
MARKOV POINT PROCESSES AND THEIR 
APPLICATIONS IN HIGH-LEVEL IMAGING 

1 Introduction 

M N M van Lieshout1 

Department of Statistics, Uni'Versity of Warwick 

Coventry CV4 7AL, United /(ingdom 

IP14. 1 

rhe pioneering work by Geman & Geman [21] and Besag [8] stimulated a surge of interest iu sta­
tistical approaches to image analysis. Until recently, most attention has been given to segmentation 
Jr classification tasks, i.e. dividing an image into relatively homogeneous regions of different type. 
E'ollowing [8, 21], a Bayesian approach is usually taken in which a prior Markov random field model 
is used to impose smoothness on segmentations. 

In the computer vision literature, segmentation is c·onsidered as a 'low-level' task, calling for local 
Jperations on pixel neighbourhoods and converting the input image into another raster image. In 
high-level' problems (including object recognition and scene analysis) we have to interpret the image 
ilobally, reducing it to a compact description (e.g. a vector graphics representation) of the scene. 

Baddeley & Van Lieshout [2, 3, 4, 30, 31, 32], and Ripley and coauthors [37, 47, 49] have argued 
:hat the (continuous) Markov or Gibbs processes studied in stochastic geometry, spatial statistics 
md statistical physics [6, 42, 45, 46, 48] provide a rich collection of models usable in a broad range 
>f problems involving the higher-level interpretation of spatial and image data. They are of simple 
nathematical form, interpretable in terms of interaction between objects and amenable to iterative 
:tatistical techniques and Markov chain Monte Carlo. 

The subclass most widely studied is that of pairwise interaction models [18, 38, 39, 40, 43, 45, 54]. 
['hese provide a flexible class for negative association between neighbouring objects, but they do not 
eem to be able to model clustered patterns and M111ller [36] has argued that nearest-neighbour Markov 
nodels [6] are better suited to this task. 

In support of this claim, Baddeley et al. [7] proved that many cluster processes with bounded 
ion-empty clusters fall within the class of nearest-neighbour Markov point processes. These results 
uggest that nearest-neighbour Markov processes may be suitable multiple-generation cluster models 
29] and help to explain why statistical inference for Poisson cluster processes based on interpoint 
iistances (33) bears so close a.resemblance to that for Markov point processes. 

On the other hand, the simpler Markov models (48] also allow clustered patterns if interactions 
,etween more than two objects are permitted. Baddeley & Van Lieshout [5] proposed a model that 
an exhibit both clustering and inhibition according to the value of a single parameter. The model 
.as interactions of arbitrary high order and is closely related to the empty space function [18). A· 
pecial case is known in the statistical physics literature as the 'penetrable sphere model' (55]. 

To illustrate the role of Markov spatial processes in image analysis, consider object recognition 
2, 4). Here the aim is to decide whether there are any objects of a specified kind in the image and 
'so to determine the number of objects and their locations and characteristics. Applications include 
1dustrial robot vision, document reading, interpretation of medical scans [12], automated cytology 
24], classification of astronomical features [37, 49] and identification of grain structures in materials. 

1 includes joint work with A.J. Baddeley and J. M.iller 
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science. 
A strong motivation for a prior in this context is 'multiple response' in maximum likelihood so­

lutions, which tend to detect many almost identical objects. This is familiar from computer vision, 
where it is recommended to select one object from each cluster, but this is similar to a Bayesian 
approach with a.n inhibitive prior. 

Alternative approaches have been described in recent studies (14, 17, 24, 41] on recognising the 
shape of an interesting object (hand, galaxy, mitochondrion). The shape is described by a flexible 
template, typically a polygon, with edge lengths and angles governed by a joint prior disLributiou, 
typically a Markov chain. 

The plan of this paper is as follows. In Section 2 we survey Markov object processes, turning 
to a discussion of several qualitatively different types of interaction in Section 3. Section 4 briefly 
describes spatial Markov properties. In Section 5 we discuss the application of Markov processes as 
a prior distribution in object recognition and the paper closes with a discussion on computational 
aspects. 

2 Survey of Markov spatial models 

2.1 Objects 

The objects featuring in stochastic geometry range from simple geometrical figures (points, lines, discs) 
through plane polygons and convex compact sets to completely general closed sets. In particular, the 
space :F of all closed subsets of JRd can b_e made into a locally compact, second countable Hausdorff 
space (Lc.s. space) so that a random closed set can be defined as a random element of :F [34]. 

