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Abstract 

A new class of models for inhomogeneous spatial point processes is introduced. 

These locally scaled point processes are modifications of homogeneous template point 

processes, having the property that regions with different intensities differ only by a scale 

factor. This is achieved by replacing volume measures used in the density with locally 

scaled analogues defined by a location-dependent scaling function. The new approach is 

particularly appealing for modelling inhomogeneous Markov point processes. Distance­

interaction and shot noise weighted Markov point processes are discussed in detail. It is 

shown that the locally scaled versions are again Markov and that locally the Papangelou 

conditional intensity of the new process behaves like that of a global scaling of the 

homogeneous process. Approximations are suggested that simplify calculation of the 

density, for example, in simulation. For sequential point processes, an alternative and 

simpler definition of local scaling is proposed. 
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1. Introduction 

Point patterns with nonhomogeneous intensity are observed quite frequently in nature and 
technology. For example, the number of plants per unit area in a natural environment depends 

on environmental conditions and topology and therefore maps showing plant locations on larger 
regions with changing conditions usually look inhomogeneous. In plant and animal tissue, cell 

size and, correspondingly, cell number often depend on the distance to the boundary of an 
organ. Many modem materials are designed with structural inhomogeneity, imitating natural 

structures in order to improve functional properties. An example is the bronze sinter filter 
shown in Figure l. The data were analysed in [6]. The filter consists of almost spherical bronze 

particles with diameters that decrease along an axis which marks the filtering direction. Since the 
particles are densely packed, the number of particles per unit volume increases as the diameters 
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FIGURE I: (a) Section of a bronze sinter filter with a gradient in particle size and number. (b) Centres of 
the particle profiles. Two enlargements from the top and bottom, containing about the same number of 

points, show similar geometry. 

decrease. This is also observable on sections parallel to the directions of inhomogeneity: the 
centres of the particle section profiles form an inhomogeneous point pattern. 

While it is easy to model inhomogeneous point patterns with independently positioned 
points by inhomogeneous Poisson point processes, situations as shown in Figure 1 require 
more sophisticated approaches. This pattern is characterized by repulsive interaction between 
the points due to the fact that it results from a packing of spheres. The packing is of similar 
volume fraction and similar geometry in regions with larger and with smaller sphere diameters. 
Therefore, regions with large sphere diameters look like scaled versions of regions with small 
diameters and vice versa. A similar effect can often be observed in nature, e.g. in plant 
communities where number density is governed by environmental conditions. For example, 
desert plants tend to form regular patterns with varying scale, such that distances between plants 
are smaller in densely covered regions. Such point patterns also appear homogeneous up to a 
local scale factor. 

In recent years, various models have been suggested for inhomogeneous point processes with 
interaction. Since Markov point processes are very useful for modelling interaction in homoge­
neous point patterns. it is natural that they are used as starting points for inhomogeneous models. 
The survey by Jensen and Nielsen [9] discusses three ways of introducing inhomogeneity into 
a Markov model. As will be explained in more detail in Section 2, homogeneous Markov 
point processes are defined by a density with respect to the unit rate Poisson point process. A 
straightforward idea is therefore to define an inhomogeneous process by the same density (up 
to a constant factor) but with respect to an inhomogeneous Poisson point process [14], [12). 
Inhomogeneity can also be obtained by location-dependent thinning [2], or by transformation 
of a homogeneous Markov point process [8]. 

In these three cases. the local geometry of the point pattern changes with intensity. This is 
illustrated in Figure 2, which shows realizations of inhomogeneous hard-core point processes 
obtained by the three methods. In order to obtain patterns that appear homogeneous up to a 
scale factor, range and strength of interaction have to be adapted to intensity. However, this is 
not accomplished by the first approach where the interaction between points does not depend on 
their locations; see Figure 2(a). Thinning, on the other hand, in general destroys the interaction 
structure. This leads to a Poisson-like appearance of sparse regions; see Figure 2(b ). Finally, 
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FIG.URE 2: Inhomogeneous hard-core point patterns obtained by (a) defining the density with respect to 

an mhomogeneous P01sson point process, (b) inhomogeneous independent thinning. (c) transformation 

of coordinates. Note that dense and sparse regions differ in geometry. The parameters were chosen such 

(a) 

that the processes have similar intensity to the example of Figure 1. 

(b) . 
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FIGURE 3: (a) Homogeneous template hard-core process and (b) inhomogeneous process obtained by 

local scaling. Enlargements from dense and sparse regions of the inhomogeneous pattern look similar to 

the template pattern. 

transformation of coordinates not only introduces inhomogeneity but also local anisotropy, as 

shown in Figure 2( c). Therefore, these three approaches are not suitable for modelling situations 

as given in Figure l. 
In the present paper, we propose alternative inhomogeneous point process models that aim 

to preserve local geometry. As in the three approaches discussed above, the inhomogeneous 

model is obtained by modifying a homogeneous 'template' process that yields the interaction. 

