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Abstract 

We show that a Poisson cluster point process is a nearest-neighbour Markov point 
process [2] if the clusters have uniformly bounded diameter. It is typically not a 
finite-range Markov point process in the sense of Ripley and Kelly [12]. Further­
more, when the parent Poisson process is replaced by a Markov or nearest-neighbour 
Markov point process, the resulting cluster process is also nearest-neighbour Markov, 
provided all clusters are non-empty. In particular, the nearest-neighbour Markov 
property is preserved when points of the process are independently randomly 
translated, but not when they are randomly thinned. 

MARKOV POINT PROCESS: NEAREST-NEIGHBOUR MARKOV PROCESS: CLUSTER PROCESS: 

CONNECfED COMPONEJ\'T RELATION 

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60005; 60055; n2M30 

l. Introduction 

Markov or Gibbs point processes (2, 9, 12, 13] form a large, flexible and 
understandable class of point process models with many practical advantages (see 
e.g. [4, 10, 11] for surveys). In this paper we consider the relationship of these 
models to the basic point process operation of clustering. We ask whether cluster 
processes are Markov, and whether the Markov property is preserved under 
clustering. 

In a Poisson cluster process, intuitively the only 'spatial dependence' present is 
that between offspring of the same parent. If the offspring of a given parent all lie 
within distance R of the parent, then two offspring of the same parent lie at most 2R 
apart, and it is plausible to conjecture that the process is Markov with finite 
interaction range 2R in the sense of Ripley and Kelly [12]. 

However, this turns out to be false in general, because certain spatial configura­
tions of the offspring points imply information about the unobserved parent points, 
and this information can 'propagate' over arbitrarily large distances. 

In this paper we show that cluster processes have the nearest-neighbour Markov 
property in the sense of Baddeley and M0ller [2] with respect to the connected 
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component relation [2, p. 106). We prove that (a) any Poisson cluster process with 
uniformly bounded clusters is a nearest-neighbour Markov point process: and (b) if 
a Markov or nearest-neighbour Markov point process is used as the parent process 
for a cluster process, and the clusters are uniformly bounded and a.s. non-empty, 
then the cluster process is again nearest-neighbour Markov. In particular, the 
nearest-neighbour Markov property is preserved under random displacement of 
points, but not under random thinning. 

These results support the claim [7, 8] that nearest-neighbour Markov processes (as 
opposed to Ripley-Kelly Markov processes) provide a rich class of models for 
clustering, and further suggest that they may include good models for multiple­
generation cluster processes, cf. [6). Result (a) may also explain why statistical 
theory for Poisson cluster processes so closely parallels that for Markov point 
processes [1 J. 

The next section recalls standard definitions; the main results are stated in Section 
3 and the proofs follow in Section 4. 

2. Setup 

2.1. Point processes. We consider finite point processes X on a metric space S 
(typically !Rd or a compact subset). Each realization of such a process "is' a finite set 
x = {x 1, ... , xn} of points X; E S with n ~ 0. Strictly speaking, the points may be 
multiply occupied, and n is the total multiplicity, but this will have probability zero 
in the applications considered. Realizations will also be called ·configurations' and 
the class of all configurations will be denoted by cg. This is the exponential space of 
S, see [3) or [2) for details. 

Let v be some given Borel measure on S (typically Lebesgue measure); we will 
consider processes whose distributions are absolutely continuous with respect to the 
measure µ, on C€ defined by 

(2.1) µ(F) = i ~ J · · · J I[{y1, · · ·, Yk} E F) dv(y1) • • • dv(yd. 
k=O k. 

If v is totally finite (e.g. if S is compact and v is Lebesgue measure), then µ., is e v(S) 

times the distribution of the Poisson process on S with intensity measure v. 
Let f: <'.(£ ~ (0, ex:) be the density of a point process X with respect toµ. We say f is 

hereditary if f(x) > 0 implies f(z) > 0 for all z s; x and hereditary excluding 0 if this 
holds except when z = 0. 

2.2. Markov point processes. This subsection collects necessary definitions from 
(2], (10), [12]. 

Define u, v ES to be r-close, written u -v, if d(u, v) < r where dis the metric of 
S. This defines a relation - on S which is clearly symmetric and reflexive. (The 
results of this paper extend to the case where - is any symmetric reflexive relation 
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on s which is measurable in the product space. Theorem 2 in Section 3 requires two 

such relations.) 

