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Abstract. We introduce a new Markov point process that exhibits a range 
of clustered, random, and ordered patterns according to the value of a scalar 
parameter. In contrast to pairwise interaction processes, this model has inter­
action terms of all orders. The likelihood is closely related to the empty space 
function F, paralleling the relation between the Strauss process and Ripley's 
K-function. We show that, in complete analogy with pairwise interaction pro­
cesses, the pseudolikelihood equations for this model are a special case of the 
Takacs-Fiksel method, and our model is the limit of a sequence of auto-logistic 
lattice processes. 
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1. Introduction 

Since the introduction of Markov point processes in spatial statistics (Kelly 
and Ripley (1976), Ripley and Kelly (1977)) (the very similar concept of a Gibbs 
point process was already known in statistical physics (Ruelle (1969), Chapter 3, 
Preston (1976))) attention has focused on the special case of pairwise interac­
tion models. These provide "a large variety of complex patterns starting from 
simple potential functions which are easily interpretable as attractive and/or re­
pulsive forces acting among points" (Mase (1990)). A great deal is understood 
about pairwise interaction models because they are very natural with respect to 
the derivation of conditional probabilities, Papangelou conditional intensities and 
Palm distributions; they are simple exponential families whose sufficient statis­
tics are often related to the popular K-function; and they are very amenable to 
simulation and iterative statistical methods. 

However, pairwise interaction processes do not seem to be able to produce 
clustered patterns in sufficient variety. The original clustering model of Strauss 
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( 1975) turned out (Kelly and Ripley (1976)) to be non-integrable for parameter 
\·alnes -, > l corresponding to the desired clustering; Gates and Westco~t (19~6) 
showed that partly-attractive potentials may violate a stability condition, implymg 
that they produce extremely clustered patterns with high prob~bility; and recent 
simulation experiments by l\/Ioller (1994) suggest that the behav10ur of the Strauss 
modd with fixed n undergoes an abrupt transition from "Poisson-like" patterns 
to tightly clustered patterns rather than exhibiting intermediate, moderately clus-
tered patterns. 

In this paper we introduce a family of Markov point processes that yield both 
moderately clustered and moderately ordered patterns. They can be described as 
having int~ractions of infinite order. In the simplest case the probability density 
of a point pattern x = { x1, ... , Xn} ( n 2': 0) in a window A ~ IR2 is defined to be 

( 1.1) 

where u ( x) is the area of the plane set formed by taking the union of discs of 
radius r centred at the points Xi· Here {3, /, r > 0 are parameters and a is the 
normalising constant. Compare this with the pairwise-interaction Strauss process 
in the same situation. 

( 1.2) 

•vhere s( x) is the number of pairs of distinct points Xi, x j that lie within a distance 
r of one another. Both densities reduce to a Poisson process when / = 1, and 
exhibit ordered patterns for 0 < I < l. Our process ( 1.1) is well-defined for all 
values of r > 0 and produces clustering when / > l. The clustered case / > 1 
of (1.1) is identical to the "penetrable sphere model' of liquid-vapour equilibrium 
proposed by Widom and Rawlinson (1970), see also Hammersley et al. (1975) or 
Rawlinson (1980, 1990). Our Definition 1 embraces both clustered and ordered 
types and Definition 2 below is a further generalisation to non-spherical shapes 
and non-uniform measures. Figure 1 shows simulated realisations of ( 1.1). 

It is useful to note that computation of u(x) is easy in an image processing 
context. using the distance transform algorithm (Rosenfeld and Pfalz ( 1968)). 

The plan of the paper is as follows. In Section 2 we define the process and check 
that it is integrable for all parameter values. We show that it is a Markov point 
process with interactions of infinite order, and give various physical interpretations. 
In Section 3 we prove that the process satisfies a stability condition and that there 
is a corresponding stationary Gibbs process on !Rd. Section 4 briefly discusses 
simulation techniques. 

In Section 5 we consider statistical inference. First we show that (1.1) is 
connected to the popular empty space statistic F in the same way that the Strauss 
process ( 1.2) is related to Ripley's K-function. We show that pseudolikelihood 
inference for the area-interaction process is a special case of the Takacs-Fiksel 
method, analogous to the situation for pairwise interaction processes (Diggle et 
al. (1994), Sarkka (1989), Ripley (1989)). Finally in Section 6 we prove that the 
area-inter~ct.ion p~ocess is the limit (weakly and in total variation) of a sequence 
of autolog1st1c lattice processes, extending the limit theorem of Besag et al. ( 1982). 
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Fig. 1. Simulated realisations of an area-interaction process conditional on n = 100 

points, with r = 5 in a window of size 256 x 256. Left: ordered pattern, 'Y = 0.9711, 

'Y- 25 rr = 10; Right: clustered pattern, 'Y = 1.02975, 'Y-25rr = 0.1. 