We are mainly concerned with simple geometrical figures that can be specified by the values of 
a few real-valued parameters giving location, orientation, size etc. For example a disc in IR 2 can be 
specified by its centre (:i:, y) and radius r. A given class of objects U is treated as a space in its own 
right, so that objects .are regarded as points in U. For the disc example U = IR 2 x JR+. 

It is often useful to represent an object as a 'marked point', that is a pair (s, m) consisting of 
a point s E JRd and a 'mark' m E M, where M is a.n arbitrary l.c.s. space. The point s fixc~ t.111~ 
location of the object a.nd the mark m contains all other information such as size and shape. A disc 
in Dl2 ca.n be regarded as a point (x, y) marked by a radius r. Objects with additional properties such 
as colour and surface texture can be represented as marked points by choosing an appropriate mark 
space M. For example a grey-scale surface texture can be formalised as an upper-semicontinuous 
function Rd - JR.+, and the space of all such functions is l.c.s. 

2.2 Markov object processes 

An object configuration is a finite un-ordered set x = {x1, •.. , x,.} of objects x; E U. Writing n for the 
set of all configurations (the exponential space of U), a random object process is a random element 
of n, or equivalently, a point process on U. 

The basic reference model is the Poisson object process in U. Letµ be a finite non-atomic measure 
on U. Then, under the Poisson model, the total number of objects has a Poisson distribution with 
mean µ(U); given that exactly n objects are present, they are independent and uniformly distributed 
in U, i.e . .IP(x; E B) = µ(B)/µ(U) for all measurable B <;;; U. In particular, there are no interactions 
between objects. Further details can be consulted in [54]. 

To construct spatial processes that do exhibit dependence between 'neighbouring' objects, we spec­
ify the probability density of the new process with respect to the Poisson process (thereby restricting 
attention to processes that are absolutely continuous with respect to the Poisson model). A density 
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is a measurable and integrable function p : n --. [O, oo). For the new process, the distribution of the 
total number of objects is 

IJl>(N = n) = e-µ~U) 1 · · ·1 p({z1, ... , Zn}) dµ(:i:1) .. . dµ(zn)· 
n. u u 

Writing qn = P(N = n), given N = n, the n random objects have joint probability density 

p,.(z1, .. .,z,.) = e-µ(Ulµ(U)"p({zi, ... ,z,.})/(n!q,.) 

with respect to the distribution of n independent uniformly distributed objects in U. 
To introduce interactions, let ~ be any symmetric, reflexive relation on U. For instance two objects 

represented by u, v E U are 'neighbours' if their intersection is non-empty. A widely used class is that 
of painJJise interaction models 

p(x) = 0c/3"(X) II g(x;, x; ). (1) 
x;-z; 

Here a, /3 > 0 are constants, n(x) is the number of objects in x, and g: U x U-+ [O, oo) the interaction 
function. The product is over all pairs of neighbouring objects z; ...., :i:; with i < j. Note that for every 
proposed g(·, ·)we have to verify that the model is well-defined and integrable! 

The density (1) embraces some interesting special cases. If g ::: 1 then (I) is simply a Poisson 
process with intensity measure f3µ(·); if g = 0 it is a hard object process. 

The intermediate case g = 'Y for a constant 0 < 'Y < 1 is called a Strauss object process and the 
density can be written 

where 

s(x)=Ll{:i:;-z;} 
i<j 

(2) 

is the number of pairs of neighbouring objects (e.g. number of overlaps) in the configuration. This 
process is 'ordered' or 'regular', since s(x) tends to be smaller than under the Poisson model. For 
'Y > 1 the density .(2) is typically not integrable. 

Note that if u E U, u ?! x with p(x) > 0, the ratio 

p(xU{u}) II 
(x) =f3 g(u,z;), 

p .,,_u 
(3) 

comparable to the local characteristics of a Markov random field, depends only on u and on the 
neighbours ofu in x. This important property signifies that all interaction is 'local'. 

In the statistical physics interpretation, -logp(x U { u}) + logp(x) is the energy required to add a 
new object u to an existing configuration x. In probabilistic terms p(x U { u} )/p(x) is the Papangelou 
conditional intensity .\( u; x) at u given the rest of the pattern x on U \ { u}, see [16). Roughly speaking, 
.\( u; x)du is the conditional probability of an object in the infinitesimal region du centred at u given 
the configuration agrees with x outside this region. 

