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The strength and range of interpoint interactions in a spatial point 
process can be quantified by the function J = (1 - G) I (1 - F), where G 
is the nearest-neighbour distance distribution function and F the empty 
space function of the process. J (r) is identically equal to 1 for a Poisson 
process; values of J(r) smaller or larger than 1 indicate clustering or 
regularity, respectively. We show that, for a large class of point pro
cesses, J (r) is constant for distances r greater than the range of spatial 
interaction. Hence both the range and type of interaction can be inferred 
from J without parametric model assumptions. It is also possible to 
evaluate J (r) explicitly for many point process models, so that J is also 
useful for parameter estimation. Various properties are derived, including 
the fact that the J function of the superposition of independent point 
processes is a weighted mean of the J functions of the individual 
processes. Estimators of J can be constructed from standard estimators 
of F and G. We compute estimates of J for several standard point pattern 
datasets and implement a Monte Carlo test for complete spatial random
ness. 
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1 Introduction 

The statistical analysis of a point pattern usually begins with the computation of 
estimates of the summary functions F (empty space function), G (nearest-neighbour 
distance distribution function) and K (reduced second moment function), defined e.g. 
in CRESSIE (1991), DIGGLE (1983), RIPLEY (1981), RIPLEY (1988). While these are 
useful descriptions of spatial pattern, and can easily be estimated from data, there 
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are very few stochastic models for which F, G or K is known analytically, so that 
parameter estimation and inference based on F, G, K are difficult. 

Recall that, for a stationary point process, Fis the distribution function of the 
distance from an arbitrary fixed point to the nearest random point of the process, 
and G of the distance from a point of the process to the nearest other point of the 
process. This paper advocates the use of 

l - G(r) 
J(r) = l - F(r)' 

This is a nonparametric measure of the type of spatial interaction: the value l can 
be interpreted as indicating complete randomness or lack of interaction, while values 
less than l suggest "clustered" pattern and values greater than l suggest "regular" 
or "inhibitory" pattern. 

We show that, for a very large class of point processes, the function J is constant 
for values of r larger than the effective range of spatial interaction. Hence J can be 
used to infer both the range and type of spatial interaction. Furthermore we are able 
to evaluate J explicitly for several stochastic models, so that it could be used directly 
for parameter estimation. 

An appealing interpretation of J is that it compares the environment of a typical 
random point of the process with the environment of a fixed arbitrary point. J(r) 

is the ratio of the probabilities, under these two situations, of the event that there 
are no points within a distance r of the given point. In terms of survival analysis, 
J is the ratio of the survival functions of the distance-to-nearest-point under these 
two situations; and our main result states that the hazard measures (GILL, 1994) of 
F and G are equal beyond the effective range of interaction r. The (signed) difference 
of hazard measures can be interpreted as a measure of spatial interaction. 

Special cases of these results are implicit in the literature. The forms of F and G 
for a Neyman-Scott cluster process were derived by BARTLETT (1964); see 
AMBARTZUMIAN (1971), PALOHEIMO (197la, b), BARTLETT (1975, pp. 8-9), and for 
detailed derivations DALEY and VERE-JONES ( 1988, §8.3, p. 243 ff), STOY AN et al. 
(1987, p. 143). For a Poisson cluster process 

l - G(r) = (1 - F(r))E(r) 

where E(r) is the probability that a randomly-chosen point in a typical cluster is more 
than r units distant from any other point belonging to the same cluster. Hence in 
particular if all offspring lie within a radius t of the parent point, J(r) is constant 
for all r ~ 2t. Again, for a stationary, pairwise-interaction Gibbs process, STOYAN et 
al. (1987, p. 159) exhibit a relationship between 1 - F(r) and 1 - G(r) when r is 
exactly equal to the interaction distance R. In this paper we extend the relationship 
to all r ~ R. 

Statistical inference based on comparisons between F and G has occasionally been 
suggested. DIGGLE (1979, (5.7)) proposed the statistic D = sup,IFCr) - d(;)I as a 
measure of deviation from the Poisson process. Our proposal (l - G)/(l - F) is in 
© VVS, 1996 
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some sense the canonical comparison of F and G as it arises directly from a 
fundamental point process formula. 

