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Abstract 

We show that a Poisson duster point process is a nearest-neighbour Markov point process [2] if the dusters 

have uniformly bounded diameter. It is typically not a finite-range Markov point process in the St::nse of RipJey 

and Kelly [11]. Furthermore, when the parent Poisson process is replaced by a Markov or nearest-neighbour 

Markov point process, the resulting duster process is also nearest-neighbour Markov, provided all clusters ;arc 

nonempty. In particular, the nearest-neighbour Markov property is preserved when points of the process are 

independently randomly translated, but not when they arc randomly thinned. 

l. INTRODUCTION 

Markov or Gibbs point processes [2, 8, 11, 12] form a large, flexible, and understandable class 

of point process models with many practical advantages (see e.g. [4, 9, 10] for surveys). In 

this paper we consider the relationship of these models to the basic point process operation of 
clustering. We ask whether cluster processes are Markov, and whether the Markov property 
is preserved under clustering. 

In a Poisson cluster process, intuitively the only 'spatial dependence' present is that be­
tween offspring of the same parent. If the offspring of a given parent all lie within distance R 
of the parent, then two offspring of the same parent lie at most 2R apart, and it is plausible to 

conjecture that the process is Markov with finite interaction range 2R in the sense of Ripley 

and Kelly [11]. 

However, this turns out to be false in general, because certain spatial configurations of the 

offspring points imply information about the unobserved parent points, and this information 

can 'propagate' over arbitrarily large distances. 

In this paper we show that cluster processes have the nearest-neighbour Markov property 
in the sense of Baddeley & M!illler [2). We prove that (a) any Poisson cluster process with 
uniformly bounded clusters is a nearest-neighbour Markov point process; and (b) if a Markov 

or nearest-neighbour Markov point process is used as the parent process for a cluster process, 



2 

and the clusters are uniformly bounded and a.s. nonempty, then the cluster process is again 
nearest-neighbour Markov. In particular, the nearest~neighbour Markov property is preserved 
under random displacement of points, but not under random thinning. 

These results support the claim [6, 7] that nearest-neighbour Markov processes (as opposed 
to Ripley-Kelly Markov processes) provide a rich class of models for clustering, and further 
suggest that they may include good models for multiple-generation cluster processes, cf. [5]. 
Result (a) may also explain why statistical theory for Poisson cluster processes so closely 
parallels that for Markov point processes [l]. 

The next section recalls standard definitions; the main results are stated in Section 3 and 
the proofs follow in Section 4. 

2. SETUP 
2.1 Point processes 
We consider finite point processes X on a metric space S (typically Rd or a compact subset). 
Each realization of such a process "is" a finite set x = { xi. ... , Xn} of points x; E S with 
n ~ 0. Strictly speaking the points may be multiply occupied, and n is the total multiplicity, 
but this will have probability zero in the applications considered. Realizations will also be 
called 'configurations' and the class of all configurations will be denoted by C. This is the 
exponential space of S, see [3] or [2] for details. 

Let 11 be some given Borel measure on S (typically Lebesgue measure); we will consider 
processes whose distributions are absolutely continuous with respect to the measure µ on C 
defined by 

µ(F) = E ~ j · · · j 1 [{yi, ... , Yk} E F] dv(yi) ... d11(yk)- (2.1) 

If 11 is totally finite (e.g. if S is compact and 11 is Lebesgue measure), then µ is e•(S) times 
the distribution of the Poisson process on S with intensity measure v. 

Let f : C --+ [O, oo) be the density of a point process X with respect to µ. We say f is 
hereditary if 

f(x) > 0 implies f(z) > 0 for all z C x 

and hereditary excluding 0 if this holds except when z = 0. 