2. Definition of process 

2.1 Preliminaries 
As usual for Gibbs point processes we treat separately the cases of a finite 

point process (say, points in a bounded region A ~ !Rd) and a stationary point 

process on !Rd. 
The formal construction of finite Gibbs point processes is described in Daley 

and Vere-Jones ((1988), p. 121 ff), Preston (1976) or e.g. Section 2 in Baddeley 

and M0ller (1989). Briefly, let X be a locally compact complete separable metric 

space (typically IRd or a compact subset). A realisation of a finite point process is 

a finite set of points 

Xi E X, n 2:: 0. 

The space of all possible realisations shall be identified with the space 3(f of all 

integer-valued measures on X which have finite total mass and are simple (do not 

have atoms of mass exceeding 1). Write n(x) for the total mass (=total number 

of points), and x8 for x restricted to B ~ X. The O"-algebra Nf on 3(f is the 

Borel O"-algebra of the weak topology, i.e. Nf is the smallest O"-algebra with respect 

to which the evaluation x 1-+ n( xs) is measurable for every (bounded) Borel set 

B~X. 
Given a totally finite, non-atomic measure µ on X, construct the Poisson 

process of intensity µ (typically µ is the restriction of Lebesgue measure to a 

compact window A ~ [Rd, yielding the unit rate Poisson process restricted to A). 
Let n be its probability distribution on (?Rf,Nf). Then we construct (Gibbs) point 

processes by specifying their density with respect ton. A density is a measurable 

function p : ?Rf --+ [O, oo) that is integrable with respect to n. 
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The general pairwise interaction process on a compact region A <;:;; !Rd is then 
defined by its density 

p(x) =a IT b(xi) IT c(xi,Xj) 
i i<j 

(with respect to the unit-rate Poisson process on A) where b, c are nonnegative 
measurable functions and a is the normalising constant. The Strauss process (1.2) 
is the special case where b(·) = f3 and c(u, v) ="(if 0 < [[u - v[[ ::; r, c(u, v) = 1 
otherwise. Kelly and Ripley (1976) pointed out that (1.2) is not integrable for 
~, > 1. 

2.2 Area-interaction process 

DEFINITION 1. (Standard case) The area-interaction process in a compact 
region A. <;:;; !Rd is the process with density 

(2.1) 

with respect to the unit rate Poisson process on A, where /3, "(, r > 0 are parameters 
and o: is the normafo;ing constant, m is Lebesgue measure, and 

n 

Ur(x) = LJ B(xi, r) 
i=l 

is the union of spheres or discs of radius r centred at the points of the realisation, 
B(x;,r) ={a E !Rd: J[a - .r;[[ :Sr}. 

For / = 1 this of course reduces to a Poisson process with intensity /3/L. It is 
intuitively clear that for 0 < / < 1 the pattern will tend to be ·orderecl' and for 
/ > 1 "clustered' (we make this precise in Subsections 5.1 and 5.3). The clustered 
case was introduced by \Vidom and Rawlinson (1970). See also Hammersley et al. 
(1975) or Rowlinson (1980. 1990). 

Various modifications are of interest. for example, one may wish to replace 
U,. ( x) by A n U,. ( x). or to allow the radii of the discs B ( x.;, r) to vary across the 
region (Lawson ( 1993)). l\Iore generally, the discs B ( :r;, r) can be replaced by 
compact sets Z ( J:;) depending on x;. We assume that the mapping Z onto the 
space JC of all compact subsets is continuous with respect to the myopic topology 
(l\fatheron (1975), p. 12) generated by {KE JC: Kn F = 0} for all closed F <;:;; X 
and {KE JC: Kn G "# 0} for all open subsets G ~ X. 

DEFINITION 2. (General case) Let v be a totally finite, Borel regular mea­
sure on X and Z : X ___, JC a myopically continuous function, assigning to each 
point a E X a compact set Z(a) ~ X. Then the general area-interaction process 
is defined to have density 

(2.2) p(x) = o:(3n(x)'Y-v(U(x)) 
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with respect to 7r (the distribution of the finite Poisson process with intensityµ), 
where U(x) is the compact set LJ~ 1 Z(xi). 