The discussion above motivates the following definitions and results ta.ken from Ripley & Kelly 
(48]. 

Definition 1 (Ripley and Kelly) A random object process X with density p is called a Markov 
object process with respect to ...., if for all x E !1 
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(a) p(x) > 0 implies p(y) > 0 for ally('.;:; x; 

(b) if p(x) > 0, then 

p(xu {u}) 
p(x) 

depends only on u and N({u})nx = {x; Ex: u ~ x;}. 

(4) 

An analogue of the celebrated Hammersley-Clifford theorem also holds [48]: a process with density 
p: U _. (0, oo) is Markov iff 

p(x) = TI q(y) (5) 
cliques Y\;;X 

for all x En, and q: 0-+ [0,oo) is an (arbitrary) interaction function. The product is over all cliques, 
that is configurations y ~ x in which all members are neighbours. By convention the empty set and 
single object configurations are cliques. 

2.3 Nearest-neighbour Markov object processes 

A further extension due to Baddeley and Mliiller [6] is to allow interaction behaviour to depend on 
the realisation of the process. For example, in a one-dimensional renewal process, each point can be 
said to interact with its nearest neighbours to the left and right, regardless of how far distant these 
neighbours may be. 

In higher dimensions we are particularly interested in the connected component relation [6] in 
which x; ~ x; if the two objects x;, x; belong to the same connected component in the union set of x 
all objects in x: 

(6) 

for some path z1, ... , Zn E x of mutually overlapping objects. 
In general, assume that for each configurati~n x we have a symmetric reflexive relation - defined 

x 
on x. The reader might prefer to think of this as a finite graph whose vertices are the objects :z:; E x. 

Definition 2 (Baddeley and M0ller) A random object process with density p is called a nearest­
neighbour Markov object process with respect to {;c: x E O} if, for all x with p(x) > 0 

• p(y) > 0 for all y s;; x; 

•the ratio p(x(4))) depends only on u, on N({u} lxU{u})nx= {x; Ex: x; - u} and on 
P xu{u} 

the relations~, ~ restricted to N ( { u} I x U { u}) n x. 
x xu{u) 

The appropriate Hammersley-Clifford theorem [6] states that a process with density p(.) is 1wnr<"sl­
neighbour Markov iff 

p(x) == { I1c1iques y\;;x q(y) if q(y) > 0 for ally ~ x 
0 otherwise 

(7) 

562 



IP14. 1 

wh~re. q : n -+ ~+ satisfies certain regularity conditions. Here a subset y ~ x is a clique m x if all 
members of y are x-neighbours of one another (u iv for all u, v E y). 

On a practical note, the normalising constant a in (1) and other Markov processes is usually not 
available in closed form, thus prohibiting direct sampling and estimation. However, the simple ratios 
( 4) make Markov processes amenable to Markov chain Monte Carlo. [9, 53]. The classical approach is 
via spatial birth-and-death processes [6, 42, 35, 32, 43] but recently Metropoli~-l-l<t>itiugti a.lg,uriLluuti 
of various types [22] have been proposed. For an excellent recent survey, see [36]. An overview of 
parameter estimation techniques can be found in [19] or [45]. 

3 Inhibition versus attraction 

As mentioned in Section 2, for each new object model with density p(-) we have to verify that p( ·) 
is integrable. This is straightforward for two types of models: those imposing an upper bound on 
the number of objects and those for which all interaction functions are bounded above by l (purely 
inhibitory models). The first class includes for instance hard object processes; an example of the 
second type is the inhibitory Strauss density (2). 

For attractive patterns integrability seems more problematic, e.g. the Strauss process is not inte­
grable for values of I > 1. Conditioning on the number of objects does yield a well-defined model, 
but recent simulation experiments [36] suggest an abrupt transition from Poisson-like patterns to 
tightly clustered patterns rather than exhibiting intermediate, moderately clustered patterns. This 
confirms theoretical results by Gates and Westcott (20], who showed that partly attractive processes 
may violate a stability condition, implying that they produce extremel.)l" clustered patterns with high 
probability. 