Definition l. (Ripley-Kelly) A point process X is Markov with respect to the 

static relation - if its density f satisfies 

(i) f is hereditary; 
(ii) for any x E cg such that f(x) > 0 and u ES, the ratio 

(2.2) 
f(x U {u}) 

f(x) 

depends only on u and on {x; E x: u - x;}. 

Now define for each x E cg the 'connected component relation' [2, Appendix III] 

between points of x by xi -; xi iff X; - z1 - • • • - Zn - xi for some Z1 , • • • , Zn E x. In 

other words, two points of x are related under -; if they are in the same connected 

component of the finite graph whose edges connect every pair of r-close points in x. 

Definition 2. (Baddeley-M~ller) A point process X is nearest-neighbour Markov 

with respect to the dynamic relation -; if its density f is hereditary and the ratio (2.2) 

depends only on u, on 

Nbd (u Ix U {u}) = {x; Ex :u .rUlu}xi}, 

and on the relations-;, xCTul restricted to Nbd (u Ix U {u}). 

Clearly if X is Markov with respect to-, it is also nearest-neighbour Markov with 
respect to both - and -; . 

Other dynamic relations -; , for instance based on the V oronoi tessellation of 

pattern x, can be used to define a nearest-neighbour Markov density as well. For 

details, see [2). A spatial Markov property in terms of splitting sets was proved in 
[5]. 

Analogues of the Hammersley-Clifford theorem proved in [12] and in [2] give 

explicit expressions for the density f when X is Markov and nearest-neighbour 

Markov, respectively. Define a configuration z to be a clique with respect to - (or 

an r-clique) if all pairs of points in z are r-close, Zi - zi for all Z;, zi E z. Then [12] X 
is Markov iff 

(2.3) f (x) = TI q;(z) 
z~x 

where q;(z) 6; 0 with q;(z) 7'= 1 only if z is a clique. 

In the nearest-neighbour case, a subconfiguration z s; x is termed a clique with 
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respect to -; if all pairs of points in z are -;-neighbours, Z; -; zi for all z,, zi e:: z. The 

maximal r-cliques are also called connected components. 
An analogue of (2.3) for dynamic relations -; is given in [2, Theorem 4.13]. For 

the 'connected component relation' this specialises to the following result. 

Lemma 1. A point process X is nearest-neighbour Markov with respect to the 
connected component relation -; if! 

(2.4) f (x) = n cp(z) 
cliques t£;x 

where cp( ·) ~ 0 is such that whenever z is a -;-clique with cp(z) > 0 then cp(w) > 0 for 
all w s;; z. 

Equivalently, X is nearest-neighbour Markov w.r.t. -; iff 

K 

(2.5) f(x) = f(0) f1 <I>(xo,) 
k~J 

where x0 , · · · x0 K are the connected components of x and <I>(·)~ 0 is such that if x is 
a -;-clique and z s;; x is a -;-clique then <I>(x) > 0 implies <I>(z) > 0. 

2.3. Cluster processes. For ~ E S let Qf; be the distribution of a finite point process 
Zg. This will be the process of offspring of a parent at point f 

We shall assume that 
(A) Qs is absolutely continuous with respect toµ, with density qs; 
(B) (~, z)~qs(z) is Borel measurable S x cg-" IH:+; 
(C) (uniform boundedness) Zs s;; b(g, R) a.s. for some fixed R > O; 
(D) qg is hereditary excluding 0 (see Section 2.1). 

Here ba, R) denotes the closed ball in the metric d with centre ~and radius R. 
Given a finite point process x, construct a marked point process {(x;, ZJ} where X; 

are the points of x and the marks Z; are conditionally independent, finite point 
processes such that Z; has distribution Qx,. Form the superposition y = U, Z;; then y 
is the cluster process with parents x and cluster distributions Qs. 

