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Abstract

We propose the notion of a correct transformation of one rewrite system into
another. If such a transformation is correct, then the normal forms of a term in
the original rewrite system can be obtained by computing the normal forms of
the interpretation of this term in the transformed rewrite system. We show for
several transformations from the literature that they are correct, most notably
for the notion of simulation from Kamperman and Walters.

1 Introduction

Quite a number of papers deal with particular examples of transformations of rewrite
systems, usually with the aim to obtain a rewrite system which satisfies some desirable
property, e.g. [17, 12, 2, 18, 16, 20, 19, 23, 9, 10, 8]. In most of these papers, correctness
of the transformation is stated, meaning that the original and the transformed rewrite
system are in some sense ‘equivalent’. This claim is based on the observation either
that desirable properties such as confluence and termination are preserved by the
transformation, or that the transformed system can somehow simulate the original
system, so that the reduction tree of an original and a simulating term have the
same structure. In this paper we formulate general conditions which ensure that a
transformation of rewrite systems constitutes a correct implementation step.

Recently, Kamperman and Walters [9, 10] proposed a notion of simulation of one
rewrite system by another. They apply simulation to transform a rewrite system into a
so-called ‘minimal’ rewrite system, which has a form more suitable for compilation into
an abstract machine. This transformation constitutes a step in the implementation
of their functional programming language EPIC [21, 22]. Luttik [13] proposes a series
of stronger simulation notions, and derives desirable properties for them, such as
termination and confluence.

Kamperman and Walters state, for example in the title of [10], that simulation con-
stitutes a correct transformation of rewrite systems. However, they do not provide
any further foundation for this claim. Unfortunately, the definition of simulation is
quite complex, so that it is not so easy to grasp its intuition. Also, at first sight the



link between the original and the simulating rewrite system is unclear. For example,
in general the syntax of the original and of the simulating rewrite system differ. Fur-
thermore, the original rewrite system may be confluent, while the simulating rewrite
system is not. Hence, the question arises what it means to state that such a transfor-
mation of rewrite systems is ‘correct’.

Although preservation of reduction trees underlies simulation, this property is usu-
ally not of interest for applications of rewriting systems. Especially if a rewrite sys-
tem is used to implement a functional language, then one is solely interested in the
input/output behaviour of the system, where the input is any term, and the output
is (one of) its normal form(s). So if a transformation of rewrite systems is part of an
implementation project, then the main interest is that the transformation preserves
normal forms.

In this paper, we propose the notion of a correct transformation of rewrite systems.
Basically, a transformation of one rewrite system into another is correct if no infor-
mation on normal forms in the original rewrite system is lost. That is, there should
exist mappings parse from original to transformed terms and print from transformed
to original terms such that for each original term ¢ one can compute its normal forms
as follows: compute the normal forms of the term parse(t), and apply the print func-
tion to them. Furthermore, it is required that a correct transformation preserves
termination properties.

We will confirm the claim of Kamperman and Walters, that is, we will show that
the notion of simulation as proposed in [9, 10] constitutes a correct transformation.
In the presentation, we will generalize and simplify some of the original simulation
definitions. The proof of the correctness result will use the criteria for a simulation
almost in full. One could therefore argue that the simulation definition has been
designed to satisfy the requirements of a correct transformation implicitly. We will
also briefly study several other examples of transformations of rewrite systems, to
decide whether or not they satisfy our correctness criteria.

Acknowledgements. Jasper Kamperman and Bas Luttik are thanked for useful
discussions.

2 Abstract Reduction Systems

This section introduces some preliminaries from rewriting; for more background see
[5, 11]. We will focus on abstract reduction systems instead of on term rewriting
systems, in order to emphasize the generality of our approach.

Definition 2.1 An abstract reduction system (ARS) consists of a collection A of
elements, together with a binary reduction relation R between elements in A.