The idea is that inhomogeneity is obtained by scaling the template process with a location­

dependent scaling factor. A large scaling factor thereby results in low intensity and large 

interaction distances, whereas a small scaling factor yields high intensity and small interaction 

range. In regions with constant scaling factor, the point process should locally behave like a 

scaled version of the template; see Figure 3. 
The method and results presented in this paper are applicable to homogeneous template 

processes that are given by a density with respect to a homogeneous Poisson point process; 
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however. the main emphasis will be on Markov point processes. The definition of Markov point 
processes and other prerequisites are recalled in Section 2. 

Calculating the density function of a point process for a given point pattern usually implies 
evaluating distances, areas, etc. The local scaling model proposed in Section 3 changes the 
way such quantities are measured according to a location-dependent scaling function. 

Sections 4 and 5 give a closer look at the important classes of distance-interaction and shot 
noise weighted processes. In particular, we show that locally scaled Markov point processes 
are again Markov. now with respect to a location-dependent relation. Useful approximations 
of local scaling simplifying calculations, for example, in simulation are presented in Section 6. 

For the class of sequential point processes, another approach to obtaining local scaling by 
means of conditional intensities is suggested in Section 7. The paper concludes with a critical 
discussion. 

2. Prerequisites 

Let ]Ek denote the set of all full-dimensional bounded subsets of JRk and write :Bk for the 
Borel a-algebra on JR;k. We consider finite point processes X on sets X E lBlk. A point process 
X on X is a random variable taking values in r2x, the set of all finite subsets x = (x1, ... , Xn} 
of X. equipped with the smallest a-algebra for which the number of points placed in a Borel 
set B s; X is a random variable. 

We will concentrate on point processes X that have a density f x with respect to the restriction 
of the unit rate Poisson point process n to X. A point process X on X is called homogeneous 
if h is the restriction to X of a translation-invariant function defined on all finite subsets of 
xk; see [ 11 ]. 

Markov point processes in the sense of Ripley and Kelly [ 13] are particularly useful for 
modelling point patterns with interaction. They are defined with respect to a symmetric and 
reflexive relation ~on X. Two points x 1, x2 E X are said to be neighbours if x 1 ""' x 2 , and 
a tinite subset x C X is called a clique if all points in x are neighbours. Note that in graph 
theory a clique is detined in a different way, cf. for example [7]. 

For a Markov point process, the hereditary condition holds, i.e. fx (x) > 0 implies that 
f:dy) > 0 for all y s; x. Furthermore, the Papangelou conditional intensity 

l fx(x U {x)) 

!cx(x Ix)= fx(x) ' 
0, 

fx(x) > 0, 

otherwise, 

for x !/. x. depends only on those points in x which are neighbours of x. If we let dx be an 
infinitesimal region around x and l,k (dx) the k-dimensional volume (Lebesgue measure) of dx, 
then ).(x.1 x) t'k \d.r l can be interpreted as the conditional probability of finding a point from the 
process m dx given that the configuration elsewhere is x; see e.g. [ 16]. 

By th~ Hai:nmersley-Clifford theorem (see [ 13]), a Ripley-Kelly Markov point process X 
has density with respect to the unit rate Poisson point process of the form 

fx(x) = TI <p(y). 
y<;x 

\\here 'P is an interactio~ fun_ction, i.e. <p(y) = 1 when the set y is not a clique. We will always 
assume that the mteract10n function cp is defined on all finite subsets of JRk. A Markov point 
process X is thereby homogeneous if <p is translation invariant (for a proof see [I O, p. 29]). 



Inhomogeneous spatial point processes 
SGSA • 323 

Before defining local scaling of point processes, let us consider global scaling with a constant 

factor c > 0. As a transformation of coordinates, global scaling maps a point process x on X 

to a process Xc = cX on the set cX = {x: x/c EX}: see also [8]. 

_The uni: rate Poisson point process I1 on X with intensity measure tl is transformed into a 

Poisson pomt process Ilc on cX with intensity measure c-kvk. 

Let f x be the density of the original process with respect to Il. Then the scaled process v. 

(c) 
.. , ,,, 

has density f x,. with respect to De, 

ix (x) =ix - · (cl (x) 
' c 

(The superscript (c) in Jtl is used to indicate that the density is with respect to n, instead of 

Il.) The conditional intensity associated with le) is 
X,. 

Ax (x Ix) = A.x - - . le) (x j x) 
' c c 

The density of X c with respect to I1 is 

where n (x) is the number of points in x. 

3. Local scaling of homogeneous point processes 

In this section, we give a general definition of a locally scaled version of a homogeneous 

template process. 

The concept of scale invariance plays a crucial role in the definition. This concept relates to 

global scaling with a constant factor c > 0. Note that, under scaling with a factor c. a measure 

µ,on (JRk, !fh) is transformed into /le where /lc(A) = µ(c- 1 A) for A E 2k. 

Definition 1. Let g(x; µ *) be a real-valued measurable function defined on r2ai, depending 

on a setµ* = (µ 1, ••• , µm) of measures on (JR.k, :Bk). The function g is called scale invariant 

if, for all x E S!m;k and all c > 0, 

g(cx; fl7) = g(x: 11*). 

h *-( l Ill) w ere µ c - µ, c, ... , µ,. . 