Lemma 2. The distribution of the cluster process y described above is absolutely 
continuous with respect to µ, with density 

(2.6) f(y) = lEC,~.c.}] qx.(Yc)) 

where lE denotes expectation with respect to the distribution of x, and the sum is over 
all ordered partitions of y = {y1, • • • , Ym} into n subconfigurations Ye,, · · · , Ye. 
(allowing empty sets) where n = n(x) is the random number of points in x. 
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Strictly speaking, by an 'ordered partition' we mean a mapping E from the points 
of y into those of x, and Ye, is a convenient notation for E- 1{x;}. An 'unordered 
partition· is simply a partition of y into disjoint subconfigurations. 

3. Statement of results 

Theorem 1. Let x be a Poisson point process on S with finite intensity measure A, 
and y a cluster process with parent process x and clusters satisfying the assumptions 
(A)-(D) of Section 2.3. Then y is a nearest-neighbour Markov point process with 
respect to the connected component relation at distance 2R. 

For example, consider a Neyman-Scott process in a bounded set S = B c !Rd. Let A 
be Lebesgue measure restricted to B. Thus x is a unit rate Poisson process on B. 
Assume that a parent at ~ has a Poisson ( w) number of offspring, positioned i.i.d. 
with probability density h( · -fl where h is supported on the ball b(O, R) of radius 
R. Let v be Lebesgue measure restricted to the dilated set BfBR ={a E !Rd :d(a, B) < 
R}. Then the density of y is (for y 7'= 0) 

where m = n(y). This is easily (or via the proof of Theorem 1) factorised as 

(3.7) r'0 

f(y) = w"'e-mwe-/3 2: ew(m-k)J(yc,) ... J(yc.), if y 7'= 0 
Ci.··-.C, 

where f3 = (1 - e-w)v(B), the superscript 7'=0 indicates that the sum is over all 
unordered partitions of y into disjoint non-empty subsets, and 

(3.8) 1(yc)= f TI h(y1 -fldg. 
B Y1EY< 

Since J(yc) = 0 unless Ye is a ;-clique, the only non-zero terms in (3.7) are those for 

partitions which are refinements of the partition of x into connected components. 
Thus (3.7) factorises into terms associated with each connected component, and 
according to (2.5) we have a nearest-neighbour Markov process, provided the 
positivity condition stated below (2.5) is satisfied. 

A special case of Neyman-Scott is the Matern cluster process, in which 
h =constant ~n b(O, R): then we have J(yc) = >..(ny1eyc b(y1, R)) i.e. J(yc) is the 
volume occupied within B by the intersection of the balls of radius R centred at the 
points of Ye· In this case the positivity condition is clearly satisfied, so that the 
Matern cluster process is nearest-neighbour Markov. 

In Theorem 1, nearest-neighbour Markov cannot be replaced by Ripley-Kelly 
Markov, as the following example shows. 
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Counterexample l. A Neyman-Scott process with uniformly bounded clusters is 
not (in general) a Markov point process at any fixed ranges< :x:. 

For example, for a Matern cluster process, first consider ranges s < 2R. If f were a 
Markov function at range 0 < s ~ R, then a fortiori f would be a Markov function at 
range s' > R so assume that R < s < 2R and consider a configuration of three points 
Y1, Y2, Y3 such that II Y1 - Y2ll < s, II Y2 - Y311 < s, but II Yi - y3 11 > s. If f were a Markov 
function at ranges then f({y1, Y2. y3})f({y2}) = f({yi, Y2})f({y2. y3}). 

Substituting (3.7) gives 

[1 + e"'J(y1. Y2) + e"'J(y2, y3)] = [1 + e"'J(y1, Y2)][l + e"'J(y2, y3)]. 

This is clearly a contradiction, since the J terms are non-zero. Hence f is not a 
Markov density in the Ripley-Kelly sense at distances< 2R. Fors~ 2R one can use 
similar arguments involving chains of more than three points. 

Next, we consider cluster processes generated from a parent process which is 
Markov or nearest-neighbour Markov. In general the cluster process is not Markov. 

Counterexample 2. Let x be a Ripley-Kelly Markov point process (finite ranger) 
and y the result of thinning the points independently with retention probability 
q, 0 < q < l. Then, in general, y is not a nearest-neighbour Markov point process 
(and a fortiori it is not a Ripley-Kelly Markov process) for any R < oo. 