We will write R for the transitive closure of a reduction relation R, and R* for the
reflexive transitive closure of R.
In the following definitions, we assume an ARS (A4, R).

Definition 2.2 a € A is a normal form (for R) if there does not exist an a’ € A such
that aRa'.



a € A is a normal form of o' € A if a’R*a and a is a normal form.

nfg : A = P(A) denotes the mapping that assigns to each a € A the collection of its
normal forms.

Definition 2.3 R is terminating for a € A if there does not exist an infinite reduction
aRaRasR---. (This is also known as strong normalization.)

R is weakly terminating for a € A if nfg(a) # 0.

(A, R) is (weakly) terminating if R is (weakly) terminating for each a € A.

Proposition 2.4 termination = weak termination.

Definition 2.5 R is confluent for a € A if for each pair of reductions aR*ay and
aR*ay there exists an a3 € A such that a1 R*a3 and asR*as.
(A, R) is confluent if R is confluent for each a € A.

3 Correct Transformations

The aim of this paper is to formulate general conditions which ensure that a transfor-
mation of rewrite systems is correct. We adopt the point of view that a transformation
is correct if it constitutes a sensible step in an implementation procedure. This is the
case if the input/output behaviour of the system is maintained, where the input is any
term, and the output is (one of) its normal form(s). Hence, for us the prime interest
of a transformation is that it preserves normal forms.

In [3], the distinction is made of ‘control’ versus ‘computation’, which in rewriting
would be the internal structure of a reduction tree versus its eventual normal forms.
We note that rewriting is mostly concerned with the computational aspect, that is, a
rewrite system is characterized by the normal forms that it attaches to terms, together
with its termination properties. For example:

e in equational theorem proving one is mostly concerned with terminating rewrite
systems which yield unique normal forms [15];

e if rewriting is applied to implement abstract data types, then the meaning of a
term is fixed by its normal forms [4];

e in [5] it is remarked that “rewrite systems defining at most one normal form for
any input term can serve as functional programs”.

We propose the notion of a correct transformation of rewrite systems. Basically,
a transformation of one rewrite system into another is correct if no information on
normal forms in the original rewrite system is lost. That is, there should exist map-
pings parse from original to transformed terms and print from transformed to original
terms such that for each original term ¢ one can compute its normal forms as follows:
compute the normal forms of the term parse(t), and apply the print function to them.

Furthermore, if the original rewrite system is terminating for a certain term, then
in the implementation one can be sure that the normal form of such a term can be



computed, simply by applying the rewrite rules sufficiently many times. Hence, we
require that the transformed rewrite system is terminating for the parsed version of
such a term.

In the following definitions, we assume that a mapping f : V — W extends to a
mapping [ : P(V) — P(W) as expected: f(Vp) ={f(v) | v € Vo}.

Definition 3.1 An ARS (B, S) is a correct transformation of an ARS (A, R) if there
exist mappings parse : A — B and print : B — A such that:

1. if R is terminating for a € A, then S is terminating for parse(a);

2. print(nfs(parse(a))) = nfr(a), that is, the diagram below commutes:

A
nf}a’l

nfs
P(A) «——P(B)

print

parse
_ B

For the implementation of a rewrite system often a specific reduction strategy is
selected, so that for each term only one of its possible reductions is implemented.
Then for each term no more than one of its normal forms is preserved, so if the
original rewrite system is not confluent then in general such an implementation does
not constitute a correct transformation. Therefore, we propose the notion of a weakly
correct transformation, which requires that for each original term ¢ which has one or
more normal forms, at least one of these normal forms is obtained by computing the
normal forms of parse(t) in the transformed rewrite system and applying the print
function to them. As before, we also require that if the original rewrite system is
terminating for some term, then the transformed rewrite system is terminating for
the parsed version of this term.