In a parametric statistical model the measure v and the definition of Z (.) 
might also be allowed to depend on the parameter (). 

LEMMA 2.1. The density (2.2) is measurable and integrable for all fixed val­
ues of {3, "( > 0. 

PROOF. Lett> 0 and consider V = {x E Rf: v(U(x)) < t}. We show that 
V is open in the weak topology. 

Choose :z: E V. Since v is regular, there is an open set G ~ X containing U ( x) 
such that v(G) < t. Consider W = {y E Rf : U(y) ~ G}; we have y E VV iffy has 
no points in H ={a EX: Z(a)nGc -=J. 0}. Now His closed in X since a ........ Z(a) is 
myopically continuous and the class of all compact sets intersecting a given closed 
set is closed in the myopic topology on K. Thus W = {y E Rf : n(yH) = O} is 
open in the weak topology. But x E W ~ V and :z: was arbitrary so V is open in 
the weak topology. 

In fact this shows that :z: ........ v( U ( x)) is weakly upper semicontinuous. It 
follows that the map g: Rf-+ [O, oo) defined by x ........ exp[-v(U(x)) log1] is weakly 
upper semicontinuous for 'YE (0, 1) and lower semicontinuous for"( > 1. Hence g 
is measurable. By definition of the weak topology, :z: f-+ 13n(x) is measurable, and 
hence the density (2.2) is measurable. 

To check integrability, observe that 

(2.3) 0::; v(U(x)) :'.S v(X) < oo. 

Now the function f(x) = 13n(x) is integrable, yielding the Poisson process with 
intensity measure {3µ. Hence (2.2) is dominated by an integrable function, hence 
integrable. D 

In fact (2.3) establishes a slightly stronger result. 

LEMMA 2.2. The distribution P13,7 of the general area interaction process 
is uniformly absolutely continuous with respect to the distribution of the Poisson 
process 1r/3 with intensity {3µ, that is its Radon-Nikodym derivative is uniformly 
bounded in x. 

In particular, the general area-interaction model satisfies the linear stability 
condition in Gates and Westcott (1986). Explicit bounds on the density f with 
respect to a Poisson process with intensity {3µ are 

This suggests that the 'singularity' (highly clustered behavior) of the Strauss model 
is unlikely for moderate values of "f· 
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As usual. the normalising constant a is difficult to compute, since 

Q-1 = IE/3n(X)l'-v(U(X)) 

\vhen• the expectation is with respect to the reference Poisson process; this entails 
cumputiug the moment generating function of v(U(X)), or equivalently, the va­
camT (fo::tribution in the coverage problem (Hall (1988) ). A notable exception is 
tla• i-dimensional penetrable sphere model of Widom and Row linson ( 1970). 

2.~) Marko1• property 
The purpose of this paragraph is to place (2.2) in the context of Markov point 

processes in the sense of Ripley and Kelly (1977), see (Baddeley and Moller (1989), 

Kendall (1990)). Their defining property is that the likelihood ratio P(~~~l}) for 

adding a new point a to a configuration x depends only on those Xi E x that are 
'close· to a. Surveys can be found in Cressie ((1991), pp. 673-689), Stoyan et al. 
((1987). pp. 148-166) and Stoyan and Stoyan ((1992), pp. 342-359). 

As in Baddeley and Van Lieshout (1991, 1992, 1993) define two points a, b E X 
to be neighbours (and write a '"" b) whenever Z (a) n Z ( b) -:f. 0. In the standard 
casp a "' b iff Ila - bll ::; 2r. 

LEMl\IA 2.3. The area-interaction process (2.2) is a Markov point process 
1J1ith respect to '"" in the sense of Ripley and Kelly (1977). 