3.1 Cluster processes 

The natural model for clustering in stochastic geometry [54] is a two stage process, in which each 
object(, in an unobserved parent process x gives rise to a finite process Ze of <laughterti. The data y 
is the superposition 

Y = Ux,exZx,· 

Interpreted as a marked point process {(x 1,Zr,), ... ,(xn,Zx.J}, we assume that the marks Zr. are 
independent. In addition, we assume that the object space U is equipped with a complete metric d 
and restrict attention to daughter processes that are absolutely continuous with respect to the Poisson 
object process ( cf. Section 2). 

As a simple example, suppose that each parent ~ in a unit rate Poisson process on a compact 
subset B C ~d generates a Poisson number of offspring with mean w positioned i.i.d. with probability 
density h( · - e). Let µ be Lebesgue measure restricted to the dilated set BeR = { u : d( u, B) :::; R}. H 
h( ·) is supported on B(O, R), the density for the total offspring y :f 0 is 

J(y) = 

with respect to the distribution of a unit rate Poisson process on BeR· This can be factorised as 

(8) 
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where f3 = (1- e-w)µ(B), the sum is over all un-ordered partitions of y into disjoint non-empty 
subconfigurations, and 

J(yc) = l IT h(u; -e)dµ(e). 
B r;EYc 

(!:l) 

Note that J(yc) = O unless (yc)eR is connected. In other words, associating with each point Yi a 
ball of radius R, the process is nearest-neighbour Markov with respect to the connected component 
relation ·(6) (assuming a positivity condition holds). Considered as a point process Y on Ben, we say 
that Y is nearest-neighbour Markov with respect to the connected component relation at distance 
2R. 

More generally, Baddeley et al. [7) proved the following result. 

Theorem 1 Let x be a unit rate Poisson point process on U and y a cluster process with parent 
.process x and clusters Z.,, ~ B(:i:1,R). Then y is a nearest-neighbour Markov point process with 
respect to the connected component relation at distance 2R. 

The process is in general not Markovian in Ripley-Kelly sense. If the parent Poisson process is 
replaced by a Markov pi;_ocess with respect to 

u ~ v iff d(u, v)::; r 

or the connected component relation at range r, the cluster process described above is not uearest­
neighbour Markov. Heuristically, this is because parents without offspring can cause interaction by 
merging of disjoint -..cliques. If we require each parent to have at least one daughter, the cluster 

y ' 
process is nearest-neighbour Markov at range 2R+ r (7) . 

. 3.2 Area-interaction processes 

As we saw in the previous section, many familiar cluster processes satisfy a connected component 
Markov property. However, the simpler Ripley-Kelly Markov processes also allow for clustered be-
havipur f5]. ' 

As before, let U be an l.c.s. metric space, equipped with a complete metric d. 

Definition 3 (Baddeley and Van Lieshout) The area-interactiou proce:;:; 11;; defined bg it~ dw.,1/.y 

p(x) = Ot /Jn(X) r-v(S(X)) (10) 

with respect to the Poisson model. Here {3, r > 0 are parameters and°' is the no1'1nalisi11g constant; ,, 
is a totally finite regular Borel measure on U and 

n 

S(x) = LJ B(:i:;, r) 
i=l 

is the union of d-balls of radius r centred at the points of the realisation. 

The model is similar to the Strauss process (2) except that counting the number of neighbour 
pairs has been replaced by measuring the union set S(x). Hence, considered as an exponential family 
in {3, r, the sufficient statistic is related to the empty space function rather than to the l{-funct.iou 
[18, 44]. 

Contrary to the Strauss model, however, area-interaction is well-defined (measurable a11d int.<'­
grable) for all values of /3,r > 0. Even stronger, the model is uniformly absolutely continuous with 
respect to the distribution of a Poisson process with intensity measure {3µ( · ), i.e. has uniformly bounded 
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Figure 1: Simulated realisations of an area-interaction process conditional on n = 100 points, with 
r = 5 in a window of size 256 x 256. Left: ordered pattern, / = 0.9711, r- 25" = 10; Right: clustered 
pattern, 'Y = 1.02975, r- 25 " = 0.1. 

Radon-Nikodym derivative (as the measure of S(x) is bounded by v(U) uniformly in x). Moreover, 
( 10) satisfies the linear stability condition in (20]. This suggests that the 'singularity' (highly clustered 
behaviour) of the Strauss model is unlikely. See also Figure 1. 

It is intuitively clear that for O < r < 1 the pattern will tend to be 'ordered' and for / > 1 
'clustered'. For; = 1, (10) reduces to a Poisson process with intensity measure /3µ(·). The special 
case v is Lebesgue measure and ; > l was introduced by Widom and Rawlinson [55] as a model for 
liquid-vapour equilibrium in chemical physics. See also (25, 50, 51]. 