Definition 3.2 An ARS (B, S) is a weakly correct transformation of an ARS (A, R)
if there exist mappings parse : A — B and print : B — A such that for each a € A:

1. if R is terminating for a € A, then S is terminating for parse(a);
2. print(nfs(parse(a))) € nfr(a);

3. if R is weakly terminating for a € A, then S is weakly terminating for parse(a).
Proposition 3.3 correctness = weak correctness.

Proof. Suppose that (B,S) is a correct transformation of (A4, R).

If R is terminating for some a € A, then by definition of correctness S is terminating
for parse(a).

Furthermore, since print(nfs(parse(a))) equals nfg(a), in particular it is a subset of

nfr(a).



Finally, let a € A with nfg(a) # (0. Then print(nfs(parse(a))) = nfr(a) # 0, so also
nfs(parse(a)) # 0. O

We note that for confluent rewrite systems, weak correctness agrees with correctness.

Proposition 3.4 A transformation of a confluent ARS (A, R) into an ARS (B, S)
is correct if and only if it is weakly correct.

Proof. According to Proposition 3.3 correctness implies weak correctness, so we only
need to prove the reverse. Assume that (B,S) is a weakly correct transformation of
(A, R), and that (A, R) is confluent. We show that this transformation is correct.

If R is terminating for some a € A, then by definition of weak correctness S is
terminating for parse(a).

Fix an a € A; we show that print(nfs(parse(a))) = nfgr(a). Since (A, R) is confluent,
clearly nfg(a) can contain no more than one element. We distinguish two cases.

- nfr(a) = 0. Weak correctness implies that print(nfs(parse(a))) is contained in
nfr(a), so then it is also empty.

- nfg(a) contains one element. Then R is weakly terminating for a, so weak cor-
rectness implies that S is weakly terminating for parse(a). Then nfs(parse(a))
is not empty, so the same holds for print(nfs(parse(a))). Since this last col-
lection is contained in nfr(a), which contains only one element, it follows that

print(nfs(parse(a))) = nfr(a). O

3.1 An Example

We present an example of a transformation, which will be shown to be correct later
on. In the next section, it will be used as a running example.

Example 3.5 Assume the constant 0, the unary successor function sucec, and the
binary addition +. Let R be the following standard implementation of addition on
the natural numbers over T'({0, succ,+}), which consists of the closed terms over
{0, succ, +}.
r+0 — =z
suce(x) +y — suce(x +y)

In so-called ‘minimal’ rewrite systems [9, 10], rewrite rules are not allowed to contain
more than three function symbols. Note that the second rule of R does not satisfy
this requirement. In order to obtain a minimal rewrite system, the second rule in R
can be replaced by two new rules, which contain an auxiliary binary function symbol
f. Furthermore, for the sake of this toy example, the + is replaced by its reverse,
denoted by @. Thus, R is transformed into the following minimal rewrite system S
over T'({0, succ,®, f}):

0pbzr — =«
x @ succ(y) — f(z,y)
f(z,y) — suce(z Dy)



Define

parse(0) = 0 print(0) = 0
parse(succ(x)) = succ(parse(z)) print(succ(z)) = succ(print(x))
parse(x +vy) = parse(y) ® parse(x)  print(zx®y) = print(y) + print(z)

Note that the print function is only partially defined, for terms in T'({0, succ,®}). It
is not hard to verify the following properties:

1. the mappings parse and print, restricted to T'({0, succ,®}), are each other’s
inverses;

2. if t — ¢’ in R, then parse(t) —* parse(t') in S;

3. if parse(t) —* w in S, then there exists a ¢’ in T'({0, succ, +}) such that u —*
parse(t') in S and t —* ¢/ in R;

4. S is terminating.

We will see in the next section that these properties together ensure that the trans-
formation is correct.

4 Application to Simulation

4.1 Simulation

Kamperman and Walters [9, 10] propose a notion of simulation for rewrite systems,
which they apply to transform rewrite systems into so-called ‘minimal’ rewrite systems.
Their definitions are presented in the next sections. In several cases we propose
simplifications and/or generalizations of the original definitions.