The paper is organised as follows. In Section 2 we review the main techniques from 
spatial statistics that are used in the sequel. Section 3 introduces the ]-function; the 
main theorem states that J(r) is constant beyond the effective range of interaction. 
We also examine the behaviour of J under the basic operations of superposition and 
thinning, and show that the ]-function of a superposition of independent processes 
is a convex combination of the ]-functions of the components. The J-function is not 
invariant under thinning, in contrast to K. 

In Section 4 we show that the I-function can be computed explicitly for a large 
class of point process models, including Poisson processes, Markov point processes, 
Neyman-Scott and Cox processes. For these examples at least, the classification of 
patterns as "clustered" or "regular" on the basis of their J-function values agrees 
with similar classifications on other grounds. 

In Section 5 we discuss briefly how the J-statistic can be used for parameter 
estimation and statistical inference. Section 6 is a simple illustration on three 
standard data sets (see DIGGLE 1983), representing regular, random and clustered 
patterns. 

2 Background 

Throughout this paper we consider a stationary point process X in ~k. For details 
of the theory of point processes see DALEY and VERE-JONES (1988), CRESSIE (1991) or 
STOY AN et al. ( 1987). 

Define the empty space function F of X to be the distribution function 

F(r) =IP{ p( y, X) ~ r} 

of 

p(y, X) = min{ 11.v - x II :x EX}, 

the (Euclidean) distance from an arbitrary fixed pointy E ~k to the nearest point of 
the process. By stationarity, the definition of F does not depend on y. 

Write B(y, r) = {x e !Rk:p (x, y) ~ r} for the closed ball of radius r > 0 centred at 
y in ~k. Then 1 - F(r) is the probability that X puts no points in B(y, r): 

I - F(r) = IP{X nB(y, r) = 0}. 

For example, for a Poisson process of intensity A. in ~~ we obtain 
I - F(r) = exp( -A.nr2 ). The function F has been variously dubbed the "empty 
space", "point-event distance" and "spherical contact" distribution function. 

To define G we need the Palm distribution lfl>Y of X at y e Rk, which can be regarded 
as the conditional distribution of the entire process given that there is a point of X 
© vvs. 1996 
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at y (DALEY and VERE-JONES, 1988, chap. 12, CRESSIE, 1991, pp. 630-631, STOYAN 
et al. 1987, p. 110 ff.). Then define 

G(r) = IPY{p(y, X\{y}) ~ r }; 

again this does not depend on y, by stationarity. Thus G is the distribution function 

of the distance from a point of the process to the nearest other point of the process, 

and is known variously as the "nearest-neighbour" or "event-event" function. 

It is convenient to use the reduced Palm distribution JP!Y defined as the distri

bution of X\{ y} under lfJlY, i.e. the conditional distribution of the rest of the process 

given that there is a point at y. Then the definition of G reads 

G(r) = IP1Y{ p(y, X) ~ r} 

in harmony with the definition of F. For example, for a stationary Poisson process 

of intensity A., the reduced Palm distribution JP!r is identical to IP, and G =F. 

Our main tool will be the following formula due to NGUYEN and ZESSIN 

(1979) which relates the reduced Palm distribution of X to its (ordinary) 

distribution: 

A.IE!Jj(X) = IE[A.(y; X)f (X)] (1) 

holding (under suitable conditions on X) for any bounded nonnegative measurable 

function on the space of realisations of X. See also GLOTZL (l 980a, b), Kozwv 

(1976), MATTHES et al. (1979), KALLENBERG (1983, 1984) and FIKSEL (1984, 1988), 

TAKACS (1983, 1986), SA.RKKA (1993) or DIGGLE et al. (1994), RIPLEY (1988, 

p. 54-55) for its application in parameter estimation. Here ..l. is the intensity of X and 

A.(y; X) is the Papangelou conditional intensity of X at y. Roughly speaking, 

A.(y; X) dy is the conditional probability of a point in the infinitesimal region dy 

centred at y given the configuration agrees with X outside this region (KALLENBERG, 