The classical homogeneous point process models that appear in the spatial statistics literature 

have a density which is the restriction to r2x of a scale-invariant function g( ·: fl * ), where 

µ * = v* = ( vo, . _. , vk) is the set of d-dimensional volume (Hausdorff) measures i•J in ll~.k, 

d = 0, 1, .... k. A comprehensive set of examples will be given in the sections to follow. 

Recall that v0 is the counting measure, thus v0 (x) = n (x ), and v 1 is the length measure in JRk. 

Note also that v~1 (A) = vJ (c- 1 A) = c-J vJ (A) for A E :Bk. 

Under local scaling, the constant scaling factor c is replaced by a nonconstant location­

dependent scaling function c : JRk --+ R+. The globally scaled measures t•;' can easily be 

extended to this case. 
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Definition 2. Let c be a positive Borel measurable function on JRk. Then the locally scaled 

d-dimensional volume measure vf is defined by 

for all A E ih. 

In the following, we will assume that c is bounded from below and above, i.e. there exist 

c, c such that O < c :::: c(u) :::: c < oo for u E JRk. This assumption implies in particular that 

~~(A)< oo whene~er vd(A) < oo. 
We can now present the definition of locally scaled point processes. 

Definition 3. Let X be a homogeneous point process on X, with density f x with respect to TI 

of the form 
fx(x) oc g(x; v*), 

where g is scale invariant. Let c be a positive, Borel measurable function in JRk and let Tic be 

the Poisson point process with the locally scaled volume measure v~ as intensity measure. Let 

X' E lBlk be arbitrary and suppose that g( ·; v,~) is integrable on Slx' with respect to Tic. A 

locally scaled point process Xc on X' with template X is defined by the following density with 

respect to Tic. 

where v; is the set of locally scaled volume measures. 

If c: JR.k --> IR+ is constant, c(u) == c, say, then the density with respect to Tic of the scaled 
process on X' = cX becomes 

f (c)( ( *) -I * x, x) oc g x; vc = g(c x; v ), 

Local scaling with a constant scaling function is thereby equivalent to global scaling. In the 

general case where c is not constant, local scaling does not necessarily correspond to a mapping. 

Therefore, there is no natural choice of X' which is related to X, and the set X' can be arbitrary. 

In particular, we may choose X' = X. Note that the density of the locally scaled process Xc 
with respect to the unit rate Poisson point process n is 

fxc(x) ()( ti'."\x) n c(x)-k. 
XEX 

Locally scaled Markov point processes are again Markov, but now with respect to a relation 

~c which in general is different from the template relation ""· Local scaling of two general 

Markov model classes, distance-interaction processes and shot noise processes, is discussed in 

detail in Sections 4 and 5. For these classes, conditions on the scaling function which ensure 

integrability of g(-, v;J will be given, and it will be shown that the Papangelou conditional 
intensity of the locally scaled process, 

1 
tt_\x U {x}) (c) 

>-~}Cx Ix)= Ji~l(x) , fxc (x) > 0, 

0, otherwise, 
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satisfies a local analogue of (l ), 

A.~J(x Ix)= A.x(_::_ I--=-) 
' c(x) c(x) · 

if c is constant in a ,.,...., c-neighbourhood of x. The locally scaled processes therebv behave loca!lv 

~ike a scaled version of the template process and the local geometry is preserv·;d. In particuia~. 
1f the template is locally isotropic in the sense that A. x (x I ·) is invariant under rotations around 

x, then so is the locally scaled process. Indeed, let Rx be a rotation around x. Then 

A. (x I Rxx) = A.x - - = A.x - R , . . -(c) ( X I Rxx) ( x i (. x )) 
X,. c(x) c(x) · c(x) I ·' '1·' 1 c(xl. 

( x I x ) (c) =A.x - - =A. (xix). 
c(x) c(x) x, 

Remark 1. The representation g(x; v*) of a given function f : Slx ........ R is. in general, not 

unique. Therefore, a given homogeneous template process does not correspond to a unique 

locally scaled process. For instance, the simple neighbour relation u ~ t' {:::::::} 1• 1 (I 11. v] < r 

indicating that two points u and v are less than a distance r apart could also be written as 

u ~ v ~ v2(b(u,r/2)nb(v,r/2)) > O,whichmeansthattheballsofradiusr(2around 

the points have nonempty intersection. In order to find a natural extension of a homogeneous 

template to a locally scaled process, we recommend that the simplest possible representation 

of the density function be used. 

4. Distance-interaction processes 

In many Markov point process models. higher-order interactions are functions l)f pairwise 

distances. The densities are of the form 

fx(x) = n cp(D(y)). 1.+ l 

y<;x 

where D(y) = y if n(y) < 2 and, for n(y) '.:: 2, 

D(y) = {v 1 ([u, v]): {u, v) s; y. u =fa v} 

denotes the set of all pairwise distances of points in y. with [u. l' l being the line segment 

connecting the points u and v. Such processes shall be called distance-interaction pm~'e.iies. 