A simulation of an ARS (A, R) by an ARS (B, S) is characterized by two mappings
¢: B — Aand: A— B. The intuition for the mapping ¢, which in general is only
partially defined, is that the reduction tree of ¢ € A with respect to R is mimicked by
the reduction tree of each b € ¢~'(a) with respect to S. The mapping 1/ selects for
each a € A an interpretation in ¢ '(a), so in particular ¢(1(a)) = a.

Definition 4.1 A simulation of an ARS (A,R) by an ARS (B,S) consists of two
mappings:

1. a partially defined mapping ¢ : B — A;

2. a mapping ¢ : A — B such that ¢(1p(a)) = a for each a € A.
Note that the transformation described in Example 3.5 is a simulation, if we put
¢ = print and Y = parse.

The second condition in Definition 4.1 implies that ¢ is surjective and that v is
injective. However, in examples of simulation that occur in the literature, typically



¢ is not injective and v is not surjective. In most of these examples, A is a proper
subset of B and % is simply the identity mapping.

At several points, our notions for simulation are more general than as formulated
in [9, 10]. There, only term rewriting systems are considered, where A is a proper
subset of B, and v is the identity mapping. Furthermore, ¢ is required to be a
homomorphism with respect to terms, inspired by the fact that this is usually the
case with practical examples of simulations. However, this requirement does not serve
any further purpose, and it cannot be formulated in the setting of ARSs.

4.2 Soundness and Completeness

In this and the following sections we assume as general notation that the ARS (A, R)

is simulated by the ARS (B, S) by means of the mappings ¢ : B —+ A and ¢ : A — B.
Suppose that ¢(b) is defined for some b € B. Soundness of the simulation means

that each finite S-reduction of b is a mimicking of some finite R-reduction of ¢(b).

Definition 4.2 (Soundness) A simulation is sound if for each b,b' € B with ¢(b)
defined and bS*V, there is a V' € B with b'S*V" and ¢(b") defined and ¢p(b)R*¢p(b").

It follows easily from property 3 (together with property 1) in Example 3.5 that the
simulation described there is sound.

As opposed to soundness, completeness means that each R-step from ¢(b) can be
mimicked by a finite S-reduction of b with length greater than zero.

Definition 4.3 (Completeness) A simulation is complete if for each a € A and b € B
with ¢(b) defined and $(b)Ra, there is a b € B with bSTY and ¢(V') is defined and

o(b)) = a.

It follows easily from property 2 (together with property 1) in Example 3.5 that the
simulation described there is complete.

We also define a weaker completeness notion, which helps to ensure that if there
exist R-steps from ¢(b), then at least one of these R-steps can be mimicked by a finite
S-reduction of b with length greater than zero.

Definition 4.4 (Weak completeness) A simulation is weakly complete if for each
b € B with ¢(b) defined and b a normal form for S, ¢(b) is a normal form for R.

It is not hard to see that the composition of two simulations is again a simulation.
Moreover, soundness and completeness and weak completeness are preserved under
composition.

Proposition 4.5 completeness = weak completeness.

Proof. Suppose that the ARS (B, S) simulates the ARS (A, R) by means of the pair
(¢,1), and that this simulation is complete.

Let b € B with ¢(b) defined and ¢(b) not a normal form for R. Then ¢(b)Ra for
some a € A, so completeness yields that bSTd for some ¥ € B. Hence, b is not a
normal form for S. So the simulation is weakly complete. O



4.3 Termination Conservation

The properties for simulations that are formulated in the next two definitions ensure
that termination qualities for the original rewrite system are preserved by the sim-
ulating rewrite system. Total conservation (Definition 4.6) ensures that termination
properties are preserved with respect to the mapping ¢, while conservation (Defini-
tion 4.7) only ensures that termination properties are preserved with respect to the
mapping .