PROOF. The likelihood ratio 

(2.4) p(x U {a})_ /3 -v(Z(a)\U(x)) 
p(x) - I' 

is computable in terms of a and { Xi : Xi '"" a}, since 

Z(a) \ U(x) ~ Z(a) n [ l) Z(x;i]" 

~ Z(a) n [,~. Z(x,i]' 

Hence (2.2) defines a Markov point process with respect to '""'· o 

_ The ~~pley-Ke~ly a?alogue of the Hammersley-Clifford theorem (Ripley and 
~elly (1.911 )) then implies that the density p can be written as a product of clique 
mteract10n terms 

p(x) =IT q(y) 
y~x 

\vher~ q( Y ~ ':= 1 ~nless Yi '"" Yj for all elements of y. To compute the interaction 
term,; explicitly. mvoke the inclusion-exclusion formula: 

n 

v(U(x)) = I: v(Z(xi)) 
i=l 
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which gives 

q(0) =a 

(2.5) q({a}) = f3"!-v(Z(a)) 

q( {y1, ... , yk}) = 'Y(-1Jkv(n~=1 Z(y;)), 

That is, the process exhibits interactions of infinite order. 
It is also trivial to verify that the process satisfies a spatial Markov property 

(cf. Kendall (1990), Ripley and Kelly (1977)). Define the dilation of a set E ~ X 
by 

(2.6) Dz(E) = {u EX: :le EE such that Z(u) n Z(e) "I 0}; 

in the standard case this becomes the classical dilation of mathematical morphol­
ogy 

(2.7) Dz(E) = {u E ~d: d(u, E):::; 2r} 

where d(u,E) = inf{llu -vii: v EE}. Then the spatial Markov property states 
that the restriction of the process to E is conditionally independent of the restric­
tion to Dz(E)c given the information in Dz(E) \E. 

2.4 Limiting cases 
Here we study the convergence of the area-interaction process as "I -+ 0, oo. 
Let v* = maxx v(U(x)), typically the measure of the observation window or 

its (generalised) dilation and 

H = {x: v(U(x)) = v*}. 

Further let 7r/3 be the distribution of the Poisson process of rate f3 in A and finally, 
in the standard case, denote 

HG= {x : m(U(x)) = n(x)7rr2 }. 

LEMMA 2.4. Let P13,-y be the distribution of the area interaction process with 
density (2.2). 

If "I -+ 0 with (3 fixed, then P13,7 converges to a uniform process on H, i.e. 
P13,,(E)-+ 7rf3(E n H)/7rf3(H). 

In the standard case, if"(-+ 0 and (3-+ 0 so that f3"1-rrr 2 -+ ( E (O,oo), then 
P13,, converges to P(E) = 7r<(E n HC)/7r<(HC), a hard core process. 

If "I -+ oo with f3 < oo fixed, then P13,7 converges to a process that is empty 
with probability 1. 

PROOF. First consider "f-+ 0. Then J "lv•-v(U(x))d7rf3(x)-+ 7rf3(H), hence 

"lv•-v(U(x)) l{x EH} 
P{3,,(x) = J "lv•-v(U(x))d7rf3(x) -+ 7rf3(H) 
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from which the first assertion follows. To prove the second assertion, note that for 
m([1r(:z:)) < n(X)11"r2, 1'mrr2-m(Ur(:z:))--+ 0. Hence 

The third statement follows similarly, by noting that the density converges point­
wise to zero unless the pattern is empty. D 

2.5 Interpretation and motivation 
Area-interaction seems a plausible model for some biological processes. For 

example the points Xi may represent plants or animals which consume food within 
a radius r of their current location. The total area of accessible food is then U ( x), 
and the herd will tend to maximise this area, so an area-interaction model with 
1' < 1 is plausible. Alternatively assume that the animals or plants are hunted 
by a predator which appears at a random position and catches any prey within a 
distance r. Then U(x) is the area of vulnerability, and the herd as a whole should 
tend to minimise this (see, e.g. Hamilton (1971)) so an area-interaction model with 
1' > 1 is plausible. 

The following trivial interpretations are also possible: 

LEMMA 2.5. Let X, Y be independent Poisson processes in A with intensity 
measures (3µ and J log 1Jv respectively. If 'Y > 1 then the conditional distribution of 
X given {YnU(X) = 0} is an area-interaction process with parameter 'Y· If 'Y < 1 
then the conditional distribution of X given {Y ~ U(X)} is an area-interaction 
process with parameter 'Y. 

PROOF. If 1' > 1 

?{Y n U(X) = 0 I X} = e-v(U(X)) log/' = 'Y-v(U(X)) 

hence the conditional distribution of X given Y n U(X) = 0 has a density propor­
tional to the right hand side. Similarly if 1' < 1 

?{Y ~ U(X) IX}= IP>{Y n (A\ U(X)) = 0} 
= ev(A\U(X)) log-y = 'Yv(A)'Y-v(U(X)). 