This can be checked from (2.6), since random thinning is the special case of 
clustering in which Ze ={~}with probability q, and ZE = 0 otherwise. For any given 
pair of points y;, Yi e y there are (potentially) non-zero summands in (2.6) of the 
form qx1(y;)qx2(0) · · · qxN_1(0)qxN(Yi) involving both y;, Yi· Hence y is not nearest­
neighbour Markov according to (2.4). 

Clearly this problem may arise whenever clusters are permitted to be empty, i.e. 
when a parent point may have no offspring. When this is excluded, we do obtain a 
Markov property. 

Theorem 2. Let x be a Markov or nearest-neighbour Markov point process at 

range r and y the associated cluster process satisfying (A)-(D) of Section 2.3 and 

moreover 

(E) the clusters are non-empty a.s. 

Then y is a nearest-neighbour Markov point process for the connected component 

relation at range 2R + r. 

Corollary 1. Let x be as above, and let y be the process obtained. [rom x by 
independently translating each point: y; = X; + v;, where the vectors V; ~re i.z.d., have a 
probability density, and satisfy llv;ll < R a.s. Then y is a nearest-neighbour Markov 

point process for the connected component relation at range 2R + r. 
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4. Proofs 

Proof of Lemma l. Suppose that (2.4) holds. Let x E Cf;, g E S and let 
x01 , •. . , x0 , and w U {g} denote the connected components of x U {g}. Then, if 
x0 K·i' • ·., x01 are the connected components of w, we have that x 0 ,, · • ·, x 0 ,. are 
the connected components of x, and 

f(x u {g}) = cp(0{D 0.LL,, 1,0(Z) J 0,,JT_J{;} ip(z) 

while 

f(x) = 'P(0 )[}J 0.Hxo, cp(z)] j~(i,.1 0,IL", cp(z). 

Hence f(x U {g}) > 0 implies f(x) > 0 (as z S x 0 , for j > K implies that z S w) and 
f(x U W )/f(x) satisfies the conditions of Definition 2. Thus X is nearest-neighbour 
Markov. 

Conversely, suppose X is nearest-neighbour Markov. By the analogue of the 
Hammersley-Clifford theorem [2, Theorem 4.13], 

(4.9) f(x)= n ip(yy<.vix) (taking 0° = 0) 
ys;x 

where x(y [ x) = 1 if y is a ;--clique and 0 otherwise; and ip: CC----. IR + satisfies 

( I1) ip(x) > 0 implies ip(y) > 0 for all y S x, 
(12) <p(X) > 0 and ip({n u Nbd (g Ix u {g})) > 0 imply cp(x u {n) > 0. 

Note that, in the case of the connected component relation, g y- TJ implies g -:;-- TJ for 
x 2y, so that X(Y I y) = l implies X(Y Ix) for any x 2 y. 

To prove that (4.9) reduces to (2.4) we need to show that, if ip(y) > 0 for ally sx 
with X(Y Ix)= 1, then ip(y) > 0 for ally sx. 

To prove this, suppose v, w s x are disjoint connected components of x (i.e. with 
respect to;-). If~ E v then Nbd (g I w U {g}) = U}, and by assumption ip({g}) > 0, so 
(12) gives ip(w U {g}) > 0. Similarly, if {g, 17} s v with TJ - t then Nbd ( TJ I w U 
{t, 71})={g, 17}, and by assumption ip({g, 17})>0, so (12) gives cp(wU{t". 'Y)})>O. 
Continuing in this way we obtain that ip(y) > 0 for all y s x. 

Hence if X is nearest-neighbour Markov then its density is of the form (2.4) where 
cp satisfies (Il) and hence the condition stated in the lemma. 

Proof of Lemma 2. The clusters Z; being conditionally independent given x, we 
have for any measurable event F 

P{y E FI x} =Ji[ y Z; E F ]qx,(Z1) ... qxJZn) dµ(Z1) .. . dµ(Zn) 

= c,~,Cn J I[y E F]qx,(Yc) ... qxn(YcJ dµ,(y). 
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The last line was obtained using (2.1) by rewriting each integral over Z; as a sum of 
multiple integrals with respect to v and regrouping. The result follows by taking 
expectations with respect to x. 