For textual convenience we adopt the convention that formulations which contain
occurrences of the expression ‘(weak)’ or ‘(weakly)’ can be read both with and without
the word ‘weak’ or ‘weakly’ at those places, respectively.

Definition 4.6 (Total conservation of (weak) termination) A simulation totally con-
serves (weak) termination if for each a € A for which R is (weakly) terminating, also
S is (weakly) terminating for each b € ¢~'(a).

Definition 4.7 (Conservation of (weak) termination) A simulation conserves (weak)
termination if for each a € A for which R is (weakly) terminating, also S is (weakly)
terminating for 1 (a).

Proposition 4.8 1. total conservation of (weak) termination = conservation of
(weak) termination;

2. total conservation of termination + completeness = total conservation of weak
termination

Proof. We assume that the ARS (B, 5) simulates the ARS (A, R) by means of the
pair (¢, ).

1. If the simulation totally conserves (weak) termination, then it also conserves
(weak) termination, simply because ¢)(a) € ¢~'(a) for each a € A.

2. Suppose that the simulation (¢,1) totally conserves termination and is com-
plete. Let R be weakly terminating for a € A, and let b € ¢ '(a). We show
that S is weakly terminating for b, by induction on the length of the shortest
normalization reduction for a.

If a is a normal form for R, then total conservation of termination yields that S
is terminating for b € ¢~ !(a), so according to Proposition 2.4 S is also weakly
terminating for b.

Next, suppose that we have proved the case for normalization reductions of
length n, and let the shortest normalization reduction for a have length n + 1.
Then there exists a reduction aRa’ where the shortest normalization reduction
for a’ has length n. Since ¢(b) = a, completeness yields that bSTb for some
b € B with ¢(b') = a’. Since R is weakly terminating for a’ with a shortest nor-
malization reduction of length n, induction yields that S is weakly terminating
for b'. Since bSTY, it follows that S is also weakly terminating for b.



We note that the second part of Proposition 4.8 would not hold if the adjective ‘total’
were omitted from it, that is, a complete simulation which conserves termination does
not necessarily conserve weak termination. This is shown in the following example.

Example 4.9 Let A = {a,d'} and aRa and aRa’. Furthermore, let B = {b,b',b"}
and bSb and bSYH and b’ SH'. Define a simulation (¢, 1)) as follows:

p(b') = o'
o) =d la) ="
This simulation can be depicted as follows:
a-~—~—--- b
a~_ b
N N b, ,

This simulation is sound and complete, and it conserves termination: R is only ter-
minating for a/, and S is terminating for ¢(a’) = b”. However, this simulation does
not conserve weak termination: (A, R) is weakly terminating, but S is not weakly
terminating for ¢ (a) = b.

4.4 Reachability

Thatte [18] and Verma [20] studied a transformation of rewrite systems into so-called
constructor-based rewrite systems, and they concluded that their transformation pre-
serves normal forms for what they called the reachable part of the transformed system.
In our terminology, their reachability notion can be formulated as follows, where as
before we assume that (A, R) is simulated by (B, S) through (¢, ).

Definition 4.10 (Reachability) b € B is reachable if 1)(a)S*b for some a € A.

Lemma 4.11 Let (¢,1)) be a simulation of (A,R) by (B,S), and let ¢ denote the
restriction of ¢ to the reachable part of B. Then (¢,1)) is also a simulation of (A, R)
by (B, S). Furthermore, if (¢,) satisfies soundness or (weak) completeness or (total)
conservation of (weak) termination, then (¢,v) also satisfies this property.

Proof. Clearly 1(a) is reachable for each a € A. Hence, ¢ is defined for each v(a),
and ¢(¢(a)) = a. So (¢,) is a simulation.

Assume that (¢, 1)) is sound; we show that (¢,) is also sound. Let ¢(b) be defined,
and bS*b'. Then soundness of (¢,1)) yields that b'S*b” where ¢(b") is defined and
d(b)R*p(b"). Since b is reachable and bS*b'S*b”, it follows that b” is also reachable.