1984). In statistical physics, - log A. (y; X) is interpreted as the energy needed to add 

y to the pattern X. 
In other words, (I) states that JP!Y is equivalent to the A.(y; X)-weighted distri

bution of X. In particular 

A. = IEA(O; X). (2) 

A necessary and sufficient condition (in the stationary case) for validity of (1) is that 

lfJl1>' be absolutely continuous with respect to P, whereupon A.(y; X) is a.s. uniquely 

defined by ( 1 ). Formula (1) holds in particular for all stationary Gibbs point 

processes (PRESTON, 1976, RIPLEY, 1988) and for Poisson cluster processes when the 

cluster distribution is absolutely continuous. The corresponding expressions for 

A. (y; X) are given in Section 4. Examples of processes which fail to satisfy ( 1) are 

randomly translated grids, and cluster processes consisting of pairs of points 

separated by a fixed distance. 
~· vvs, 1996 
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3 The I-function 

DEFINITION 1. For a stationary point process X define 

J(r) =I - G(r) 
I - F(r) 

(3) 

for all r ~ 0 such that F(r) < I. 

For example, if Xis a Poisson process then F = G, so we obtain J(r) =I. Note that, 
even in a completely nonparametric context, the function J has an interpretation as 
the ratio of the survival functions of the distance to the nearest (other) point of X 
from (a) a point of the process, (b) a fixed arbitrary point. Values J(r) < l indicate 
that the survival function in situation (a) is smaller than that for (b), which may be 
interpreted as indicating "clustered" pattern; values J(r) > I indicate "regular" 
pattern. In the examples in Section 4 we will reconcile this with other definitions of 
"clustering" and "ordering". 

Note that J(O) = l. The denominator I - F is always absolutely continuous 
(BADDELEY and GILL, 1993) but the numerator 1-G need not be, so the discontinuity 
points of J are those of G. In general I - G(r) might be nonzero when I - F(r) is 
zero (e.g. for a randomly-translated unit square grid when r = I/.j2) but this does 
not occur for point processes of real interest (see Theorem l below). 

THEOREM I. Let X be a stationary point process with intensity A. whose Papangelou 
conditional intensity A.(y; X) exists. 
(a) G(r) <I implies F(r) < 1 and 

J(r) = IE[2 (0~ X)IXnB(O, r) = 0 J (4) 

= ( IE'0[ .A..(O~ X)lx nB(O, r) = 0 ])-'. (5) 

(b) Suppose X has "interactions of finite range R" in the sense that 2(0; X) is constant 
(and thus equal to 2(0; 0))for all point patterns X which contain no points in B(O, R). 
Then 

..l (O; 0) 
J(r) =-,l- for r ~ R. (6) 

PROOF: Let A be the event {XnB(O,r)=0}, so that 1-F(r)=IP(A) and 
I - G(r) = IP'0(A ). Apply formula (I) to f(X) = ~A, the indicator of the event A. Then 
the left-hand side of (I) equals A.(1 - G(r)). Hence 

1- G(r) = 1{..l(O~ X) ~Al 

If F(r) = I we have IP(A) = 0 so that the expectation above will be zero, i.e. G (r) = I. 
Hence if G(r) <I we have F(r) <I and IP'(A) > O; dividing the expression above by 
© vvs. 1996 



Interaction in point processes 

I -F(r)=IP(A) yields (4). Next, apply (1) to 

~A 
g(X) = ),(O; X) 

Then, the right-hand side of (1) is IE[Jc(O; X)g(X)] = l - F(r) giving 

!O[ ~A J I - F(r) =Jc IE Jc(O; X) . 

Moreover, dividing (7) by l - G(r) = IP10(A) gives the reciprocal of (5). 

In case (b), if ),(O; X) = .?c(O; 0) on A then 

~A 
g(X) = A.(O; 0) 

so that the left side of (I) is 

I !O - A 
.?c Jc(O; 0) lP (A) - ),(O; 0) (1 - G(r )) 

yielding (6). 

349 

(7) 

D 

COROLLARY I. Let X be a stationary point process with intensity Jc >vhose Papangelou 
conditional intensity ),( y; X) exists. Then the process is regular with respect to J, 

J(r) ~ 1 if and only if 

Cov ().(O; X), l{XnB(O, r) = 0}) ~ 0 (8) 

and clustered with respect to J if the reverse holds. 

PRooF: Use expression (4) to see that J(r) ~ 1 if and only if 

IE[A.(O, X)l{XnB(O, r) = 0}] ~ },IP(XnB(O, r) = 0). 