This class includes pairwise interaction processes, such as the hard-c~re process and the Strau~'.-> 

process, as well as higher-order processes, e.g. the triplets process [.'.'> ]. .. . . 

Assume that <p({x}) = f3 and that cp(D(y)) = I for n(y) ?: 2 unless 1' 1([u. r]l:::: r tor all 

{u, v) s; y. The process x is thereby homogeneous and Markov with respect to the rdation 

U"'V ~ v 1 ([u,v])~r. 
According to (4), fx(x) ex g(x; v*) for x E S1x. where 

g(x; v*) = 13v0(x) n cp({v 1((u, VJ): (u. V):;:: y, II =fa l'}) 

y<;2x 

and y s;2 x is short for {y s; x : vo(y) ::: 2). The function g is clearly scale invariant. 
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FIGURE 4: (a) Homogeneous template Strauss process X on X == [-I, 112 with parameters f3 == 200, y = 
0.1, r == 0.1. (b) Inhomogeneous Strauss process X,. on X' == [-1, 112 obtained by local scaling of X 

with c(u) == 0.1 + llull 2. 

If cp(D(y)) S l for n(y) ~ 2, then X is repulsive since each clique y 5; x contributes 
a penalty cp(D(y)) to the density. In this case, g(x; v;) s {3 11 <x> for any scaling function 
c : JRk --+ IR+. Hence, g( ·; vn is integrable on S1x' for any X' E Jlll,k and, therefore, locally 
scaled versions of such processes do exist. Otherwise, integrability has to be proved case by 
case and may require certain restrictions on the scaling function c. The locally scaled process 
has a density of the form 

f~:l(x) ex f3n<xl n cp(D,.(y)), 
y5;2x 

where Dc(Y) = {v~ ([u, v]): {u, v} £ y, u i= v). 

Example 1. (Strauss process.) A Strauss process X on X £ JRk with intensity parameter 
f3 > 0, interaction parameter y E [O, I] and interaction distance r has density 

# 
s(x) = L l(v 1([u, v]) Sr), 

{u.v)£x 

x E S1x. 

where s(x) is the number of r-close pairs in x [15]. (The superscript i= in the summation 
indicates that u and v are different.) For y = 0 we obtain the hard-core process, for y = 1 the 
Poisson point process with intensity {3. The locally scaled Strauss process has density 

f(c) (X) CX {3/l(X) ysc(X)' x,. 

Figure 4 shows a realization. 

# 
Sc(X) = L l(v<'.([u, v]) Sr), 

[u.v)f;x 

The locally scaled process is Markov with respect to the relation u ,...., v {::::::::} v<~ ([u, v]) s r. 
Thus, the shape of the neighbourhood 

ac(X) = {y: Vc~([x, y]) Sr)= bc(X, r) 

in the locally scaled process depends on the scaling function c. It is not necessarily convex 
but always star shaped; see Figure 5. A neighbourhood ac(x) is called star shaped if it is star 
shaped with respect to X, which means that, if u E ac (x), then (x, u] £ ac (x). 
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c:=l 

FIGURE 5: Neighbourhoods of four points in a locally scaled distance-interaction pr,)ces:.;. \\ ith sc·a!e factor 

c = l in the left half and c = 2 in the right half of the domain. 

In regions where c is constant, the neighbourhood a, (x) = h, (x. rl is hall shaped and thu~ 

similar to the neighbourhood a (x) = b(x. r) in the homogeneous and isotropic template: ~ee 

Figure 5. More precisely, we have the following result. 

Proposition 1. If c(u) = c for all u E b(x. er), then h,(x. r) = b(x. crl. 

Proqf With straightforward calculations it can be shown that t' E b(x. er l implies that 

V E hc(X, r) and V ~ b(.x, er) implies that V 'j!: hJt, r). 

Locally scaled distance-interaction processes have the desired property that in regions where 

c is constant the process behaves like a scaled version of the template process. 

Proposition 2. Let X he a distance-interaction point process with conditional imensitY "·.\. 

Suppose that c( u) = c for all u E b(x, er). Then the conditional intensit\· i~( tile lol'ally 1caled 

process X, is given by 
(c) . (x I X) "Ax (.\ Ix) = J..x -:: -:- . 

c c c 

Note that c(x) = c under the assumption. 

Proof First notice that the assumption implies that b(x. er) = b, ( x. r l: see Proposition !. 

The conditional intensity of the locally scaled process is of the fonn 

"A~\x Ix)= f TI cp(D,(y U {x}lL 
y<;1x 

wherey ~ 1 x isshortfor{y ~x :n(y):::: I}. Supposethaty ~b(x,t~rl. Sin1..·e 

\)} ([u, v]) = z.-1 vl([u, v]) = v1 ([~· ~]) for any 11. l' E /J(x. ,~,.). 

we get D,(y u {x}) = D(y/c u {x/e}). 
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On the other hand, suppose that there exists au E y such that u rf. b(x, er). Thus, 
v~ ([u, x]) > r and therefore cp(Dc(Y U {x })) = I = rp(D(y /c U {x /c})). It follows that 

S. Shot noise weighted processes 

Shot noise weighted processes are based on geometric quantities other than pairwise dis­
tances. Write Cx(u) = Lxex l(u E b(x, r)) for the template coverage function. Then a shot 
noise weighted point process with potential function p(-) is defined by 

x E nx, (5) 

where y > 0 and p is a function on the nonnegative integers No with p(O) = 0. The integral 
J p(Cx(u))vk(du) is taken on all JRk. The special case p(n) = l(n ~ l) is known as an 
area-interaction point process [ l ]. 