0 

Other interpretations are available in terms of spatial birth-and-death pro­
cesses (see_Secti~n 4). Briefly, if the points represent plants again, we may consider 
a process m which_ existing plants have exponential(!) lifetimes, and a new seed 
takes root at location a with rate p(:z: U {a})/p(:z:) related to the area accessible 
to a that is not already accessible to an existing plant. Alternatively we may 
assun~e ~he pli:nts or a~imals arrive at a constant rate uniformly over space, and 
an ex1stmg ammal x; dies at a rate p(x \ {xi})/p(:z:) related to the risk of bein 
attacked by a predator. g 
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3. Stationary area-interaction process 

Here we use the methods of Preston (1976) to check that the area interaction 
model (standard case) can be considered as the restriction to a bounded sampling 
window of a stationary point process on the whole of !Rd. 

Let R be the space of all locally finite counting measures (i.e. integer-valued 
Radon measures) on !Rd with the vague topology, and Nits Borel u-algebra; that 
is, N is the smallest u-algebra making x 1-+ n( xs) measurable for all bounded 
Borel sets B. 

Write C for the class of all bounded Borel sets in [Rd. For every B E C let 
3rB be the subspace of those x E R contained in B (i.e. putting no mass outside 

B), Ns ~ N the induced u-algebra on R and 7f~ the distribution on (R,N) of 
the homogeneous Poisson process of rate /3 on B. Note that any x E R can be 
decomposed as x = XB U Xsc. Define f 8 : R _, [O, oo) by 

(3.1) 

where Ur(x) = UxiEx B(xi,r), Btt!r the dilation of B by a ball with radius rand 
O'.B ( XBc) is the normalising constant 

To check that (3.1) is measurable and integrable, observe that 

so that the map g : x 1-+ m(Ur(x) n B®r) is measurable with respect to NB'ifJ2 r 

and a fortiori with respect to N. Clearly g is integrable with respect to 7f/3B . 
(!l2r 

Regarding the Poisson process on Be;;2r as the independent superposition of Poisson 
processes on B and B®2r \ B we can apply Fubini's theorem to integrate over the 
B component and conclude that aB(·)- 1 is NB'ifJ2r\B-measurable and integrable. 
Hence, (3.1) is N-measurable and integrable, and we may define for x E 3t, FEN 

(3.2) 

THEOREM 3.1. There exists a stationary point process X on lRd such that 

lfl>{X E FI X3c} = "'B(X, F) a.s. 

for all B E C and F EN. That is, (3.2) is a specification without forbidden states 
(Preston (1976), p. 12) and the distribution of X is a stationary Gibbs state with 
this specification. The corresponding potential V : Rf _, IR, 

V(x) = (-log7)m(U(x)) 
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is stable (Preston (1976), p. 96). 

Note that this result does not exclude the possibility that the Gibbs state is 
not unique, i.e. there may be 'phase transition' (Preston (1976), p. 46) -

PROOF. First we prove consistency condition (6.10) of Preston ((1976), 
p. 91). For any bounded Borel sets A<;;:; B 

On the other hand 

Since 

m(Ur(XAc u y) n B(fJr) = m(Ur(XAc u y) n A(fJr) 
+ m(Ur(XAc) n B(fJr \ Ae;ir), 

J?RA JB(XAc U y)dn'.!(Y) = f 8(x)/JA(x). It follows (Preston (1976), pp. 90-91) 
that {KB: BE C} is a specification in the sense of (Preston (1976), p. 12). 

Now we check the conditions of Theorem 4.3 of Preston ((1976), p. 58). Con­
dition {3.6) of Preston ((1976), p. 35) is trivially satisfied. Arguments similar 
to those used to derive Lemma 2.2 above yield that for any K E K the family 
{1rK(y,·)}yE1R considered as a class of measures on ('iR,NK) is uniformly abso­
lutely continuous with respect to n~; hence Preston's condition (3.11) (Preston 
(1976), p. 41) holds, which implies his (3.10). It remains to check (3.8) of Preston 
((1976), p. 35). Let K. be the class of all compact subsets of !Rd; then we claim 
that 

for any B E C and F E N K where K E K., there exists L E K such that 
KB(·. F) is measurable with respect to NL. 