Proof of Theorem 1. By (2.6), the density of y with respect to µ. is (for y =16 0) 

( 4.10) 
"' e-A(S) f J n 

f(y) = ];1----;! 5 ... 5 c,~c, n qx,(yc,) dA(xi) · · · dA(xn) 

(4.11) 
x e-A(S) n J 

= };1----;! c,.~c, D s qg(Yc) dA(t); 

here the inner sum is over all ordered partitions of y into n disjoint, possibly empty, 
sets. Since the parent process is Poisson, the number of non-empty clusters is 

Poisson distributed with mean f3 = f s (1 - qg(0)) dA(fl, so that for y = 0 we have 
f(0) = e -/3. 

Now qg(Z) = 0 whenever z $. b(g, R); hence if qg(z) ¥- 0 then all pairs of points in z 
are 2R-close, i.e. z is a clique with respect to the finite range relation with distance 
2R. Hence the integral in ( 4.11) is non-zero only when the partition consists of 
2R-cliques. 

For y # 0, let y01 , • • ·, y0 K be the connected components of y for the relation ; 

with range 2R. Then the integral in ( 4.11) is non-zero only when the partition is a 
refinement of Di, · · · , DK· Let C 1 , • · • , Ck be an (unordered) partition refining 
D1 , · · • , DK and consisting of non-empty sets. This contributes a term 
a II7=i f 5 qg(Yc) dA(fl to the density. Since J5 qg(0) dA(g) = A(S) - /3, the coefficient 
a is 

e-A(S) 

2:.~=k-1-(A(S)- f3Y kn(n -1) · · · (n - k + 1) = e- 13. 
n. 

The class of all partitions that are refinements of Di, · · · , DK is the cartesian 
product of the set of partitions of each D;. Hence, for y # 0, 

K 

( 4.12) f(y) = e- 13 TI <PCYDJ 
i=i 

where 

(4.13) 

where zc,, · · · , zck range over all (unordered) partitions of z into non-empty 

su bconfigurations. 
Since the offspring densities q < are hereditary excluding 0, clearly <I> is hereditary 

excluding 0, and hence f is hereditary. According to (2.4) the density (4.12) is 
nearest-neighbour Markov with respect to the connected component relation at 

range 2R. 

Proof of Theorem 2. The density p (x) of x can be factorised as in (2.4). By (2.6), 
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the density of y with respect to µ., is 

(4.14) l n(x) 

f(y) = "- c,,..;"(x) D qx,(yc)p(x) dµ,(x) 

where the sum ranges over all ordered partitions of y into disjoint, possibly empty, 
subsets. Since q,(0) = 0, the integrand of (4.14) can be rephrased as 

n 

(4.15) 2: TI qx.(YE- 1ui)p(x) 
f i=l 

where f ranges over all surjective mappings of the points of y onto the points of x, 
identified with mappings from {1, · · ·, m} onto {1, · · ·, n}. 

We can restrict attention to those <such that 

( 4.16) for all i 

since all other terms are zero. For such£, if z s;;x is an r-clique and £- 1(z) = w Sy, 
then w must be a (2R + r)-clique. To see this, take Yi> y1 E w and apply the triangle 
inequality: d(y,. y1) ~ d(y,. x,u>) + d(xEUJ> xEuJ) + d(xEU» yJ ~ R + r + R. By a simi­
lar argument, if z s;; x is a clique with respect to the relation --;; at distance r, then w 
is a clique with respect to the relation - at distance 2R + r. y 

Let Yo,. · · · , YvK be the connected components of y with respect to the relation at 
distance 2R + r. Then we can rewrite ( 4.15) as 

cl!qD,,;;.r ip(Z) ~ D qx,(Y.- 1ui> = ~ [}] qx,(Yrt(i)) fJ1 

(·U7} 

Any E of the type described above can be represented as an ordered set of K 
surjective mappings fk: Dk~ Die = {i J d(x;, y1) ~ R for some j E D;} automatically 
satisfying the norm condition (4.16). Note that x 0 ,, k = 1, · · ·, K form a disjoint 
partition of x. Thus (4.17) is 

Integrating over x and exploiting the form (2.1) ofµ, yields 

K J n(v) 

f(y)=I] 2: f1q.,,(y,,1(iJ) TI i,o(z)dµ,(v). 
k-1 '€ e, 1=! cliquesz,;;;v 

Thus, f factorises as required by (2.4). The hereditary property follows as in the 
previous proof. 
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