Hence, ¢ is defined for b, and ¢(b)R*¢(b"). So (¢,%) is sound.



Assume that (¢,v) is complete; we show that (¢,4) is also complete. Let ¢(b) be
defined, and ¢(b) Ra. Then completeness of (¢,1)) yields that bSTH where ¢(b') = a.
Since b is reachable and STV, it follows that b’ is also reachable. Hence, ¢ is defined
for o, and ¢(b') = a. So (¢,v) is complete.

Finally, if (¢, ) totally conserves (weak) termination, then the same holds for (¢, 1),
because ¢~!(a) C ¢~ 1(a) for all @ € A. And if (4,1)) conserves (weak) termination,
then the same holds for (¢, ), simply because this property does not depend on ¢,
but on . O

In [10], the reachability restriction is added to the definition of completeness for
simulations. However, the rationale of Lemma 4.11 is that the notion of reachability
needs no elaboration in the theory of simulations.

The converse of Lemma 4.11 does not hold. Namely, there exist simulations (¢, )
which are not sound or not complete or which do not (totally) conserve (weak) termi-
nation, but which do have this property if ¢ is restricted to the reachable part of B.
We give an example.

Example 4.12 Let A = {a,d'} and aRa'. Furthermore, let B = {b,b'," 0"} and
bSH and b"SH" and " Sb". Define a simulation (¢, 1)) as follows:

¢(b) = a P(a) =
p(b') = o Pla) =¥

p(b") =a
This simulation can be depicted as follows:
a-—-b
a--—- b
bl ki
bl 1

This simulation is not sound nor complete nor does it totally conserve termination.
However, if ¢ is restricted to the reachable part of B, which consists of {b,b'}, then
the simulation becomes sound and complete and totally conserves termination.

4.5 Simulation Violates Confluence

The following example shows that there exist simulations which are sound and com-
plete and which totally conserve termination, but which do not conserve confluence.

10



Example 4.13 Let A = {a} and B = {b,V',b"} and bSV and bSb". Define a simula-
tion (¢, 1)) as follows:

¢(b) = a P(a) =0

o(V') =a
$(b") =a
This simulation can be depicted as follows:
a-~—~--—— b
b b’

This simulation sound and complete and totally conserves termination. However,
(A, R) is confluent, while B is not confluent for ¢(a) = b.

4.6 Correctness Criteria for Simulation

In this section we study under which conditions a simulation is (weakly) correct. First,
we present two lemmas which indicate when ¢(nfs(v(a))) is a subset of nfg(a), and
vice versa.

Lemma 4.14 If a simulation is sound and weakly complete, then ¢(nfs(i(a))) C
nfr(a).

Proof. Let b € nfs(¢(a)); we show that ¢(b) is defined and ¢(b) € nfg(a).

Since 1 (a)S*b, soundness implies that there exists a b’ € B with bS*d’' and ¢(b')
defined and aR*¢(b'). Since b is a normal form for S, and bS*V', it follows that b =¥'.
Hence, ¢(b) is defined and aR*¢(b).

Furthermore, since b is a normal form for S, weak completeness says that ¢(b) is a
normal form for R.

Since aR*¢(b) and ¢(b) is a normal form for R, it follows that ¢(b) € nfg(a). O

Lemma 4.15 If a simulation is sound and complete and totally conserves weak ter-
mination, then nfg(a) C ¢(nfs(¢(a))).

Proof. Let a' € nfg(a); we show that o' € ¢(nfs(v(a))).