2.2 Markov point processes 
This subsection collects necessary definitions from [2, 9, 11]. 

Define u, v ES to be r-close, written u - v, if d(u, v) < r where dis the metric of S. This 
defines a relation - on S which is clearly symmetric and reflexive. [The results of this paper 
extend to the case where - is any symmetric reflexive relation on S which is measurable in 
the product space. Theorem 2 in Section 3 requires two such relations. ] 

Definition 1 (Ripley-Kelly) A point process X is Markov with respect to the static rela­
tion - if its density f satisfies 

• f is hereditary; 



• for''"!! x EC such that f(x) > 0 and u E 8, the ratio 

f(xU{u}) 
f(x) 

depend.• only on u 111td on { x; E x : u ~ x;}. 
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(2.2) 

Now clcfin<' for each x E C t.hr ''connected component relation" [2, Appendix III] between 
point.H of x by 

Ti.; J"j iff Xi ~ z1 "'··· f"'V Zn "'Xj for some z1, ... ,zn. Ex 

In othPr worcls, two points of x are related under ';;' if they are in the same connected 

"''mponcut. of t.h1• finite graph whose edges connect every pair of r-close points in x. 

Definition 2 (Baddeley-M111ller) A point process X. is nearest-neighbour Markov with re­
"7i<!r.t to the dy1wmic relation;: if its density f is hereditary and the ratio {2.2) depends only 
on u, on 

Nhcl(u. I xU{u}l={.r;Ex:u~x;}, 

and on the relations ~, ~ restricted to Nbd ( u I x U { u}). 
x xU{u} 

Clearly if X is Markov with respect to ~, it is also nearest-neighbour Markov with respect 
to both ~ and -. 

x 
Analogues of the Hammersley-Clifford theorem proved in [ll] and in [2] give explicit ex-

pressions for the density f when X is Markov and nearest-neighbour Markov, respectively. 
Do.fine a configuration z to be a clique with respect to - (or an r-clique) if all pairs of points 
in z are r-closc, z; - z; for all z;, z; E z. Then [ll] X is Markov iff 

f(x) = II <p(z) (2.3) 
z~x 

where <p(z) ~ 0 with cp(z) # 1 only if z is a clique. 
In the nearest-neighbour case, a subconfiguration z ~ x is termed a clique with respect to 

';;'if all pairs of points in z are -;;--neighbours, z; ';;' z; for all z;, z; E z. The maximal r-cliques 

are also called connected components. 
An analogue of (2.3) for dynamic relations ';;' is given in [2, Theorem 4.13]. For the 

'connected component relation' this specialises to the following result. 

Lemma 1 A point process X is nearest-neighbour Markov with respect to the connected com­
ponent relation ';;' if! 

f(x) = II <p(z) (2.4) 

cliques z<;;x 

where cp(·) ~ 0 is such that whenever z is a r;-clique with <p(z) > 0 then cp(w) > 0 for all 
wcz. 
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For example, for a Matern cluster process, in the case ·• ~ 2R consider a configuration of 
three points yi, y2, y3 such that !IY1 -y2ll < s, !IY2 - Y311 < B, but 11111 - !1311 > 8. If f were a 
Markov function at range s then 

f({y1,y2, Ya} )f( {y2}) = f({yi, Y2} )f ( {y2, Ya}). 

Substituting (3. 7) gives 

[1+ e"' J(y1, Y2) + e"' J(y2, y3)] = [l + e"' J(yi.y2)] [l + e"' J(y2, Ya)]. 

This is clearly a contradiction, since the J terms are nonzero. Hence f is not a Markov 
density in the Ripley-Kelly sense at distance s. For s > 2R one can usl' similar argnmcntH 
involving chains of more than three points. 

Next we consider cluster processes generated from a parent process which is Markov or 
nearest-neighbour Markov. In general the cluster process is not Markov. 

Counterexample 2 Let x be a Ripley-Kelly Markov point process (finite range r) and y 
the result of thinning the points independently with retention probability q, 0 < q < l. The.n, 
in general, y is not a nearest-neighbour Markov point proces.9 (and a fortiori it i.• not 11 

Ripley-Kelly Markov process} for any R < oo. 

This can be checked from (2.6), since random thinning is the special case of clustering in which 
Ze = {{} with probability q, and Ze = 0 otherwise. For any given pair of points y;, Yj E y 
there are (potentially) nonzero summands in (2.6) of the form q,,1 (yi)q.,, (0) · · · q,,N_, (0)qrN (yj) 
involving both y;,y;. Hence y is not nearest-neighbour Markov according to (2.4). 

Clearly this problem may arise whenever clusters are permitted to be empty, i.e. when a 
parent point may have no offspring. When this is excluded, we do obtain a Markov property. 