The interaction function of a shot noise weighted process is 

-113y-m<y>, n(y) =I, 
cp(y) - -m(yJ ( ) I 

y ' n y > ' 

where 

( ) 
n(y) (n( )) 

m<y) = vk n b(y. r) I: : <-1)11(y)-/ p(l); 
yey l=I 

compare with Theorem 3.3 in [17]. As usual, cp(0) is the normalizing constant. Homogeneous 
shot noise weighted processes are Markov with respect to the overlapping objects relation 

u "'v ~ b(u, r) n b(v, r) I- 0 ~ llu - vii S 2r, 

vhich means that the neighbourhood of a point is a ball with radius R = 2r. 
It is easy to show that 

:ale invariant. The locally scaled shot noise weighted process has density 

(6) 

.1 scaled coverage function Cc,x(u) = Lxex l(u E bc(X, r)). 
van Lieshout and Molchanov [17] show that (5) is integrable if there exists some constant 
..vith 0 < C < oo and 

\p(n)I S Cn for all n E No. (7) 

\ similar result holds for the scaled process. 

Proposition 3. Under the condition (7). g(.; v;) is integrable on nx' for any X' E JBk and 
hence the locally scaled process defined by (6) does exist. 
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Proof We show that there exists an M > 0 such that g(x; v~) < M"<xl for II Q , 

This is fulfilled if ' - a x E X · 

Ilk p(Cc,x(u))v;.(du)[ _:::: M'n(x) (8) 

for some 0 < M' < oo and all x E QX'· 

Let Sc(x) denote the support of Cc.x· As Cc.x(u) _:::: n(x), we have 

ILk p(Cc.x(u))v~(du)[ _:::: Cn(x)v:,(Sc(x)) 

with c as in (7). Since Sc(x) = UrEx bc(X, r) s; X' EBb(O, er), where EB denotes Minkowski 

addition, and v~ (B) _:::: CJ.: vk (B) for all B E /Eh, (8) holds with 

M' = C<;;_-/.:Vk(X' EB b(O. er)). 

The locally scaled shot noise weighted process has the interaction function 

where 

n(y)=l, 

n(y) > I. 

( 
n{y) 

mc(Y) = J)~ n bc(Y' r)) L (ni)) (-1 )n(yi-1 p(/). 

yEy i=l 

It follows that Xc is Markov with respect to the overlapping objects relation 

u ~c v <===? hc(u, r) n bc(v. r) =fa 0 {:=::} 3w: v,1([u, w]) _:::: r /\ v,1([w. v])::: r. 

The neighbourhood of a point x is 

Bc(X) = LJ bc(W, r), 

WEI>, (x.r) 

which in general is not ball shaped, but contains all points that are 2r-close to x with respect to 

v,'.. Additionally, it is possible that two points are neighbours in Xc although their scaled distance 

is larger than 2r, since the triangular inequality does not necessarily hold for scaled distances 

defined by v}. However, in analogy with the results obtained for the distance-interaction 

processes, the following proposition holds. 

Proposition 4. For a shot noise weighted process, if 

c(u) = c for all u E b(x, 2cr), 

then 
3c(.i:) = b(x, 2er). 

Proof Consider w E bc(X, r). Then b(w, er) c b(x. 2cr) and thus c(u) = c for all 11 E 

b(w, er). Therefore, Proposition l yields that bc(X, r) = b(x, er) and bc(W, r) = b(w. er). 

and hence 
Bc(X) = u bc(W, r) = u b(w. er)= b(x, 2er). 

wEbc(.t,r) wEb(x .i'r) 
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If the scaling function is constant in a neighbourhood of a point x, then the conditional 
intensity of a locally scaled shot noise weighted process again behaves as though it is under 

global scaling. 

Proposition 5. Let X be a shot noise weighted point process with conditional intensity AX. 
Suppose that c(u) = e for all u E b(x, 2cr ). Then the conditional intensity of the locally 

scaled process x[' is given by 

AC"\x jx) =AX(;. J ;). 
Xc c c 

Proc~f Since the conditional intensity can be written as a product of interactions, AX (x Ix) = 

f1.vi;xnaixi rp(y U (x}), we only need to show that 

TI 'Pc(JU{x})= n 'P(yU/xl). 
ys;xnilc(x) yfC<;x/Z.nH(x/c) 

This is fulfilled if mc(Y U {x}) = m ( (y U {x }/c)) for finite y C Bc(x ), y f. 0, i.e. if 

v:.(nbc(::,r))=vk( n b(z,r)). (9) 
:EyU{x) :E(yU{x})/i' 

By the assumption. t\.([z. w]) = e- 1v([z. w]) for any w, z E b(x, 2cr). Thus. for all z E 

ilc(x) = b(x. 2er) (Proposition4), we have 

wEbc(z.r)nbJx:.r) {:::==} wEb(z,h)nb(x.cr). 