By (2), (8) follows. D 

Next we examine the behaviour of J under the basic point process operations of 
superposition and thinning. 
THEOREM 2. Let X 1, X2 be independent, stationary point processes with intensities A. 1, 

A2 and I-functions 11 , 12 respectively. Then the I-function of the superposition 

X = X1 uX2 is a convex combination of the I-functions of the components: 

(9) 

PRooF: Write F; (i = I, 2) for the empty space function of X; and similarly let G; 
denote the nearest-neighbour distribution function corresponding to X;. Then, by 
independence, the empty space function F of the superposition equals 

1 - F(r) = (1 - F1 (r))(l - F2(r)). 
:r, vvs. 1996 
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Writing Pf;1 for the Palm distribution (on the entire probability space) with respect 

to X;, i = 1, 2 and p 0 for the Palm distribution with respect to X, we have (e.g. 

STOY AN et al., 1987, p. 116) 

Under Pf1,, X1 and X2 are independent, with X 1 governed by its Palm distribution 

(the Palm distribution of its marginal distribution) and X2 by its (ordinary) marginal 

distribution. Similarly for P~2l. Hence, the G-function of the superposition is 

Dividing this by the identity for F above gives (9). 

For comparison, the K-function of the superposition in the same situation is 

This equation can be verified by straightforward calculation using the identities in 

the proof above. 

THEOREM 3. Let XP be the process obtained from a stationary point process X by 

randomly deleting or retaining each point independently of other points, with retention 

probability p > 0. Then the I-function of XP is 

J(r)=Q?(l-p) 
p Q,(l - p) 

(10) 

where Q~, Q, are the generating functions of n(X nB(O, r )) under P 10 and P respectively. 

(The I-function of X itself is the case p = 1.) 

PRooF: Let FP, GP be the F and G functions for XP. Clearly 1 - FP(r) = Q,(l - p). 

To prove I - Gp(r) = Q?O - p) use the fact that the reduced Palm distribution of 

XP coincides with the effect of random p-thinning on the reduced Palm distribution 

of X. O 

Thus while the K-function is invariant under random thinning (DIGGLE, 1983, 

;7, STOYAN et al., 1987, p. 134), in general the ]-function is not. There does not 

'r to be a simple general relationship between JP and J. This is not necessarily 

•back, since a thinned process is generally different from the original process 

s of pattern or spatial interaction. 
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4 Examples 

4.1 Poisson process 

For a stationary Poisson process X of intensity ). we have F = G so that J = l. We 

could also derive this from Theorem 1 by observing that ).(O; X) =)..It is interesting 

to note that J does not depend on the intensity parameter, a property also holding 
for the K-function, but not for F nor G. 

4.2. Pairwise-interaction Markov point process 

For a pairwise interaction point process (RIPLEY and KELLY, 1977, STOYAN et al., 

1987, section 5.5) with activity constant f3 and interaction y (u, v) between points u, 

v E IR\ 

Jc(y; X) = f3 fl y(x,y). ( 11) 
xeX 

The process is Markov (in the sense of RIPLEY and KELLY, 1977) with interaction 

range R, if y(u, v) = 1 when llu - v II> R. Examples include the hard core process 

defined by 

( ) _ {o if 11 u - v 11 ~ R 
y u, v - 1 h . ot erw1se 

(12) 

and the Strauss process defined by replacing 0 in (12) by a constant O < y < 1. 

THEOREM 4. For a Markov pairwise-interaction process with interaction range R, 

(a) J(r) is defined for all r; 
(b) 

J(r) =~ for r ~ R; ( 13) 

(c) for "purely inhibitive" interactions, y(u, v) ~ 1, {3/). ~ l; 

(d) for the hard core process J(r) = 1/(1 - F(r)) for r < R, and in particular J is 

continuous and monotone increasing for r < R. Furthermore J(r) = 1/(1 -

A.m(B(O, r))) for r < R/2, where m denotes Lebesgue measure. 

Thus, the hard-core and Strauss processes yield values outside the interaction 

radius indicating "regular" pattern in the sense of Corollary I. Equation (13) was 

implicitly computed in STOYAN et al. (1987, (5.5.18), p. 159) for the valuer= R only. 

PROOF: The product in (11) depends only on points x EX with llx - y II ~ R, so 

Jc(y; X) depends only on XnB(y, R). Hence X has finite range interaction in the 

sense of Theorem l(b) with A.(O; </J) = {3, and we get (13). 