Since aR*a’, completeness yields that there exists a b € B such that (a)S*b and
#(b) is defined and ¢(b) = a'. Since o’ is a normal form for R, total conservation of
weak termination yields that S is weakly terminating for a’. Hence, there exists a

b € B which is a normal form for S such that bS*d'. Since 1(a)S*bS*V, it follows

that o' € nfs(y(a)).
Since bS*V' and ¢(b) = d, soundness says that there exists a b” € B such that

b'S*b" and ¢(b") is defined and o’ R*p(b"). Since ' is a normal form for S and b'S*b”,
it follows that &' = b", so o' R*¢(b'). Since a’ is a normal form for R, it follows that

p(b') = d'. Hence, a' € ¢(nfs(¢(a))). O

11



Now we are ready to prove under which conditions simulation is a (weakly) correct
transformation.

Theorem 4.16 If a simulation is sound and complete and conserves termination and
totally conserves weak termination, then it is a correct transformation.

Proof. Choose parse to be 1, and print to be any total extension of ¢. We show that
these mappings satisfy the requirements of a correct transformation.

If R is terminating for a € A, then conservation of termination ensures that S is
terminating for v(a).

According to Proposition 4.5 completeness induces weak completeness, so Lemma
4.14 implies that ¢(nfs(¢(a))) C nfr(a).

Finally, according to Lemma 4.15, soundness and completeness and total conserva-
tion of weak termination yield nfg(a) C ¢(nfs((a))). O

Theorem 4.17 If a simulation is sound and weakly complete and conserves both ter-
mination and weak termination, then it is a weakly correct transformation.

Proof. Choose parse to be ¥, and print to be any total extension of ¢. We show that
these mappings satisfy the requirements of a weakly correct transformation.

If R is terminating for some a € A, then conservation of termination ensures that
S is terminating for ¢ (a).

Furthermore, according to Lemma 4.14, soundness together with weak completeness
implies that ¢(nfs(¢(a))) C nfr(a).

Finally, if R is weakly terminating for some a € A, then conservation of weak
termination ensures that S is weakly terminating for ¢(a). O

In Example 3.5, the transformed rewrite system S is terminating, so clearly the sim-
ulation in that example totally conserves termination. Earlier, we noted that this
simulation is sound and complete. Then, by Proposition 4.8, it conserves termination
and totally conserves weak termination. So according to Theorem 4.16 it is a correct
transformation.

Kamperman and Walters [9, 10] consider several practical examples of simulation,
and show that they are sound and complete and totally conserve termination. Accord-
ing to Theorem 4.16, in order for a simulation to be a correct transformation, the last
requirement can be weakened to conservation of termination together with total con-
servation of weak termination. According to Proposition 4.8, these two requirements
indeed follow from total conservation of termination.

We note that the reverse does not hold, namely, there exist sound and complete
simulations which conserve termination and which totally conserve weak termination,
but which do not totally conserve termination. This is shown in the following example.

12



Example 4.18 Let A = {a,d'} and aRa and aRa’. Furthermore, let B = {b, 1/, 0" "'}
and bSb and bSH and bSH” and " SV and b SH". Define a simulation (¢, 1)) as follows:

o) =a (e =b
o) =a )=V
o(b) = o

¢(blll) al

This simulation is sound and complete. Furthermore, it conserves termination: R is
only terminating for ', and S is terminating for ¢)(a’) = ¥'. Also, it totally conserves
weak termination, because (B,S) is weakly terminating. However, this simulation
does not totally conserve termination: R is terminating for o', but S is not terminating

for b" € ¢~ 1(d’).

5 Further Examples of Transformations

In this section we consider other transformations of rewrite systems that have been
proposed in the literature. In order to avoid extensive technical expositions, the
foundations for our correctness claims will not be described in detail.

Kamperman and Van de Pol [8] show how a weakly terminating rewrite system to-
gether with a normalization strategy can be turned into a terminating rewrite system.
They prove that their transformation is a simulation that is sound and complete and
totally conserves termination. So according to results obtained in this paper it is a
correct transformation.