Turning to Markov properties, define u, v EU to be neighbours whenever B(u, r) n 8(1•, r) f= ~. 

or equivalently u ~ v iff d(u, v) ,$ 2r. Then it is readily seen that the area-interaction process (10) is 
Markov with respect to - and exhibits interaction of infinite order: 

q(0) = CT 

q( {a}) = 131 -v(B(a,r)) 

q( {Yi, · · · , Yk}) = (-1)•,,cn• B(y.,r)) I 1:1 , k 2'. 2. (11) 

Various modifications are of interest, for example the balls B(x;, r) can be replaced by other 
compact sets R(x;) depending on x; [5]. In a parametric statistical model the measure v aud the 
definition of R(-) might also be allowed to depend on the parameter 0. 

Just as the Strauss process is a simple case of pairwise interaction models, area-interaction can be 
generalised by allowing other interaction 'potentials', for instance, 
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p(x) = a(O) fJ. b(x;; 8) exp (-L f(d(x, u)) du) 

where d(x, u) = min; d(:i:;, 1.1) and f: (0, oo]-+ (-oo, oo]. The standard case is f(t) =log/ 1 {t $ r}. 
Finally, from a more geometrical point of view, replacing 'area' by other fundamental geometrical 

measurements such as Euler characteristic or perimeter is studied in [I}. 

4 Spatial Markov properties 

A Ripley-Kelly Markov process (Definition I) has conditional intensities (4) that depend on local 
information only, a property that can be dubbed 'locally Markov behaviour'. To formulate a 'global' or 
'spatial' Markov property, let A be a measurable subset of U. Then the conditional distribution of X n 
A given XnA 0 depends only on X in the neighbourhood N(A)nA" = {u E Ac: u ~a for some a EA}: 

.C(X n A IX n Ac) = C.(X n A IX n N(A) n Ac). (12) 

In other words, X restricted to A and X restricted to N(A) 0 are conditionally independent given the 
information in N(A) \A (48]. 

For generalisations of the spatial Markov property (12) to nearest-neighbour processes (Defini­
tion 2), see (28] or (36). 

5 Bayesian object recognition 

In this Sectfon we would like to indicate how the Markov processes of the previous Sections can 
be applied in image interpretation problems such as object recognition. The appropriate models 
here are of the inhibitory type and the exposition below is based on joint work with A.J. Baddeley 
(2, 3, 4, 30, 31, 32]. 

Suppose we observe an image of a scene composed of several objects and the task is to locate them. 
Typical applications are robot vision or the automated reading of documents. 

The objects to be recognised are assumed to Ire representable by a finite number of real parameters 
that determine size, shape and location. Let U denote the space of possible parameter vector values; 
a point u E U represents an object R(u) ~Tin the image space T, a (large) array of pixels. 

An object configuration x = { :z:1, · · ·, Xn}, x; E U is conveniently modelled as a realisation of an 
object process on U and induces a set S(x) = LJ~= 1 R(x;) of pixels in image space which we shall call 
the silhouette. 

Object recognition can be formulated as a statistical parameter estimation problem by assuming 
that the image y depends on the 'true' object pattern x through a known probability distribution, 
with density /(y I x). Our image model f consists of a deterministic 'deformation' and a random 
noise component. Any object configuration x determines an image O(X) in pixel space T, representing 
the ideal signal, which is then corrupted by random noise. 

It is convenient to assume that the pixel values Yt are conditionally independent given x. Without 
loss of generality the conditional distributions of pixel values Yt belong to a family of distributions 
with densities {g(- j 8) : 8 E 0} indexed by a parameter space 8. Thus 

f(y I x) = II Y(Yt I elx» (13) 
tET 

where 8~x) is the parameter value (signal) at pixel t. This includes additive and multiplicative noise. 
As a simple example, consider a 'blur-free' silhouette signal 9(x) = S(x), in which backgrountl 

pixels are randomly flipped from value 0 to 1 with some fixed probability, and foreground (silhouette) 
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pixels are unchanged. Let Y be the set of pixels with value l. The likelihood is nonzero onlv when 
S(x) ~ Y and the log likelihood is then a linear function of IS(x)I, the total area of the silhouette. 
Hence, one solution of the maximum likelihood equations is 

imax = YeR 
= {u EU: R(u) s;,; Y}. 