For a purely inhibitive process A.(O; X) ~ f3 a.s. so that).~ /3 using (2). This gives 

J(r) ~ 1 for r ~ R, proving (c). 
For a hard core process (case (d)), clearly G(r) = 0 for r < R, so J(r) = 1/(1-

F(r)) for r < R. In particular J is monotone nondecreasing. Furthermore since 
© vvs. 1996 
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intensity measure A.. Note that by Jensen's inequality 

F(r) = I - 1E exp[ -A(B(O.r))] ~ I - exp[- !EA (B(O, r ))] = 1 - exp[ -hr 2 ] 

and hence Cox processes are clustered with respect to F, i.e. they have larger empty 
spaces than a Poisson process with the same intensity. 

THEOREM 6. Let X be a Cox point process with driving random measure A which is 
stationary and a.s. nonatomic. The I-function of X is defined for all r ~ 0 and equals 

IEO e-A(B(O.r)J 

J(r) = IE e-.1tsro.rn 
(16) 

where 1E0 denotes expectation with respect to the Palm distribution of A. 

PRooF: This follows from the fact that the reduced Palm distribution of X is the 
distribution of a Cox process with driving measure distributed as the Palm 
distribution of A, cf. STOYAN et al. (1987, p. 141). D 

As an example, let X be a mixed Poisson process where A =am(·) for any 
nonnegative random variable a with finite positive expectation. Then the Palm 
distribution of A is simply the a-weighted distribution, and (16) reduces to 

IE[a e-""'2 ] 
J(r) = , · !Ea IE e-m-

It can be shown that J is monotonically decreasing with limit (ess info)/lfo. Hence 
a mixed Poisson process is clustered with respect to J, that is J(r) ~ 1 for all r. The 
inequality is strict unless 1J. is constant almost surely. 

5 Statistical aspects 

5.1 Nonparametric estimation of J 
Edge-corrected estimators for F and G based on observations of X within a bounded 
window Hls;[Rk are reviewed in CRESSIE (1991, chap. 8), RIPLEY (1988, chap. 3) and 
STOYAN et al. (1987), pp. 122--131). For recent variations see BADDELEY and GILL 
(1993), BADDELEY et al. (1993), BARENDREGT and ROTTSCHAFER (1991), DOGUWA 
(1989, 1990, 1992), DOGUWA and CHOJI (1991), DOGUWA and UPTON (1989, 1990), 
FIKSEL (1988) or STEIN (1990). 

We propose estimating J by plugging into (3) estimates of F and G obtained by 
methods that are comparable to one another. For example one may estimate F by 
the standard "border correction" estimator (RIPLEY, 1988, chap. 3) and G 
by Hanisch's border correction estimator G4 (HANISCH, 1984). See also STOYAN et al. 
(1987, p. 128) where G is called D. These are Horvitz-Thompson type ratio estimators 
with comparable denominators, and are pointwise unbiased for F and pointwise 
approximately unbiased for G, respectively. Alternatively the Kaplan-Meier style 
estimators of F and G proposed in BADDELEY and GILL (1993) could be used. These 
have the advantage of being proper distribution functions (possibly defective), and 
t vvs. 1996 
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correspond to unbiased and approximately unbiased estimators of the hazard 
measures of F and G, respectively. Furthermore the estimator of Fin BADDELEY and 
GILL (1993) has the same continuity properties as F itself . 

.,,..._We know little about the sampling properties of either estimator of J. Clearly 
J(O) = 1 always. It seems plausible that the relative error of J will increase with r, 
since this is true of standard estimators of F(r) and G(r) (BADDELEY and GILL, 1993), 
DoGUWA, 1992, DoGUWA and UPTON, 1989, 1990). Central limit theorems have been 
proved for P and G of both the Horvitz-Thompson and Kaplan-Meier types under 
various regimes (BADDELEY, 1980, BADDELEY and GILL, 1993, HEINRICH, 1988, 
JoLIVET, 1980, STEIN, 1991, CRESSIE, 1991, p. 480); a joint central limit theorem for 
(F, G), and hence for J, has also been established. 

Edge effects have a far greater influence on G than on F (RIPLEY, 1988, chap. 3, 
BADDELEY and GILL, 1993). The sampling properties of G and therefore of J may 
be particular cause for concern when the sampling window W is irregular, or in 
dimensions higher than two (BADDELEY and GILL, 1993, BADDELEY et al. 1993). 