To check this, choose L to contain KU Beo2r and observe that lF(Xsc Uy) and 
f 8 ( x~ Uy) are measurable with respect to NL 0 N 8 , then apply Fubini 's theorem 
(in the same way as was used to prove measurability of (3.1)). This proves the 
claim, which implies Preston's (3.8) and hence the conditions of his Theorem 4.3. 

It is easy to see that V is the unique canonical potential corresponding to our 
densities f 8 (cf. Preston (1976), p. 92). Since O :::; m(Ur(x)) :::; nr2n(x), V is 
stable. D 
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4. Simulation 

In this section we explore methods for simulating (2.1) using spatial birth­
and-death processes (Baddeley and M0ller (1989), M0ller (1989), Preston (1977)). 
Other techniques such as Metropolis-Hastings algorithms (Geyer and M0ller 
(1993), M0ller (1992)) are clearly possible. The general case can be dealt with 
similarly, but for simplicity we focus on the standard case. 

A spatial birth-and-death process (Preston ( 1977)) is a continuous time, pure 
jump Markov process with states in Rf specified by its transition rates D(x \ 
{xi}, xi) for a death (transition from x to x \ {xi}) and b(x, u)dµ(u) for a birth 
(transition from x to x U {u} ). Write D(x) = I:,xiEx D(x \ {xi}, xi) and B(x) = 

JA b(x, u)dµ(u) for the total transition rates out of state x. 
We consider two standard cases, the constant death rate process (Ripley 

(1977)) which has death rate D(x \ {xi}, xi) = 1 and birth rate 

( 4.1) 
p(x U {u}) 

b(x, u) = p(x) = ,8exp[-log(l')v(U(x U {u}) \ U(x))] 

and the constant birth rate process which has b(x, u) = 1 and 

(4.2) 
p(x\{xi}) 1 

D(x \ {xi},xi) = p(x) = ,e- exp[log(l')v(U(x) \ U(x \ {xi}))]. 

LEMMA 4.1. For any"/, the constant death rate and constant birth rate pro­
cesses exist and converge in distribution to the area-interaction process (2.1) from 
any initial state. 

PROOF. Note that p( x) > 0 for all x. Hence we only have to check the 
summability condition of Theorem 2.10 in Baddeley and M0ller (1989) (see Propo­
sition 5.1, Theorem 7.1 in Preston (1977)). These are obviously satisfied since the 
birth rates are bounded by a constant times 13n(x). O 

On a practical note, computation of the ratios ( 4.1) or ( 4.2) at every u is 
equivalent to computing the Hough transform of U(x); see e.g. Baddeley and 
Van Lieshout (1992) or Illingworth and Kittler (1988). The fixed n, alternating 
birth/death technique of Ripley (1977) was used to generate Fig. l. This requires 
that we generate a point u EA with density proportional to (4.1); this is relatively 
easy using rejection sampling, since ( 4.1) is dominated by a known constant by 
virtue of (2.3) which in practice will be a good bound when 1 is not far from l. 

5. Inference 

5.1 Sufficient statistics, exponential families 
Consider a family of area-interaction processes (2.1) indexed by parameter 

e = (,8,1), with rand A~ [Rd fixed. This is an exponential family with canonical 
sufficient statistic 

T(x) = (n(x), M(x, ·)) 
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where 

M(x,r) ~m(Ur(x)) ~rn (Qs(x,,r)). 
r-.fodifying this slightly we obtain a connection with the 'empty space statistic' 
F(t) = lP{X n B(O, t) f. 0} (Diggle (1983), Ripley (1981)). Define 

(5.1) 
'() m(A(-r)n(LJ~= 1 B(xi,r))) F r = _ __.;'--'--------

m(A(-r)) 

where 
A(-t) ={a EA: B(a,t) ~A}. 

This is the 'border method' (Ripley (1988), p. 25) or 'reduced sample' estimator 
(Baddeley and Gill ( 1992)) of the empty space function. 

LEMMA 5.1. ( n( x), F) is a sufficient statistic for the area-interaction process 
(2.2) with parameters (f3,"f) when Z(a) = B(a,r) and the measure vis Lebesgue 
measure restricted to A(-r). 

The canonical parameter is e = - log"/ but we prefer to use "/ to maintain the 
comparison with the Strauss process. 