Note that this is a generalised erosion operator [52]. This Xma.x is the largest solution; the other 
solutions are the subsets x s:; Xmax with the same silhouette, 

S(i) = S(imax). 

Thus, performing an erosion to extract features is equivalent to maximum likelihood for a simple noise 
model. 

From this example, we also see that multiple response can occur due to occlusion: maximum like­
lihood solutions x tend to contain clusters of almost identical objects. This could well be undesirable 
and suggests a Bayesian approach with a prior distribution penalising scenes with many overlapping 
objects. Hence inhibitory Markov models where objects u and v are neighbours whenever their induced 
objects R(u) and R(v) overlap are natural choices. 

Given observation of image y, the posterior probability density for scene x is 

p(x I y) ex /(y I x)p(x). 

A maximum .a posterior (MAP) estimator of the true configuration solves 

i = argmaxx p(x J y) = argmaxx J(y I x)p(x). 

(14) 

( J!i) 

Assuming p(-) > 0 and taking logarithms, (15) can be rewritten as a penalised maximum likelihood 
estimation 

i= argmaxx pog/(y Jx)+logp(x)] ( 161 

we interpret -log/(y J x) as a measure of goodness of fit to the data., and - logp(x) as a pena 
for the complexity of the configuration x. For instance, the Strauss p~ocess (2) results in a. penalt. 
- log ff for the presence of each object :i:; E x and a penalty of - log "'I for each pair of neighbou1 
objects (e.g. overlapping objects). Modifications which might be useful in this application are 

n 

p(x) = a II 13IR(,,,)I II 1 !R(,,,)nR(,,;)I • ( 17) 
i=l i<j 

and, for marked objects, to allow the interaction terms to depend on the marks. 
Regarding the choice of para.meter values, note that if the raster is made finer (say, quadrupling the 

number of pixels) then the log likelihood typically increases by the same factor. This suggests that to 
maintain the balance between f a.nd pin (15)-(16) the para.meters log,8 and logr of a Strauss model 
should also be multiplied by this factor. Models such as (17) and (10), with interactions expressed in 
terms of pixel counts, do not require such adjustment. 

5.1 ICM for object recognition 

Turning to estimation of the scene x, note that due to their computational complexity the MAP 
equations (15) cannot be solved analytically and we have to resort to iterative methods. 

A simple deterministic technique [2] considers basic changes such as adding an object to the current 
recognition, slightly modifying the features of an object or deleting one. E.g. an object u will be added 
to scene x if 
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1 f(y lxU{u})p(xU{u}) 
og J(y I x)p(x) > w (18) 

where w ::::: 0 is a chosen threshold. 
Various strategies to select u are available. For instance, the object space U can be digitised and 

scanned, resulting in an analogue of Besag's ICM algorithm [8]. Alternatively. one can search for 
that object whose addition would most increase the posterior likelihood ratio. The latter algorith~ 
is also defined when U is 'continuous' (any l.s.c. space) but the interpretation is more complex: a 
new object u is added at that position where the Papangelou conditional intensity of the posterior 
distribution, given the current configuration x on U \ {u}, is maximal and greater than ew. Deletions 
and replacements can be dealt with similarly. 

As an example, Figure 2 shows a scanned 128 x 128 image ('pellets') taken from the Brodatz 
texture album [13]. We treat the pellets as discs of fixed radius 4 pixels but with blurred boundaries. 
The grey-level histogram has two distinct peaks at value 8 and 172, suggesting that we can regard the 
background and foreground signal as roughly constant at these values. Assuming additive Gaussian 
noise, the noise variance was estimated by thresholding the image and taking the sample variance, 
giving an estimate of 83.1. Blurring was modelled by assuming that the original blur-free signal was 
subjected to a 3 x 3 averaging (linear) filter with relative weights 4 for the central pixel, 2 for horizontal 
and vertical neighbours and 1 for diagonal neighbours. 

Figure 3 shows an ICM-approximation to the maximum likelihood estimator computed by steepest 
ascent from an empty initial configuration. Pellets are correctly identified but there is 'multiple 
response', i.e. the MLE sometimes contains clusters of objects around the position of each 'true' 
object. This is alleviated by introducing a prior, in this case a Strauss model (2), as illustrated in 
Figure 4. 

Figure 2: Pellets image taken from Brodatz (1966), digitised on a 128 x 128 square grid. 