5.2 Estimation and inference based on J 
Following are some speculative remarks on techniques for statistical inference based 
on J. 

Model parameters e can be estimated by matching the empirical value of a 
summary statistic to the theoretical one, e.g. by minimising 

ro 

J {J(t. ey - J(t)''}2 dt 

0 

where c is a suitably chosen constant, cf. DIGGLE ( 1983). If necessary, the theoretical 
value can be replaced by a Monte Carlo estimate. An advantage of using J instead 
of For G separately may be its better mathematical tractability (see the results in 
Section 4). 

Another possibility is the Takacs-Fiksel estimation method (FIKSEL, 1984, 1986, 
TAKACS 1983, 1986, RIPLEY, 1988, p. 54--55, DIGGLE et al., 1994, §2.4, SARKKA, 1993) 
since the basic equations (5)-(6) are special cases of (1) with the choice of/= f, given 
in the proof of Theorem 1. 

For a Markov pairwise-interaction process, (13) gives the constant value of J(r) 
for all r > R in terms of the parameter f3 and the intensity A. The intensity is 
determined by f3 and by the interaction function y( ·,·)in a complex way. However 
A. may be estimated directly from the data, as J. = n (X n W)/m ( W) in the usual way. 
If R is assumed known then p can be estimated via (13). This is semi-parametric 
estimation, since y is unknown apart from the constraint that y(u, v) = 1 for 
llu -vii >R. 

Similarly, for an area-interaction process, (15) allows us to estimate the parameters 
f3 and ri = ym<B<O,r)J given the interaction radius R = 2t. 
«:1 vvs. 1996 
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Finally, note that estimation of the interaction distance R, in any of the models 
studied, amounts to estimating the largest interval [R, oo) on which J is constant. 

6 Applications 

We have taken three standard point pattern datasets discussed at length by DIGGLE 

(1983), dubbed pines ("Japanese pine saplings"), redwood ("Californian redwood 
seedlings") and cells ("biological cells"). These were exhibited as typical examples of 
random, clustered, and regular patterns respectively. 

Figures 1 to 3 show the data and corresponding estimates J obtained using the 
Kaplan-Meier estimators (BADDELEY and GILL, 1993) of F and G. For pines the value 
of J is close to l for almost the entire range of r values except at high r values; for 
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Fig. I. Above: pines data. Below: empirical I-function (dotted line) and envelope of 99 simulations of 
a binomial process with the same intensity (solid lines). 
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Fig. 2. Above: redwood data. Below: empirical ]-function (dotted line) and envelope of 99 simulations 

of a binomial process with the same intensity (solid lines). 

redwood it is below l and monotonically decreasing except for small fluctuations; 

and for cells it is above l for the entire range and is monotonically increasing. 

We also computed the upper and lower envelopes from 99 simulations of a 

binomial process (independent uniform random points in the sampling window). 

Note that as r increases, the envelopes tend to span a wider range. For pines, the 

estimate J lies between the upper and lower envelopes over the entire range, in 

support of a Poisson model. For redwood J drifts below the lower envelope, 

suggesting aggregation, while for cells the estimated !-statistic exceeds the upper 

envelope at larger distances, suggesting regular pattern. 

Graphical plots such as Figures I to 3 are useful as a first exploratory step in the 

analysis, indicating the type and range of spatial interaction and are helpful in 
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Fig. 3. Above: cells data. Below: empirical ]-function (dotted line) and envelope of 99 simulations of 
a binomial process with the same intensity (solid lines). 

formulating plausible models. Furthermore, .lfio) for a specific value r0 , 

ro 

J { J(r) - I }2 dr 

0 

or 

sup IJ (r) - 11 
r:;;:;; 'O 

can be used as Monte Carlo test statistics for departures from a Poisson model. 
To investigate whether the empirical ]-function can indicate the range of 

interaction as well, we simulated a Strauss process, conditional on 50 points with 
,c vvs. 1996 
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Fig. 4. Realisation from a Strauss process with 50 points, r ~ 0.04 and y = 0.1 (above) and estimate of 
J (below). 

y = 0.1 and r;:::; 0.04 (Fig. 4). Examining the estimated ]-graph, there appears to be 
a positive bias and experience from change point techniques may prove helpful. 
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