Therefore, bc(z. r) n bc(X. r) = b(z. er) n b(x. er) and 

n b,(z,r) = n b(z. er)== n cb(z., r). 

~EyU{x} ~EyU{x} zE(yU{x}J/i' 

which immediately leads to (9). 

Remark 2. In the present section, the focus has been on local scaling of homogeneous shot 
noise weighted processes defined using balls b(x, r). It is possible to define a more general 
type of homogeneous shot noise weighted process with b(x, r) replaced by x + Z, where Z is 
an arbitrary bounded subset of !Rk. Expressing Z with generalized radius-vector functions, the 
homogeneous template process can easily be generalized to local scaling. 

6. Approximation of local scaling 

For simulation oflocally scaled Markov point processes using, for example, the Metropolis­
Hastings algorithm (see [5]), expressions of the form g(x; v,~) have to be evaluated. This usually 
involves integration with respect to scaled d-dimensional volume measures v:1. ln the locally 
scaled distance-interaction processes introduced in Section 4, for example, we deal with scaled 
distances 

where c- 1 (u, u) is the integral mean of the inverse scaling function w -+ l / c( w) on the segment 
[u. v]. 
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For certain scaling functions c, such integrals can be expressed explicitly. However. if we 
strive to design programs that handle arbitrary scaling functions. we would have to resort to 
numeric algorithms. Time-consuming calculations can be avoided by defining approximately 
scaled processes that require only pointwise evaluation of the scaling function. 

Markov point processes comprise a large variety of models that are essentially different 
to each other, for example, with respect to the order of interaction. or to the dimensionality 
of volume measures involved in the definition of their density. There is no best recipe fc;r 
approximate local scaling of all possible models. A general method for pointwise local 
scaling of Markov point processes, based on averaging the interaction functions. is presented 
in Subsection 6.1. Tailor-made, more intuitive approaches for distance-interaction processes 
and shot noise weighted processes are suggested in the following subsections. 

6.1. Local scaling by <p-averaging for Markov point processes 

In order to restrict the evaluation of c to the points in the pattern x = {x 1 •...• x,, }. we 
interpret local scaling as an average of global scalings with scaling factors c(.r 1). ...• dx11 I. In 

the context of finite-order interaction Markov point processes where cp(y) = I if 11 ( y) > m for 
some m < oo, we propose to construct the density of the locally scaled process from averaged 
interaction functions. Doing so, cliques y are only influenced by their own scaling factors, and 
not by scale factors from points outside y. Thus. the paradigm of local interaction is preserved. 
Locally scaled interaction functions are defined as the geometric mean of the corresponding 

interactions in globally scaled patterns, 

( ( ))
l/n(y) 

</ic(Y) = D cp C~') n(y) '.:". l. ( !O) 

Thus we obtain the density Jt> by local cp-averaging as 

~(c) n · fx, (x) oc cp,(y), 
ys;1x 

where y <:; 1 x is again short for {y s; x : n (y) ::: 1}. The use of the geometric mean in (I Ol 

is motivated by the fact that interaction functions are usually of the form cp(y l = ex~i - P\J' H. 
where p (.) is the so-called potential function. This notion stems from statistical physu:~, where 
Markov point processes were first described as Gibbs processes. Taking the geometm: mean 

of cp means taking the arithmetic mean of the potential function, 

</ic(Y) =exp(- n/y) ~pc.~.J ), n(y) '.:". l. 

The following example of a Strauss process shows how this concept is applied to a distance­

interaction process. 

· d A · · t Jy locally scaled Strauss process X, Example 2. (Strauss process, contmue . ) n approx1ma e · 
obtained by cp-averaging has second-order interaction 

, ( l /'.!)(l([lu-v ll:::c(u)rl+ l( llu-t•ll Sc( t•)r) 1. 
C/Jc ( { U, V}) = Y 

. . k . h ,, 1~(cl ( ) oc 1311(xl y.i,lx 1 where .~ .(x) is calculated frnm 
Therefore, the density ta es t e iorm x, x . · ' 
the number of neighbours given by the directed relatrnn 

u ...,... v {=::=? [[u - vii :':: c(u)r. 
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The number of directed neighbours divided by two, 

¥- 1 
.Ux) = L 2(l(u...,... v) + l(v "'""'u)), 

{11,v)~x 

can be considered as an approximation of the true number Sc (x) of neighbours under local 

scaling; compare this with Section 4. 

