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Abstract

We propose the notion of a correct transformation of one rewrite system into

another� If such a transformation is correct� then the normal forms of a term in

the original rewrite system can be obtained by computing the normal forms of

the interpretation of this term in the transformed rewrite system� We show for

several transformations from the literature that they are correct� most notably

for the notion of simulation from Kamperman and Walters�

� Introduction

Quite a number of papers deal with particular examples of transformations of rewrite
systems� usually with the aim to obtain a rewrite system which satis�es some desirable
property� e�g� ���� ��� �� �	� �
� ��� ��� �
� �� ��� 	�� In most of these papers� correctness
of the transformation is stated� meaning that the original and the transformed rewrite
system are in some sense �equivalent�� This claim is based on the observation either
that desirable properties such as con�uence and termination are preserved by the
transformation� or that the transformed system can somehow simulate the original
system� so that the reduction tree of an original and a simulating term have the
same structure� In this paper we formulate general conditions which ensure that a
transformation of rewrite systems constitutes a correct implementation step�

Recently� Kamperman and Walters ��� ��� proposed a notion of simulation of one
rewrite system by another� They apply simulation to transform a rewrite system into a
so�called �minimal� rewrite system� which has a form more suitable for compilation into
an abstract machine� This transformation constitutes a step in the implementation
of their functional programming language EPIC ���� ���� Luttik ��
� proposes a series
of stronger simulation notions� and derives desirable properties for them� such as
termination and con�uence�

Kamperman and Walters state� for example in the title of ����� that simulation con�
stitutes a correct transformation of rewrite systems� However� they do not provide
any further foundation for this claim� Unfortunately� the de�nition of simulation is
quite complex� so that it is not so easy to grasp its intuition� Also� at �rst sight the
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link between the original and the simulating rewrite system is unclear� For example�
in general the syntax of the original and of the simulating rewrite system di�er� Fur�
thermore� the original rewrite system may be con�uent� while the simulating rewrite
system is not� Hence� the question arises what it means to state that such a transfor�
mation of rewrite systems is �correct��
Although preservation of reduction trees underlies simulation� this property is usu�

ally not of interest for applications of rewriting systems� Especially if a rewrite sys�
tem is used to implement a functional language� then one is solely interested in the
input�output behaviour of the system� where the input is any term� and the output
is �one of� its normal form�s�� So if a transformation of rewrite systems is part of an
implementation project� then the main interest is that the transformation preserves
normal forms�
In this paper� we propose the notion of a correct transformation of rewrite systems�

Basically� a transformation of one rewrite system into another is correct if no infor�
mation on normal forms in the original rewrite system is lost� That is� there should
exist mappings parse from original to transformed terms and print from transformed
to original terms such that for each original term t one can compute its normal forms
as follows� compute the normal forms of the term parse�t�� and apply the print func�
tion to them� Furthermore� it is required that a correct transformation preserves
termination properties�
We will con�rm the claim of Kamperman and Walters� that is� we will show that

the notion of simulation as proposed in ��� ��� constitutes a correct transformation�
In the presentation� we will generalize and simplify some of the original simulation
de�nitions� The proof of the correctness result will use the criteria for a simulation
almost in full� One could therefore argue that the simulation de�nition has been
designed to satisfy the requirements of a correct transformation implicitly� We will
also brie�y study several other examples of transformations of rewrite systems� to
decide whether or not they satisfy our correctness criteria�

Acknowledgements� Jasper Kamperman and Bas Luttik are thanked for useful
discussions�

� Abstract Reduction Systems

This section introduces some preliminaries from rewriting� for more background see
��� ���� We will focus on abstract reduction systems instead of on term rewriting
systems� in order to emphasize the generality of our approach�

De�nition ��� An abstract reduction system �ARS� consists of a collection A of

elements� together with a binary reduction relation R between elements in A�

We will write R� for the transitive closure of a reduction relation R� and R� for the
re�exive transitive closure of R�
In the following de�nitions� we assume an ARS �A�R��

De�nition ��� a � A is a normal form �for R� if there does not exist an a� � A such

that aRa��
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a � A is a normal form of a� � A if a�R�a and a is a normal form�

nfR � A� P�A� denotes the mapping that assigns to each a � A the collection of its
normal forms�

De�nition ��� R is terminating for a � A if there does not exist an in�nite reduction

aRa�Ra�R � � �� �This is also known as strong normalization��

R is weakly terminating for a � A if nfR�a� �� ��
�A�R� is �weakly� terminating if R is �weakly� terminating for each a � A�

Proposition ��� termination � weak termination�

De�nition ��� R is con�uent for a � A if for each pair of reductions aR�a� and
aR�a� there exists an a� � A such that a�R

�a� and a�R
�a��

�A�R� is con�uent if R is con�uent for each a � A�

� Correct Transformations

The aim of this paper is to formulate general conditions which ensure that a transfor�
mation of rewrite systems is correct� We adopt the point of view that a transformation
is correct if it constitutes a sensible step in an implementation procedure� This is the
case if the input�output behaviour of the system is maintained� where the input is any
term� and the output is �one of� its normal form�s�� Hence� for us the prime interest
of a transformation is that it preserves normal forms�
In �
�� the distinction is made of �control� versus �computation�� which in rewriting

would be the internal structure of a reduction tree versus its eventual normal forms�
We note that rewriting is mostly concerned with the computational aspect� that is� a
rewrite system is characterized by the normal forms that it attaches to terms� together
with its termination properties� For example�

� in equational theorem proving one is mostly concerned with terminating rewrite
systems which yield unique normal forms �����

� if rewriting is applied to implement abstract data types� then the meaning of a
term is �xed by its normal forms ����

� in ��� it is remarked that �rewrite systems de�ning at most one normal form for
any input term can serve as functional programs��

We propose the notion of a correct transformation of rewrite systems� Basically�
a transformation of one rewrite system into another is correct if no information on
normal forms in the original rewrite system is lost� That is� there should exist map�
pings parse from original to transformed terms and print from transformed to original
terms such that for each original term t one can compute its normal forms as follows�
compute the normal forms of the term parse�t�� and apply the print function to them�
Furthermore� if the original rewrite system is terminating for a certain term� then

in the implementation one can be sure that the normal form of such a term can be






computed� simply by applying the rewrite rules su�ciently many times� Hence� we
require that the transformed rewrite system is terminating for the parsed version of
such a term�

In the following de�nitions� we assume that a mapping f � V � W extends to a
mapping f � P�V � � P�W � as expected� f�V�� � ff�v� j v � V�g�

De�nition ��� An ARS �B�S� is a correct transformation of an ARS �A�R� if there
exist mappings parse � A� B and print � B � A such that�

	� if R is terminating for a � A� then S is terminating for parse�a�


�� print�nfS �parse�a��� � nfR�a�� that is� the diagram below commutes�

A ��
parse

��

nfR

B

��

nfS

P�A� P�B�oo

print

For the implementation of a rewrite system often a speci�c reduction strategy is
selected� so that for each term only one of its possible reductions is implemented�
Then for each term no more than one of its normal forms is preserved� so if the
original rewrite system is not con�uent then in general such an implementation does
not constitute a correct transformation� Therefore� we propose the notion of a weakly

correct transformation� which requires that for each original term t which has one or
more normal forms� at least one of these normal forms is obtained by computing the
normal forms of parse�t� in the transformed rewrite system and applying the print

function to them� As before� we also require that if the original rewrite system is
terminating for some term� then the transformed rewrite system is terminating for
the parsed version of this term�

De�nition ��� An ARS �B�S� is a weakly correct transformation of an ARS �A�R�
if there exist mappings parse � A� B and print � B � A such that for each a � A�

	� if R is terminating for a � A� then S is terminating for parse�a�


�� print�nfS �parse�a��� � nfR�a�


�� if R is weakly terminating for a � A� then S is weakly terminating for parse�a��

Proposition ��� correctness � weak correctness�

Proof� Suppose that �B�S� is a correct transformation of �A�R��

If R is terminating for some a � A� then by de�nition of correctness S is terminating
for parse�a��

Furthermore� since print�nfS �parse�a��� equals nfR�a�� in particular it is a subset of
nfR�a��
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Finally� let a � A with nfR�a� �� �� Then print�nfS �parse�a��� � nfR�a� �� �� so also
nfS �parse�a�� �� �� �

We note that for con�uent rewrite systems� weak correctness agrees with correctness�

Proposition ��� A transformation of a con�uent ARS �A�R� into an ARS �B�S�
is correct if and only if it is weakly correct�

Proof� According to Proposition 
�
 correctness implies weak correctness� so we only
need to prove the reverse� Assume that �B�S� is a weakly correct transformation of
�A�R�� and that �A�R� is con�uent� We show that this transformation is correct�
If R is terminating for some a � A� then by de�nition of weak correctness S is

terminating for parse�a��
Fix an a � A� we show that print�nfS �parse�a��� � nfR�a�� Since �A�R� is con�uent�

clearly nfR�a� can contain no more than one element� We distinguish two cases�

� nfR�a� � �� Weak correctness implies that print�nfS �parse�a��� is contained in
nfR�a�� so then it is also empty�

� nfR�a� contains one element� Then R is weakly terminating for a� so weak cor�
rectness implies that S is weakly terminating for parse�a�� Then nfS �parse�a��
is not empty� so the same holds for print�nfS �parse�a���� Since this last col�
lection is contained in nfR�a�� which contains only one element� it follows that
print�nfS �parse�a��� � nfR�a�� �

��� An Example

We present an example of a transformation� which will be shown to be correct later
on� In the next section� it will be used as a running example�

Example ��� Assume the constant �� the unary successor function succ� and the
binary addition �� Let R be the following standard implementation of addition on
the natural numbers over T �f�� succ��g�� which consists of the closed terms over
f�� succ��g�

x� � 	� x

succ�x� � y 	� succ�x� y�

In so�called �minimal� rewrite systems ��� ���� rewrite rules are not allowed to contain
more than three function symbols� Note that the second rule of R does not satisfy
this requirement� In order to obtain a minimal rewrite system� the second rule in R

can be replaced by two new rules� which contain an auxiliary binary function symbol
f � Furthermore� for the sake of this toy example� the � is replaced by its reverse�
denoted by 
� Thus� R is transformed into the following minimal rewrite system S

over T �f�� succ�
� fg��

�
 x 	� x

x
 succ�y� 	� f�x� y�
f�x� y� 	� succ�x
 y�
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De�ne

parse��� � � print��� � �
parse�succ�x�� � succ�parse�x�� print�succ�x�� � succ�print�x��
parse�x� y� � parse�y�
 parse�x� print�x
 y� � print�y� � print�x�

Note that the print function is only partially de�ned� for terms in T �f�� succ�
g�� It
is not hard to verify the following properties�

�� the mappings parse and print � restricted to T �f�� succ�
g�� are each other�s
inverses�

�� if t 	� t� in R� then parse�t� 	�� parse�t�� in S�


� if parse�t� 	�� u in S� then there exists a t� in T �f�� succ��g� such that u 	��

parse�t�� in S and t 	�� t� in R�

�� S is terminating�

We will see in the next section that these properties together ensure that the trans�
formation is correct�

� Application to Simulation

��� Simulation

Kamperman and Walters ��� ��� propose a notion of simulation for rewrite systems�
which they apply to transform rewrite systems into so�called �minimal� rewrite systems�
Their de�nitions are presented in the next sections� In several cases we propose
simpli�cations and�or generalizations of the original de�nitions�

A simulation of an ARS �A�R� by an ARS �B�S� is characterized by two mappings
� � B � A and � � A� B� The intuition for the mapping �� which in general is only
partially de�ned� is that the reduction tree of a � A with respect to R is mimicked by
the reduction tree of each b � ����a� with respect to S� The mapping � selects for
each a � A an interpretation in ����a�� so in particular ����a�� � a�

De�nition ��� A simulation of an ARS �A�R� by an ARS �B�S� consists of two

mappings�

	� a partially de�ned mapping � � B � A


�� a mapping � � A� B such that ����a�� � a for each a � A�

Note that the transformation described in Example 
�� is a simulation� if we put
� � print and � � parse �

The second condition in De�nition ��� implies that � is surjective and that � is
injective� However� in examples of simulation that occur in the literature� typically






� is not injective and � is not surjective� In most of these examples� A is a proper
subset of B and � is simply the identity mapping�
At several points� our notions for simulation are more general than as formulated

in ��� ���� There� only term rewriting systems are considered� where A is a proper
subset of B� and � is the identity mapping� Furthermore� � is required to be a
homomorphism with respect to terms� inspired by the fact that this is usually the
case with practical examples of simulations� However� this requirement does not serve
any further purpose� and it cannot be formulated in the setting of ARSs�

��� Soundness and Completeness

In this and the following sections we assume as general notation that the ARS �A�R�
is simulated by the ARS �B�S� by means of the mappings � � B � A and � � A� B�
Suppose that ��b� is de�ned for some b � B� Soundness of the simulation means

that each �nite S�reduction of b is a mimicking of some �nite R�reduction of ��b��

De�nition ��� �Soundness� A simulation is sound if for each b� b� � B with ��b�
de�ned and bS�b�� there is a b�� � B with b�S�b�� and ��b��� de�ned and ��b�R���b����

It follows easily from property 
 �together with property �� in Example 
�� that the
simulation described there is sound�

As opposed to soundness� completeness means that each R�step from ��b� can be
mimicked by a �nite S�reduction of b with length greater than zero�

De�nition ��� �Completeness� A simulation is complete if for each a � A and b � B

with ��b� de�ned and ��b�Ra� there is a b� � B with bS�b� and ��b�� is de�ned and

��b�� � a�

It follows easily from property � �together with property �� in Example 
�� that the
simulation described there is complete�

We also de�ne a weaker completeness notion� which helps to ensure that if there
exist R�steps from ��b�� then at least one of these R�steps can be mimicked by a �nite
S�reduction of b with length greater than zero�

De�nition ��� �Weak completeness� A simulation is weakly complete if for each

b � B with ��b� de�ned and b a normal form for S� ��b� is a normal form for R�

It is not hard to see that the composition of two simulations is again a simulation�
Moreover� soundness and completeness and weak completeness are preserved under
composition�

Proposition ��� completeness � weak completeness�

Proof� Suppose that the ARS �B�S� simulates the ARS �A�R� by means of the pair
��� ��� and that this simulation is complete�
Let b � B with ��b� de�ned and ��b� not a normal form for R� Then ��b�Ra for

some a � A� so completeness yields that bS�b� for some b� � B� Hence� b is not a
normal form for S� So the simulation is weakly complete� �
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��� Termination Conservation

The properties for simulations that are formulated in the next two de�nitions ensure
that termination qualities for the original rewrite system are preserved by the sim�
ulating rewrite system� Total conservation �De�nition ��
� ensures that termination
properties are preserved with respect to the mapping �� while conservation �De�ni�
tion ���� only ensures that termination properties are preserved with respect to the
mapping ��
For textual convenience we adopt the convention that formulations which contain

occurrences of the expression ��weak�� or ��weakly�� can be read both with and without
the word �weak� or �weakly� at those places� respectively�

De�nition ��	 �Total conservation of �weak� termination� A simulation totally con�
serves �weak� termination if for each a � A for which R is �weakly� terminating� also

S is �weakly� terminating for each b � ����a��

De�nition ��
 �Conservation of �weak� termination� A simulation conserves �weak�
termination if for each a � A for which R is �weakly� terminating� also S is �weakly�

terminating for ��a��

Proposition ��� 	� total conservation of �weak� termination � conservation of
�weak� termination


�� total conservation of termination 
 completeness � total conservation of weak

termination

Proof� We assume that the ARS �B�S� simulates the ARS �A�R� by means of the
pair ��� ���

�� If the simulation totally conserves �weak� termination� then it also conserves
�weak� termination� simply because ��a� � ����a� for each a � A�

�� Suppose that the simulation ��� �� totally conserves termination and is com�
plete� Let R be weakly terminating for a � A� and let b � ����a�� We show
that S is weakly terminating for b� by induction on the length of the shortest
normalization reduction for a�

If a is a normal form for R� then total conservation of termination yields that S
is terminating for b � ����a�� so according to Proposition ��� S is also weakly
terminating for b�

Next� suppose that we have proved the case for normalization reductions of
length n� and let the shortest normalization reduction for a have length n� ��
Then there exists a reduction aRa� where the shortest normalization reduction
for a� has length n� Since ��b� � a� completeness yields that bS�b� for some
b� � B with ��b�� � a�� Since R is weakly terminating for a� with a shortest nor�
malization reduction of length n� induction yields that S is weakly terminating
for b�� Since bS�b�� it follows that S is also weakly terminating for b�

	



We note that the second part of Proposition ��	 would not hold if the adjective �total�
were omitted from it� that is� a complete simulation which conserves termination does
not necessarily conserve weak termination� This is shown in the following example�

Example ��� Let A � fa� a�g and aRa and aRa�� Furthermore� let B � fb� b�� b��g
and bSb and bSb� and b�Sb�� De�ne a simulation ��� �� as follows�

��b� � a ��a� � b

��b�� � a�

��b��� � a� ��a�� � b��

This simulation can be depicted as follows�

a’

a b

b’

b’’

This simulation is sound and complete� and it conserves termination� R is only ter�
minating for a�� and S is terminating for ��a�� � b��� However� this simulation does
not conserve weak termination� �A�R� is weakly terminating� but S is not weakly
terminating for ��a� � b�

��� Reachability

Thatte ��	� and Verma ���� studied a transformation of rewrite systems into so�called
constructor�based rewrite systems� and they concluded that their transformation pre�
serves normal forms for what they called the reachable part of the transformed system�
In our terminology� their reachability notion can be formulated as follows� where as
before we assume that �A�R� is simulated by �B�S� through ��� ���

De�nition ���
 �Reachability� b � B is reachable if ��a�S�b for some a � A�

Lemma ���� Let ��� �� be a simulation of �A�R� by �B�S�� and let  � denote the

restriction of � to the reachable part of B� Then � �� �� is also a simulation of �A�R�
by �B�S�� Furthermore� if ��� �� satis�es soundness or �weak� completeness or �total�

conservation of �weak� termination� then � �� �� also satis�es this property�

Proof� Clearly ��a� is reachable for each a � A� Hence�  � is de�ned for each ��a��
and  ����a�� � a� So � �� �� is a simulation�

Assume that ��� �� is sound� we show that � �� �� is also sound� Let  ��b� be de�ned�
and bS�b�� Then soundness of ��� �� yields that b�S�b�� where ��b��� is de�ned and
��b�R���b���� Since b is reachable and bS�b�S�b��� it follows that b�� is also reachable�
Hence�  � is de�ned for b��� and  ��b�R�  ��b���� So � �� �� is sound�
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Assume that ��� �� is complete� we show that � �� �� is also complete� Let  ��b� be
de�ned� and  ��b�Ra� Then completeness of ��� �� yields that bS�b� where ��b�� � a�
Since b is reachable and bS�b�� it follows that b� is also reachable� Hence�  � is de�ned
for b�� and  ��b�� � a� So � �� �� is complete�

Finally� if ��� �� totally conserves �weak� termination� then the same holds for � �� ���
because  ����a� � ����a� for all a � A� And if ��� �� conserves �weak� termination�
then the same holds for � �� ��� simply because this property does not depend on ��
but on �� �

In ����� the reachability restriction is added to the de�nition of completeness for
simulations� However� the rationale of Lemma ���� is that the notion of reachability
needs no elaboration in the theory of simulations�

The converse of Lemma ���� does not hold� Namely� there exist simulations ��� ��
which are not sound or not complete or which do not �totally� conserve �weak� termi�
nation� but which do have this property if � is restricted to the reachable part of B�
We give an example�

Example ���� Let A � fa� a�g and aRa�� Furthermore� let B � fb� b�� b��� b���g and
bSb� and b��Sb��� and b���Sb���� De�ne a simulation ��� �� as follows�

��b� � a ��a� � b

��b�� � a� ��a�� � b�

��b��� � a

This simulation can be depicted as follows�

a

a’

b

b’

b’’

b’’’

This simulation is not sound nor complete nor does it totally conserve termination�
However� if � is restricted to the reachable part of B� which consists of fb� b�g� then
the simulation becomes sound and complete and totally conserves termination�

��� Simulation Violates Con�uence

The following example shows that there exist simulations which are sound and com�
plete and which totally conserve termination� but which do not conserve con�uence�

��



Example ���� Let A � fag and B � fb� b�� b��g and bSb� and bSb��� De�ne a simula�
tion ��� �� as follows�

��b� � a ��a� � b

��b�� � a

��b��� � a

This simulation can be depicted as follows�

a b

b’ b’’

This simulation sound and complete and totally conserves termination� However�
�A�R� is con�uent� while B is not con�uent for ��a� � b�

��� Correctness Criteria for Simulation

In this section we study under which conditions a simulation is �weakly� correct� First�
we present two lemmas which indicate when ��nfS ���a��� is a subset of nfR�a�� and
vice versa�

Lemma ���� If a simulation is sound and weakly complete� then ��nfS ���a��� �
nfR�a��

Proof� Let b � nfS ���a��� we show that ��b� is de�ned and ��b� � nfR�a��

Since ��a�S�b� soundness implies that there exists a b� � B with bS�b� and ��b��
de�ned and aR���b��� Since b is a normal form for S� and bS�b�� it follows that b � b��
Hence� ��b� is de�ned and aR���b��

Furthermore� since b is a normal form for S� weak completeness says that ��b� is a
normal form for R�

Since aR���b� and ��b� is a normal form for R� it follows that ��b� � nfR�a�� �

Lemma ���� If a simulation is sound and complete and totally conserves weak ter�

mination� then nfR�a� � ��nfS ���a����

Proof� Let a� � nfR�a�� we show that a� � ��nfS ���a����

Since aR�a�� completeness yields that there exists a b � B such that ��a�S�b and
��b� is de�ned and ��b� � a�� Since a� is a normal form for R� total conservation of
weak termination yields that S is weakly terminating for a�� Hence� there exists a
b� � B which is a normal form for S such that bS�b�� Since ��a�S�bS�b�� it follows
that b� � nfS ���a���

Since bS�b� and ��b� � a�� soundness says that there exists a b�� � B such that
b�S�b�� and ��b��� is de�ned and a�R���b���� Since b� is a normal form for S and b�S�b���
it follows that b� � b��� so a�R���b��� Since a� is a normal form for R� it follows that
��b�� � a�� Hence� a� � ��nfS ���a���� �

��



Now we are ready to prove under which conditions simulation is a �weakly� correct
transformation�

Theorem ���	 If a simulation is sound and complete and conserves termination and

totally conserves weak termination� then it is a correct transformation�

Proof� Choose parse to be �� and print to be any total extension of �� We show that
these mappings satisfy the requirements of a correct transformation�

If R is terminating for a � A� then conservation of termination ensures that S is
terminating for ��a��

According to Proposition ��� completeness induces weak completeness� so Lemma
���� implies that ��nfS ���a��� � nfR�a��

Finally� according to Lemma ����� soundness and completeness and total conserva�
tion of weak termination yield nfR�a� � ��nfS ���a���� �

Theorem ���
 If a simulation is sound and weakly complete and conserves both ter�
mination and weak termination� then it is a weakly correct transformation�

Proof� Choose parse to be �� and print to be any total extension of �� We show that
these mappings satisfy the requirements of a weakly correct transformation�

If R is terminating for some a � A� then conservation of termination ensures that
S is terminating for ��a��

Furthermore� according to Lemma ����� soundness together with weak completeness
implies that ��nfS ���a��� � nfR�a��

Finally� if R is weakly terminating for some a � A� then conservation of weak
termination ensures that S is weakly terminating for ��a�� �

In Example 
��� the transformed rewrite system S is terminating� so clearly the sim�
ulation in that example totally conserves termination� Earlier� we noted that this
simulation is sound and complete� Then� by Proposition ��	� it conserves termination
and totally conserves weak termination� So according to Theorem ���
 it is a correct
transformation�

Kamperman and Walters ��� ��� consider several practical examples of simulation�
and show that they are sound and complete and totally conserve termination� Accord�
ing to Theorem ���
� in order for a simulation to be a correct transformation� the last
requirement can be weakened to conservation of termination together with total con�
servation of weak termination� According to Proposition ��	� these two requirements
indeed follow from total conservation of termination�

We note that the reverse does not hold� namely� there exist sound and complete
simulations which conserve termination and which totally conserve weak termination�
but which do not totally conserve termination� This is shown in the following example�

��



Example ���� Let A � fa� a�g and aRa and aRa�� Furthermore� letB � fb� b�� b��� b���g
and bSb and bSb� and bSb�� and b��Sb�� and b��Sb���� De�ne a simulation ��� �� as follows�

��b� � a ��a� � b

��b�� � a� ��a�� � b�

��b��� � a�

��b���� � a�

This simulation can be depicted as follows�

a b

b’a’ b’’

b’’’

This simulation is sound and complete� Furthermore� it conserves termination� R is
only terminating for a�� and S is terminating for ��a�� � b�� Also� it totally conserves
weak termination� because �B�S� is weakly terminating� However� this simulation
does not totally conserve termination� R is terminating for a�� but S is not terminating
for b�� � ����a���

� Further Examples of Transformations

In this section we consider other transformations of rewrite systems that have been
proposed in the literature� In order to avoid extensive technical expositions� the
foundations for our correctness claims will not be described in detail�

Kamperman and Van de Pol �	� show how a weakly terminating rewrite system to�
gether with a normalization strategy can be turned into a terminating rewrite system�
They prove that their transformation is a simulation that is sound and complete and
totally conserves termination� So according to results obtained in this paper it is a
correct transformation�

Zantema ��
� invented the technique of semantic labelling� where semantics is pro�
vided to the function symbols� and for each choice of semantic labels for the operators
in the left�hand side of a rewrite rule� a new rewrite rule is introduced� Zantema
proves that the original rewrite system is terminating if and only if its labelled trans�
formation is so� Sometimes� proving termination of the labelled rewrite system is
much easier than proving termination for the original rewrite system� see for example
���� Semantic labelling preserves the structure of reduction trees� so it constitutes a
correct transformation�

Graph rewriting is an implementation strategy for term rewriting systems where
variables are shared� It is well�known that the transformation of term rewriting into

�




graph rewriting can lead to undesirable complications� For example� the term rewrit�
ing system

f�a� b� 	� a

f�x� x� 	� f�x� x�
a 	� b

is not adequately simulated by its corresponding graph rewriting system� In the
term rewriting system the normalizing reduction f�a� a� 	� f�a� b� 	� a is possi�
ble� However� in graph rewriting due to the sharing of variables� only the reductions
f�a� a� 	� f�a� a� and f�a� a� 	� f�b� b� are possible� so that f�a� a� does not have
a normal form� In ���� soundness and completeness of the transformation of term
rewriting into graph rewriting is studied� The conclusion is that for left�linear weakly
non�overlapping term rewriting systems� the transformation into graph rewriting sys�
tems preserves normal forms� In order to obtain correctness� one additionally has to
verify that termination is preserved� which is indeed the case�
Laville ���� considered rewrite systems with priorities� which were �rst studied in ����

If two rewrite rules can be applied to the same term� then only the rule with the highest
priority is applied� Priorities are a powerful means to capture intricate rewriting in
a simple rewrite system� but they are troublesome when it comes to implementation�
Laville shows how a rewrite system with priorities can be transformed into a rewrite
system where the priorities are captured in the syntax� this method has been applied in
the implementation of the CAML system� Laville�s transformation leaves the structure
of reduction trees in tact� so clearly it is correct�
Thatte ���� showed how a left�linear non�overlapping rewrite system R can be trans�

formed into a left�linear non�overlapping rewrite system S that is constructor�based�
where R ranges over a signature ! and S ranges over an extended signature !� Thatte
showed that the original and the transformed rewrite system are equivalent� in the
sense that there is a mapping � � !� !� which is the identity on !� such that�

� if bSb� then ��b�R���b���

� if aRa� then aS�a��

The �rst property ensures that as a simulation this transformation is sound� However�
completeness and conservation of �weak� termination cannot be concluded from these
properties� Therefore� this equivalence notion does not imply that the transformation
is correct�
In ��	�� Thatte claimed for several more general notions of rewrite systems that his

transformation preserves con�uence and normal forms in the reachable part of the
transformed system� However� Verma ���� ��� showed that two of these claims are
erroneous� Namely� Thatte�s transformation does not preserve con�uence nor normal
forms for con�uent non�overlapping rewrite systems� but only for con�uent weakly
persistent rewrite systems� see ����� Moreover� Thatte�s transformation does not pre�
serve con�uence� Therefore� Verma ���� introduced a new transformation for con�uent
terminating rewrite systems� and showed that his transformation does preserve both
con�uence and normal forms� We remark that transformations of terminating rewrite
systems that preserve normal forms are correct�

��



Sekar et al� ��
� showed how a strongly sequential constructor�based rewrite system
can be transformed into an �equivalent� path sequential rewrite system� Their notion
of equivalence is similar to the one of Thatte in ����� so it cannot be concluded from
their equivalence notion that the transformation is correct�
In �
� ���� transformations of equational speci�cations of abstract data types are

studied� Such a transformation is called a �correct implementation� if the initial al�
gebras of the original and the transformed speci�cation are isomorphic� This notion
is considerably stronger than our notion of a correct transformation� For example�
the ARS �fag� �� transforms correctly into �fb� b�g� �� by means of parse�a� � b and
print�b� � a and print�b�� � a� However� when considered as speci�cations of alge�
braic data types� �fb� b�g� �� is not a correct implementation of �fag� ���
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