5.2 Maximum likelihood 
As usual for Markov point processes, the likelihood (2.2) is easy to compute 

except for a normalising constant a that is not known analytically. Maximum 
likelihood estimation therefore rests on numerical or Monte Carlo approximations 
of a (Ogata and Tanemura (1981, 1984, 1989), Penttinen (1984)) or recursive ap­
proximation methods (Moyeed and Baddeley (1991)). For a more detailed review 
see Diggle et al. (1994), Ripley (1988) or Geyer and Thompson (1992). 

We will not explore this further here, except to note that the maximum like­
lihood estimating equations are as usual 

(5.2) 

(5.3) 

n(x) = IE13,,,n(X) 

v(U(x)) = IE13,,,v(U(X)) 

where x is the observed pattern and X is a random pattern with density (2.2). 
For the model conditioned on n(x) = n the ML estimating equation is analogous 
to (5.3) with {3 absent. 

Other estimation techniques have been proposed in Diggle et al. (1987) and 
Diggle and Gratton (1984). 
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5.3 Takacs-Fiksel 
The Takacs-Fiksel estimation method exploits the Nguyen-Zessin identity 

(Nguyen and Zessin (1979)) 

(5.4) .\IE~J(X) = IE[.\(a; X)J(X)] 

holding for any bounded measurable non-negative function f : ~ ~ IR+ and any 
stationary Gibbs process X on !Rd with finite intensity,\, see Glatz (1980a, 1980b), 
Kozlov (1976), Matthes et al. (1979), Kallenberg (1984) or Ripley ((1988), pp. 54-
55), Diggle et al. ((1994), § 2.4). The expectation on the left side of (5.4) is 
with respect to the reduced Palm distribution of X at a E !Rd, and ,\(a; x) is the 
Papangelou conditional intensity of X at a. The idea (Fiksel (1984, 1988), Takacs 
(1983, 1986)) is then to choose suitable functions and estimate both sides in the 
above formula. The resulting set of equations is solved, yielding estimates for the 
parameters of the model. 

When X is a Gibbs point process the conditional intensity can be computed 
in terms of the potential (Kallenberg (1984)). For the standard area-interaction 
process the conditional intensity is 

(5.5) ,\(u· x) = p(x U {u}) = ,6'Y-m(B(u,r)\Ur(:i:\{u})). 
' p(x \ {u}) 

In case u ff x this reduces to 

/3"(-m(B(u,r)\Ur(z)). 

One interesting instance of (5.4) is 

f(x) = l{x n B(O, s) = 0} 
,\(O; x) 

using O as an arbitrary point of !Rd ( cf. Stoyan et al. (1987), (5.5.18), p. 159). Then 
IE[,\(O; X)f(X)] = 1 - F(s) where F(s) = IJJ>{X n B(O, s) # 0} is the empty space 
function of X. Now ifs> 2r then 

,\IE~f(X) = ,\ J l{X n B(O, s) = 0},B-l'Ym(B(O,r)\Ur(X))dPJ(X) 

= ,\ J l{X n B(O, s) = 0},B-l'Ym(B(O,r))dPJ(x) 

= ,\,6-l"(trr2 [1 - G(s)] 

where G(s) = IJJ>~{X n B(O, s) # 0} is the nearest neighbour distance distribution 
function of X. Equivalently, 

(5.6) 
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for all s > 2r. This suggests that parameter estimates for the area-interaction 
process can be extracted directly from the standard statistics F and G. For further 
development of this idea see Van Lieshout and Baddeley (1995). 

The identity (5.6) provides a further description of the typical pattern gener­
ated by an area-interaction process, since the ratio (1 - G)/(1 - F) is less than 
1 for clustered patterns, 1 for a Poisson process and greater than 1 for regular 
patterns. 

5.4 Pseudolikelihood estimation 
The pseudo likelihood is defined (Besag ( 1977), Jensen and M0ller ( 1991)) by 

(5.7) PL((3,-·y; x) =exp {- j >.(u; x)du} IT >.(xi; x) 
A i=I 

and can be interpreted as the limit case of pseudolikelihood for lattice processes 
(Besag (1977), Besag et al. (1982), Jensen and M0ller (1991)). For Markov pro­
cesses of finite range, maximum pseudolikelihood estimators are consistent (Jensen 
and M0ller (1991)); asymptotic normality is considered in Jensen (1993). 