6.2. Local scaling by c-averaging for distance-interaction processes 

Locally scaled distance-interaction processes as introduced in Section 4 require only the 

calculation of scaled pairwise distances v} ([u, v]) = ? (u, v) II u - v ff. A natural idea is to 

replace the integral mean c- 1 (u. v) by a simpler mean ?i" ~v) of the inverse scaling factors 

c(u )-1 and c( v)-I. We propose to use the harmonic mean c- 1 (u, v) = 2/ (c(u) + c( v)). The 

original neighbour relation u ~ c v {=::} v J ( [u, v]) :::; r is thus approximated by 

u "'i: v {=::} flu - u[[ :'.S !Cc(u) + c(v))r. (11) 

This relation allows for a nice geometric interpretation. Two points u, v are neighbours if and 

only if the balls b(u, 4c(u)r) and b(v. 4c(v)r) overlap. Note that (11) actually means that the 

scaling function c its;\f is locally repla~ed by the arithmetic mean ! (c(u) + c(v )). Therefore, 
we call this approach local scaling by c-averaging. 

Example 3. (Strauss process, continued.) As for qi-averaging, the density of an approximately 

locally scaled Strauss process obtained by c-averaging is of the form 

¥-
Sc (X) = L l(u "'<' v), 

{u.v)~x 

Now, .~" (x) is the number of neighbour pairs with respect to the approximate neighbour relation 
~,, given by ( 11 ). 

6.3. Local scaling by influence zones for shot noise weighted processes 

Shot noise weighted processes as defined in Section 5 require the evaluation of the coverage 

function C-.x (u) = LxEx l(u E bc(X, r )), which gives the number of 'influence zones' be (x, r) 
covering a point u. 

In Proposition l we saw that bc(X, r) = b(x, er) if c(u) = c = c(x) for all u E b(x, er) = 
b(x. c(x)r). Assuming that c does not vary very much in b(x, c(x)r), we can use this result 

to approx~mate the influence zones by bc(X, r) ~ b(x, c(x)r) and thus obtain the coverage 
function c,.x(ll) = LxEx l(u E b(x, c(x)r)). Calculating the density function 

.t}'.'_J (x) ex 13n<xl y-f p(Cc,x<uJJv;(ctu) 

st~ll requires integration with respect to the locally scaled measure v~. But even when dealing 

with homogeneous processes. the integral J p( Cc,x (u)) du is usually approximated by grid 

methods. Once the coverage function Cc,x (-) is known, evaluating 

[ p(Cc,x(u))v;(du) = [ p(C,.,x(u))c(u)-kvk(du) 
}Rt }Rk 

is therefore no bigger a problem than evaluating the corresponding integral in a homogeneous 
(template) setting. 
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7. Sequential local scaling 

A sequ~~tial point proc:ss X on X E IBlk is a random variable taking values in r.?s.X· the 
set of all fimte sequences x = (xt, ... , Xn) of points in X. The set r2s.X is equipped with the 
a-algeb:a :Fs._x generated by the Borel a-algebras 93,, on X". In the following. we will consider 
sequential pomt processes that have a density f x with respect to the probability measure p on 
Qs,X• where, for all F E :Fs.x, 

This measure on the space ( r2s, x , :F.s, x) of sequential point sets corresponds to the unit rate 
Poisson point process for unordered (nonsequential) point processes on (Qx. :Fs.X ). 

For sequential point processes, the Papangelou conditional intensity, 

fxCr1 ..... x11l>O. 
( 12) 

otherwise, 

gains a particularly intuitive meaning, since A. x (x Ix) vk (dx) relates to the conditional proba­
bility of adding a new point x in a region dx to an existing sequence x = (x 1 ••..• x,, ). 

In analogy to hereditary (unordered) point processes, we define hereditary sequential point 
processes as follows. 

Definition 4. A sequential point process X with density fx is called hereditary if h (x 1 ••••• 
x,,) > 0 implies that fx (ji) > 0 for all subsequences y of (x 1, ...• x,, ). 

If a sequential point process is hereditary, then, as a consequence of ( 12), the density can be 
written as 

n 

fx.Cx1 •... 'x,,) ex: n A.x.(Xj I X<j). X<J = (x1 •. .. ,Xj-1). 

J=I 

This gives rise to a straightforward idea of defining local scaling in the sequential context 
by means of locally scaled conditional intensities. We start again with a homogeneous, now 
sequential, template process X, which means that fx and. hence, Ax are translation invariant 
and in principle defined for any finite point sequence in JR:.k. Motivated by the effect of global 
scaling on the conditional intensity, cf. (I), we require that the Papangelou conditional intensity 
of the scaled sequential process Xc fulfils 

(c) _ ( X \ X ) A. - (x Ix) = A. - - - , 
X, X c(x) c(x) 

(13) 

where c as before is a measurable, bounded scaling function that is bounded away from 0. 
Note that, for locally scaled unordered point processes, the corresponding property (2) is only 
fulfilled in regions where the scaling function c is constant. 

Definition 5. Suppose that X is a homogeneous hereditary sequential point process on X with 
Papangelou conditional intensity A. x given by (12). Let µc be the distribution of a sequential 
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Poisson point process with the locally scaled volume measure v~ as intensity measure, and let 
X' E lffik be arbitrary. 