Theorem 2 Let x be a Markov or nearest-neighbour Markov point process at ranger a11.d y 
the associated c/u.iter process satisfying {A)-{D) of section 2.3 and moreover 

(E) the clusters are nonempty a.s. 

Then y is a nearest-neighbour Markov point process for the connected component relation at 
range 2R + r. 

Corollary 1 Let x be as above, and let y be the process obtained from x by independently 
translating each point: Yi = x; + Vi, where the vectors Vi are i. i. d., have a probability den­
sity, and satisfy llv;l1 < R a.s. Then y is a nearest-neighbour Markov point process for the 
connected component relation at range 2R + r. 
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-!. PllOOFS 

Proof of Lemma 1: 
Suppose that (2.4) holds. Let x E C, { E S and let XD1, ... ,xvK and w U {e} denote the 
conncct.e<l components of x U {(}. Then, if xvK+I' ... , XDL are the connected components of 
w, we have that xn1 , ••• , XDi are the connected components of x, and 

f(x U {(}) = ip(0) [ft II ip(z)] II <;(z) 
i=l 0r<z£;xv, 01"z£;wU{0 

whik 

[ 
K ] L 

/(x) = <;(©) ;Q 01"!Jxv, ip(z) jJt 0#U.v; ip(z). 

Hence /(x U {(}) > 0 implies f(x) > 0 (as z s;; XD; for j > K implies that z s;; w) and 
f (x U { 0) / f (x) satisfies the conditions of Definition 2. Thus X is nearest-neighbour Markov. 

Conversely, suppose X is nearest-neighbour Markov. By the analogue of the Hammersley­
Clilford theorem [2, Theorem 4.13], 

/(x) = II ip(y)X(YIX) (taking o0 = 0) (4.9) 
y,;x 

where x(y I x) = 1 if y is a ~-clique and 0 otherwise; and <p : C --+ Ill+ satisfies 

(11) <;(x) > 0 implies <p(y) > 0 for ally C x 

(12) <p(x) > O and ip( {{} u Nbd(e I x u {{})) > 0 imply <p(x u {{}) > 0. 

Note that, in the case of the connected component relation, { y 71 implies e ~ 1J for x 2 y, 

so that x(Y I y) = 1 implies X(Y I x) for any x 2 y. 
To prove that (4.9) reduces to (2.4) we need to show that, if <p(y) > 0 for ally s;; x with 

x(Y I x) = 1, then 'P(Y) > 0 for ally s;; x. 
To prove this, suppose v, w C x are disjoint connected components of x {i.e. with respect 

to~). If e E v then Nbd({ I wU{O) = {0, and by assumption ip({O) > 0, so (12) 

give~ <p(w U {e}) > 0. Similarly if{e,71} s;; v then Nbd(I) I wU{{,IJ}) = {{,71}, and by 
assumption ip( {{, IJ}) > 0, so (12) gives <p(w U {{, IJ}) > 0. Continuing in this way we obtain 
that <p(y) > 0 for ally s;; x. 

Hence if X is nearest-neighbour Markov then its density is of the form (2.4) where <p 

satisfies (11) and hence the condition stated in the Lemma. 
0 

Proof of Lemma 2: 
The clusters Z; being conditionally independent given x, we have for any measurable event 
F 

lP'{y E F I x} j I [yz; E F] q., 1 (Z1)···q.,.(Zn) dµ(Zi) ... dµ(Zn) 

L j I [y E F] q.,,(yc.)···q.,.(yc.) dµ(y). 
C1, ... ,Cn 
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The last line was obtained using (2.1} by rewriting each integral over Z; as a sum of multipl" 
integrals with respect to v and regrouping. The result follows by taking expectations with 
respect to x. D 

Proof of Theorem 1: 
By (2.6}, the density of y with respect to µ is (for y # 0) 

j(y) (4.10) 

(4.11) 

here the inner sum is over all ordered partitions of y into n disjoint, possibly empty, sets. 
Since the parent process is Poisson, the number of non-empty clusters is Poisson distributed 
with mean /3 = J5 (1 - qe(0)) d>.(~), so that for y = 0 we have /(0) = e- 11 • 

Now qe(z) = 0 whenever z Ii'. b({, R}; hence if qe(z) # 0 then all pairs of points in z are 
2R-close, i.e. z is a clique with respect to the finite range relation with <listance 2R. Henct> 
the integral in (4.11} is nonzero only when the partition consists of 2R-cliques. 