For the area-interaction model, the maximum pseudolikelihood estimates of (3 
and '"Y are the solutions of 

(5.8) n = (3 l '"'(-t(u)du 

t t(xi) = (31 t(u)'"Y-t(u)du 
i=l A 

(5.9) 

where t(u) = m(B(u,r) \ Ur(x \ {u})). 
Note that these have exactly the same form as the pseudolikelihood equations 

for the Strauss model (Ripley (1988), p. 53); in that case -t(u) is the number of 
points in x with 0 < llu - xiii :Sr. 

For inhibitory pairwise interaction models it is known that pseudolikelihood 
estimation is a special case of the Takacs-Fiksel method when the interaction 
radius r is fixed (Diggle et al. ((1994), Section 2.4), Ripley ((1988), p. 54), Sarkkii 
((1990), Section 4)). The same is true for the area-interaction model. 

THEOREM 5.1. For a stationary area-interaction process, the pseudolikeli­
hood equations (5.8) and (5.9) are special cases of the Takacs-Fiksel method. 

PROOF. Take f to be either of 

ff3(x) = (3- 1, 

f-y(x) = -1-1m(B(O,r) \ Ur(x \ {O})). 

These are the partial derivatives of log,\ (O; x) with respect to (3 and /. When 
J = f 13 an unbiased estimator for the left hand side of ( 5.4) is 

n 1 

m(A) (3 
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and, by stationarity, 

-- -(3''(-t(u)du 1 11 
m(A) A (3 

is an unbiased estimator of the right hand side. When f = f'Y, the average over 
the observed events 

n 1 ~ -t(xi) 
m(A)~6-1-

is an unbiased estimator of the left hand side of (5.4) by the Campbell-Mecke 
formula, while an unbiased estimator for the right hand side is the window mean 

_1_ r -t(u)(3 -t(u)d 
m(A) }A "( "( u. 

These reduce to (5.8)-(5.9). D 

6. Approximation by lattice processes 

Besag et al. (1982) proved that any purely inhibitory (or hard core) pairwise 
interaction point process is the weak limit of a sequence of lattice processes, and 
remark that this is also true of general Gibbs point processes, again of purely 
inhibitory type. Here we prove a similar result for the area-interaction model, 
which is not purely inhibitory. 

Consider a partition {Ci, ... , Cm} of the observation window A and choose 
fixed points ~i E ci. Denote the area of ci by A > 0 and the set of all repre­
sentatives by 3. We shall construct a 0, 1-valued stochastic process n = { ni : i = 
1, ... , m} which is auto-logistic, 

(6.1) 

where 

the product ranges over all (possibly empty) subsets of S \ {~i}, the set function q 
is the clique interaction function (2.5) of the area-interaction model, and ry(y) = 

fieiEY nj is either 0 or 1, defining o0 = 1. 
Given a realisation of n, construct a point process x such that if ni = 0 

then x n ci is empty, while if ni = 1 then x n ci consists of one point uniformly 
distributed in ci independently of other points. 

LEMMA 6.1. The conditional distributions (6.1) specify a distribution for n 
of the form 
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The point process x is absolutely continuous with respect to the unit rate Poisson 
process on A, with density 

J(x) = /(0) II q(y)rJx(Y). 

0#y~2 

Here 1]x ( y) = TI n( x n Cj) and the product ranges over all j such that ~j E y. 

PROOF. Use Besag's factorisation theorem (Besag (1974), p. 195). D 

THEOREM 6.1. Consider a sequence of partitions Cr = {Cr,1, ... , Cr,m(r)} 
such that maxi diam(Cr,i) -+ 0. Then the corresponding point process :z:(r) con­
verges weakly and in total variation to the area-interaction process. 

PROOF. Let fr be the density of x(r). For fixed x 

since all cells contain at most one point, and q is continuous in all its arguments. 
By dominated convergence, 

1 J fr(x) J 1 1 
fr(0) = fr(0) drr(x)-+ ;p(x)d7r(x) = -;;; 

thus, 
fr(x) 

fr(x) = fr( 0) fr(0)-+ p(x) 

pointwise and the theorem is proved. o 

7. Final remarks 

The Strauss process is a special case of the general pairwise interaction process. 
In the same way, there is a generalisation of the area-interaction process to a 
process with density 

p(x) =a exp (-L f(d(x, u))du) 

where d(x, u) = mini llxi - uil and f : [O, oo] -+ (-oo, oo]. The area-interaction 
process is then the special case f(t) = l[t ::::; r]. Thus f is the analogue of the 
general interaction function in pairwise interaction. 
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