5.2 Sampling from the posterior 

An alternative to ICM is to use sampling techniques [9, 10, 53]. For an up to date account in the 
context of spatial processes see [36]. 

The classical approach (6, 35, 43] followed in (4, 31) is based on spatial birth-and-death processes 
[42]. These are continuous-time pure jump Markov processes whose transitions are either the addition 
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Figure 3: Approximate maximum likelihood reconstruction by steepest ascent of the pellets texture 
from an empty initial state. 

('birth') of a new object or the deletion ('death') of an existing one. A convenient choice is the constant 
death rate process which has rate D(x \ {x;}, x;) = 1 for a transition from x to x \ {x;} and birth 
rate 

b(x, u) = J(ylx P x) { 
tCY!Xu{u}f!xu{u}) if /(y I x)p(x) > 0 
0 else 

(19) 

for adding u rf. x to pattern x. It is easy to see that b(·, ·) and D(-, ·) sati~fi' the detailed balance 
equations 

b(x, u)p(x I y) = D(x, u)p(x U { u} I y). (20) 

Other techniques include jump-diffusion processes [24] or Metropolis-Hastings algorithms [22, 23]. 
The latter are usuaJly cast as a discrete time Markov chain and operate by proposing a new configu­
ration (birth, death, etc) and accepting it with a probability designed to satisfy detailed balance. 

For each of the techniques described, every new application calls for verifying that the Markov 
process is well-defined and converges to the desired equilibrium distribution p(- I y). For instance, the 
following corollory [31] of Proposition 5.1 and Theorem 7.1 in [42] holds. 

Lemma 1 Let y, be fi::ed. For any blur-free noise model {13} with g(- I -) > 0, and any nearest­
neighbour Markov" object process p(·) with uniformly bounded likelihood ratios 

p(xu{u}) (3 
p(x) :::; < oo, 

there exists a unique spatial birth-and-death process with constant death rate 1 and birth rate {19). 
The process has unique equilibrium distribution p and converges in distribution to p from any initial 
state. 
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Figure 4: MAP reconstruction of the Brodatz pellets texture by steepest ascent from an empty initial 
state (w = 0) using a Strauss prior with log/3 = logr = -1000. 

Figure 5 shows a sample from the posterior distribution for the pellets t.exture using the same 
Strauss prior as for Figure 4. · 

The main advantage of sampling from the posterior distribution is the ability to estimate any 
functional of the posterior by taking a sufficient number of independent realisations. Examples of 
useful functionals are: the distribution (mean, variance) of the number of objects; the probability 
that there is no object in a. given subregion of the image; the distribution of the distance from a. given 
reference point to the nearest object and the first-order intensity [54]. The first-order intensity for the 
Brodatz example is given in Figure 6. 

5.3 Stochastic annealing 

A MAP solution can also be found by simulated annealing. Assume the conditions of Lemma 1. For 
H > 0 define 

PH(x I y) ex {f(y I x)p(x)}1/H. 

This is the density of a nearest-neighbour Markov object process, and the associated spatial birth­
and-death process with constant death rate 1 and birth rate (19) exists and converges in distribution 
to PH(· I y). 

As for discrete Markov random fields, H has the interpretation of 'temperature'. If U is discrete 
then PH(· I y) converges pointwise as H-+ 0 to a uniform distribution on the set of MAP solutions. 

Take a sequence H,. '-. 0 and consider the corresponding family (X(n))neN of spatial birth-and­
death processes on K = {x : /(y I x)p(x) > O}. Lett,., n EN be a sequence satisfying 

t >t (l+ log(~(l-~))) 
n - 0 log(l - K,.(to)) · 

where K,.(to) is a certain constant determining the rate of convergence of the n1h birth-death process 
[31, 35]. Construct a time-inhomogeneous Markov ,process X1 , t > O whose transition rates are those 
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Figure 5: Realisation from the posterior distribution for the Brodatz pellets texture sampled at time 
1. The prior distribution is a Strauss process with log,B =log"'(= -1000. 

of x<n) during time interval [sn, Bn+1) where Sn =to+ ... + tn-1· It can be shown [31] that under 
certain regularity conditions the sequence of birth-and-death processes constructed this way converges 
in total variation to a uniform distribution on the set of global maxima of the posterior distribution, 
regardless of the initial state. . 