Zantema [23] invented the technique of semantic labelling, where semantics is pro-
vided to the function symbols, and for each choice of semantic labels for the operators
in the left-hand side of a rewrite rule, a new rewrite rule is introduced. Zantema
proves that the original rewrite system is terminating if and only if its labelled trans-
formation is so. Sometimes, proving termination of the labelled rewrite system is
much easier than proving termination for the original rewrite system, see for example
[7]. Semantic labelling preserves the structure of reduction trees, so it constitutes a
correct transformation.

Graph rewriting is an implementation strategy for term rewriting systems where
variables are shared. It is well-known that the transformation of term rewriting into
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graph rewriting can lead to undesirable complications. For example, the term rewrit-
ing system

fla,b) — a
flz,z) — f(z,2)
a — b

is not adequately simulated by its corresponding graph rewriting system. In the
term rewriting system the normalizing reduction f(a,a) — f(a,b) — a is possi-
ble. However, in graph rewriting due to the sharing of variables, only the reductions
fla,a) — f(a,a) and f(a,a) — f(b,b) are possible, so that f(a,a) does not have
a normal form. In [2], soundness and completeness of the transformation of term
rewriting into graph rewriting is studied. The conclusion is that for left-linear weakly
non-overlapping term rewriting systems, the transformation into graph rewriting sys-
tems preserves normal forms. In order to obtain correctness, one additionally has to
verify that termination is preserved, which is indeed the case.

Laville [12] considered rewrite systems with priorities, which were first studied in [1].
If two rewrite rules can be applied to the same term, then only the rule with the highest
priority is applied. Priorities are a powerful means to capture intricate rewriting in
a simple rewrite system, but they are troublesome when it comes to implementation.
Laville shows how a rewrite system with priorities can be transformed into a rewrite
system where the priorities are captured in the syntax; this method has been applied in
the implementation of the CAML system. Laville’s transformation leaves the structure
of reduction trees in tact, so clearly it is correct.

Thatte [17] showed how a left-linear non-overlapping rewrite system R can be trans-
formed into a left-linear non-overlapping rewrite system S that is constructor-based,
where R ranges over a signature ¥ and S ranges over an extended signature ¥. Thatte
showed that the original and the transformed rewrite system are equivalent, in the
sense that there is a mapping ¢ : ¥ — X, which is the identity on ¥, such that:

- if bSY' then G(b)R*(H);
- if aRa' then aS*ad’.

The first property ensures that as a simulation this transformation is sound. However,
completeness and conservation of (weak) termination cannot be concluded from these
properties. Therefore, this equivalence notion does not imply that the transformation
is correct.

In [18], Thatte claimed for several more general notions of rewrite systems that his
transformation preserves confluence and normal forms in the reachable part of the
transformed system. However, Verma [20, 19] showed that two of these claims are
erroneous. Namely, Thatte’s transformation does not preserve confluence nor normal
forms for confluent non-overlapping rewrite systems, but only for confluent weakly
persistent rewrite systems, see [20]. Moreover, Thatte’s transformation does not pre-
serve confluence. Therefore, Verma [19] introduced a new transformation for confluent
terminating rewrite systems, and showed that his transformation does preserve both
confluence and normal forms. We remark that transformations of terminating rewrite
systems that preserve normal forms are correct.
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Sekar et al. [16] showed how a strongly sequential constructor-based rewrite system
can be transformed into an ‘equivalent’ path sequential rewrite system. Their notion
of equivalence is similar to the one of Thatte in [17], so it cannot be concluded from
their equivalence notion that the transformation is correct.

In [6, 14], transformations of equational specifications of abstract data types are
studied. Such a transformation is called a ‘correct implementation’ if the initial al-
gebras of the original and the transformed specification are isomorphic. This notion
is considerably stronger than our notion of a correct transformation. For example,
the ARS ({a},0) transforms correctly into ({b,b'}, ) by means of parse(a) = b and
print(b) = a and print(b') = a. However, when considered as specifications of alge-
braic data types, ({b,b'},0) is not a correct implementation of ({a}, ).
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