Then the locally scaled sequential point process Xc on X' with template X is defined by the 
density 

(c) nn ( x j I x <j ) i- (xi, ... ,xn)cx: >-x -- --
Xc j=l c(Xj) c(Xj) 

(14) 

with respect to µc, provided that ixc is integrable on !Js.X'· 

Sequential templates can easily be obtained from homogeneous unordered point processes, 
since any unordered point process X on X with a density ix with respect to the unit rate Poisson 
point process can be converted into a corresponding ordered point process X by defining the 
density fx with respect to µ as 

(15) 

This means that every permutation of x has the same density; see also [4, p. 122]. We shall 
refer to the process X with density (15) as the sequentialized version of the process X. 

Clearly, the sequentialized process X is hereditary if the unordered process X is hereditary. 
Combining (12) and (15), the Papangelou conditional intensity of a sequentialized process 
becomes A_~(xlx1, ... ,xn) = A.x(xJ(x1, ... ,x11 )). Thereby, the Papangelou conditional 
intensity of the corresponding locally scaled point process X,. is 

;_<x~\x Ii)= >-x(~ I~). 
' c(x) c(x) 

cf. (13), and the density (14) of Xc becomes 

,, ( I (c) Xj X<j ix- (X1, · · ·, X11) CX: n AX -- --). 
,. . c(x ·) c(x-) 

j=l J J 

(16) 

The locally scaled process X,. is locally stable, i.e. A.~·) is bounded above, if the homogeneous x,. 
unordered template X is locally stable, i.e. if A.x is bounded above. Then (16) is integrable. 
As before, a constant scaling function simply yields a globally scaled sequential point process. 
Note in particular that a locally scaled sequential point process is isotropic in the sense of (3) 
if the template is isotropic. 

Example4. (Strauss process, continued.) For a Strauss process X, A.x(x Ix) = f3ys<x:xJ 

where s(x; x) = s(x U {x}) - s(x) denotes the number of points in x that are closer than r to 
the new point x ~ x. Here 

with 

Sc(X1, • .. ,X11 ) = I:i(ll~ -_!j__ll ~ r) 
. . C(Xj) c(x1·) 
l<j 

= L l(Xj ....,...,. Xi), 
i<j 
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where 

x J ._.c x; {:::=:::} !Ix J - xiii ::: c(x J )r. 

This is the same directed neighbour relation as in cp-averaging, see Subsection 6.1. 

Specializing to the hard-core model (y = 0), we obtain a sequential inhibition model in 
which each point upon arrival keeps a distance c(x J )r away from previously arrived points; see 
also [3]. 

8. Discussion 

Inhomogeneity in natural structures may be caused by very different mechanisms. Cor­
respondingly, there is a myriad of ways to define inhomogeneous models. Therefore. some 
restrictions have to be introduced that replace the usual homogeneity condition. The three 
models for inhomogeneous point processes described in the introduction stand for three different 
situations. In the first model, the interaction between points is independent of location. In the 
second model, inhomogeneity results from a (physical) location-dependent thinning. and in 
the third from (physical) deformation of the matrix. In this paper, we introduced yet another 
approach which yields models for patterns that are homogeneous up to a local scale factor. 
Such point processes may describe a spatial arrangement of spheres with diameters that vary 
with location, see Figure l, or situations where both intensity and interaction are governed by 
the same external factor, such as desert plant communities that are ruled by water supply. 

When it comes to choosing an appropriate model for a given situation, there will sometimes 
be prior information about the physical genesis of the patterns that strongly suggests one of the 
approaches. In general, however, it will be necessary to define criteria for the best choice which 
can then be used to develop model tests. These criteria will strongly depend on the modelling 
purpose. Often it is desirable to pick the model that reflects best the local arrangement of 
neighbouring points. Therefore, a test on the local scaling assumption could exploit scale­
invariant local geometric properties, as, for example, shape factors of corresponding Voronoi 
cells. Statistical inference will be studied in detail in a forthcoming paper. 

The intensity Ac(x) of a globally scaled point process is proportional to the intensity A of the 
template, Ac(x) = c-kA(x /c) ~ c-kA, since the intensity of a homogeneous template is ap­
proximately constant. Analogously, the intensity of a locally scaled process is (approximately) 

( 17) 

This allows us firstly to model practically any inhomogeneous intensity and. secondly. to retrieve 
the scaling function (up to a proportionality constant) from a given or estimated density. In this 
aspect the scaling function plays a similar role to the survival probability of the thinning model. 

Once the scaling function has been estimated, it can be used to subsequently fit the parameters 
of the template process and thus to complete the model specification. A similar approach has 
been followed by Nielsen and Jensen [ 11] for fitting the transformation model. Further~10re. 
possible empirical relations between an estimated scaling function an~ ~xplanatory vanables 
such as water supply in the desert vegetation case can be used for pred1ct1on purposes. 

Future work will concentrate on validating the approximation ( 17) as well as on development 
of model tests and other statistical methods. Moreover, the idea oflocal scaling will be extended 

to other random sets. 
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