curve, (with some points actually above the upper envelope, giving slight 
evidence of positive association). 

Harkness and Isham performed a K-function analysis [16] and found no evidence for 
dependence between the two species. See also [13]. 

4.2 Myrtles 

The second example is of a pattern of 221 healty and 106 diseased myrtles in a rectangle 
of 170.5 by 213.0 meter. The data set was obtained and studied by G Kile and colleagues 
at CSIRO Tasmania. All patterns are clustered (J < 1) and the graph of Jc lies on (small 
distances) or above the plot of J, indicating positive correlation between the two patterns. 

In a 99 simulations Monte Carlo example, the positive correlation is significant in the 
middle distance range. It is not at the extremes. 

4.3 Retina 

The beta-type of ganglion cell in a cat retina can be subdivided in 'on' and 'off' depending on 
the branching level of the dendritic tree in the inner plexiform layer. Analysis of the spatial 
pattern provides information on the cat's visual discrimination. For details see [25]. 

Our analysis showed that Jc is of parabola shape, above the graph of J. The top is at 
approximately twice the breaking point in the J-graph. A possible explanation is the trend 



14 

of alternating "on" and "off'' cells (expressing itself as positive correlation, significant at 1 

percent level). 
A second order analysis [21) yielded similar results. At close range, the plot of the mark 

correlation function p12 [23, p. 264-265] is high compared to the plots of P11 and P22, before 

:flatting down (at approximately 0.11). 

4.4 Hamster tumours 

Figure 4 provided by Dr WA Aherne (Department of Pathology, University of Newcastle 
upon Tyne) shows the positions of the centers of nuclei of certain cells in an approximately 
.25mm square histological section of tissue from a laboratory-induced metastasing lymphoma, 
in the kidney of a hamster. The two types of events are (i) 77 pyknotic nuclei, corresponding 
to dying cells; (ii) 226 nuclei arrested in metaphase, cooresponding to cells which have been 
"frozen" in the act of division. The background void is occupied by unrecorded, interphase 
cells in relatively large numbers. 

Both nuclei patterns are inhibitory ( J > 1 ). The graph of Jc lies below that of J, sug­
gesting negative correlation. This proved to be not significant based on 99 simulations. This 
is in keeping with other analyses reported in the literature. Diggle's analysis [8] based on 
the K-function yielded the same conclusion. However, his test for independent components 
proved to be significant (based on 99 simulations). Stoyan [21] also used second order tech­
niques by plotting the mark correlation functions Pij, i,j E {1, 2}. The graphs are nearly 
horizontal suggesting random allocation of marks. 
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Figure captions 

1. a) 32 Messor ( +) and 15 Cataglyphis ( ·) nests (originally studied in Isham and Harkness) 
b) 77 py knotic cells ( ·) and 266 nuclei in meta.phase ( +) in a hamster kidney (originally 
studied by Aherne and Diggle) 
c) 65 on ( +) and 70 off ( ·) ganglion beta cells in a cat retina. (originally studied in 
Wassle et al.) 
d) 221 healthy ( +) and 106 diseased ( ·) myrtles (originally studied by Kile) 

2. empirical J-function (solid line) and Jc-function (dotted line) for a) ants, b) hamster, 
( c) retina and d) myrtles. 

3. empirical I-function (dotted line) and envelope of 99 simulations of a random mark 
allocation for a) ants, b) hamster, (c) retina and d) myrtles. 
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