For the Brodatz pellet texture of Figure 2, the results of simulated annealing are very similar to 
those of posterior sampling (Figure 5). 

6 Discussion 

In this paper we argued for using Markov spatial processes as a prior distribution in vision. One 
reason is that, due to the Markov property, ratios of the form p(Ax)/P(x) are easy to compute for 
operators A such as changing the value of a single pixel (for discrete Markov random fields [8, 21]), 
adding, deleting or modifying an object in a Markov object process or moving vertices in a polygonal 
model [Hi]. 

Focusing on the formulation in Section 5.1, the (forward) log likelihood ratio for a blur-free silhou­
ette signal 

I f(y!xU{u}) "l U(Ytl01) 
og =~og 

/(y Ix) tER(u) g(yt I Oo) 
(21) 

is a. sum over pixels in R(u) only (related to the Hough transfoNn [26, 27] in computer vision) and 
depends on the data image only through 

u(Yt I 111) 
Zt = log g(y1 I Oo). 

Since Zt does not depend on the object configuration x, it can be computed only once in the initiali­
sation stage of the algorithm. 
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Figure 6: Posterior intensity estimated over 10 time units for the Brodatz pellets texture. The prior 
distribution is a Strauss process with log,8 =log r = -1000. 

Moreover, after adding or deleting a particular object u the log likelihood ratio ( 21) requires 
updating only for v in the region 

V(u) = {v EU: R(v) n R(u) # 0}. 

For example, in a translation model with U = T = JRd and R(u) = Ro + u this is the central 
symmetrisation V ( u) = Ro ®Ro + u. 

For the Markov prior, the likelihood ratio for e.g. adding object u is local too and depends only 
on those objects in the current reconstruction that are neighbours of u (e.g. overlapping R(u)). 

Monte Carlo samplers can then be build by repeatedly performing these operations. However, 
MCMC techniques can encounter numerical problems, especially if the temperature parameter H be­
comes small. Then the birth-and-death process behaves like a deterministic steepest ascent algorithm, 
suggesting incorporating a search operation [4]. If the dimension of the object space U becomes large, 
the cost ofsea~ching it increases exponentially and multiresolution techniques' are useful [4]. Moreover, 
efficient parametrisation is helpful. 

The framework described in this paper is quite general and can be adapted easily to a wide range 
of problems involving e.g. subpixel resolution of objects, but also stereo pairs, motion tracking [41), 
edge detection or sketching problems. 

Finally, as repeatedly argued by Besag [11] in the context of Markov randon'i fields, it is not 
necessary to 'believe' that the prior is a model for the underlying scene. In fact, good reconstructions 
may well have low prior probability. This has been used as an argument to prefer ICM to simulated 
annealing, since the global optimum may depend too much on undesirable global properties of the 
prior. Similar remarks hold in the present context. 
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Summary 
This paper studies Markov object processes, a class of point process models defined in terms 
interactions between 'close' objects. These are widely used to model. inhibitory patterns, but wer" 
believed to be less suitable for clustering. 

We establish a connection with Poisson cluster processes, the standard model for positive associa 
tion between objects, and discuss a recently proposed class of Markov processes that can exhibit both 
clustering and inhibition depending on the value of a single parameter. 

Finally, we argue that Markov models are natural prior distributions in higher level vision tasb 
such as object recognition. Maximum likelihood solutions typically contain many similar objects arhi 
an inhibitory Markov prior helps to overcome this problem. 

Resume 
Dans cet article nous etudions les processus Markov d 'objets, classe de modeles ponctuels definie pa; 
Jes interactions d'objets 'proche'. Ces modeles sont souvent utilises pour Jes images spaciales pou;­
lesquelles la distribution est plus reguliere que celle d'un processus de Poisson, mais que !'on croyait 
moins appropriee pour les images plus groupees. 

Nous montrons un rapport avec des processus de Poisson groupes, les mo<leles standards pou: 
!'association positive d'objets et presentons une famille de processus Markov proposee recemment qu· 
permet des images spaciales regulieres et groupees selon la valeur d'un pa.rametre. 

Finalement, nous exposons que les modeles Markov sont des distributions a priori uaLurelb £Ni.ii 

des probJemes de vision de haut niveau tels que !'identification d'objets. Les solutions de vraisemblanc 
maximum contiennent de fa~on typique bea.ucoup d'objets similaires et un modi:le Markov a priori 
regulier aide a resoudre ce probleme. . 
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