For y of. 0, let YDw··,YDK be the connected components of y for the relation'; with 

range 2R. Then the integral in (4.11) is nonzero only when the partition is a refinement of 
Di, ... , DK. Let Ci, ... , Ck be an (unordered} partition refining Di, ... , DK and consisting 
of non-empty sets. This contributes a term 

k 

a !J fs Qe(Yc.l d>.(O 

to the density. Since fs qe(0) d>.({) = >.(S) - (3, the coefficient a is 

co e-.\(S) 
I.; - 1-(>.(S) - flt-k n(n - 1} · · · (n - k + 1) = e-P. 
n=k n. 

The class of all partitions that are refinements of D1 , • •• , DK is the Cartesian product of 
the sets of partitions of each D;. Hence, for y # 0, 

K 
/(y) = e-P II w(yo,) (4.12) 

i=l 

where 

(4.13) 

where zc,, ... , zc. range over all (unordered} partitions of z into nonempty subconfigurations. 
Since the offspring densities Qe are hereditary excluding 0, clearly w is hereditary exclud­

ing 0, and hence f is hereditary. According to (2.4) the density (4.12} is nearest-neighbour 
Markov with respect to the connected component relation at range 2R. D 
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I'..m.!!!'.!•LT.lmorem 2: Tl"' density p(x) of x can lw factorised as in (2.4). By (2.6), the 
cknsity of y with rc•spr<'t t.o 11 is 

ri(x) 

f(y) = l L IT q,.,(yc,) p(x)dµ(x) 
' l C1, . .,(',1 (x) 1 1 

(4.14) 

wlwn• the• s11111 ra11p,<'s m·<•r all ordr1'('(l part.itions of y into disjoint, possibly empty subsets. 
Sinrt• '!((VI)=- 0. tht• intqi;raml of(4.J.t) can br rephrased as 

" L: IT q,,(y, · '(i)i p(xJ (4.15) 
I ;~.I 

wlu•n•' ranges o\·1•r all smjt•ct.i\·e mappings of th1• points of y onto the points of x, identified 
with mappings from {1, ... m} onto {!, ... ,n}. 

Wt• !'art n•stri<-t att<'ntion t.o those ' such that 

for all i (4.16) 

siure all other tPrms arc wro. For such,, if z t;;; x is an r-c!ique and ,- 1(z) =wt;;; y, then 
w 11rn.<t b1· a. (2R + r)-r.liqite. To set• this, take y;, YJ E wand apply the triangle inequality: 

tl(1Ji, !}j) :5 d(y;, X<(>)) + d(x<(;), x,(j)) + d(x,(J)• YJ) 

:5 R+r+R. 

Dy a similar argument, if z t;;; x is a clique with respect to the relation ~ at distance r, then 

w is a clique with respect to the relation ";' at distance 2R + r. 

Let y /J" ... , y /J1< be the connected components of y with respect to the relation at distance 
2R + r. Then we can rewrite (4.15) as 

" IT ,,(zJL::ITq,,,(y,.,o)l 
cliques zc;::x • i=I 

L: [fJ:q,,,(y,.,,i)l fi IT cp(zl] 
' i=l k=l cliques z<;x,.- 1(z)<;D, 

= LIT [ IT q.,,(y,-I(i)l IT cp(z)] . 
' k=I i:<- 1(i)<;D• cliques z<;x=<- '(z)<;D• 

(4.17) 

Any f of the type described above can be represented as an ordered set of /( surjective 
mappings 

Ek: Dk-> D~ = {i I d(x;,yj) :5 R for some j E Di} 

automatically satisfying the norm condition ( 4.16). Note that xv;,, k 
disjoint partition of x. Thus ( 4.17) is 

1, ... ,K form a 



10 

Integrating over x and exploiting the form (2.1) ofµ yields 

K n(v) 

f(y) =II i LIT qx,(Y,;;'(i)) II ip(z) dp.(v). 
k=I C '• i=I cliques z>;v 

Thus, f factorises as required by (2.4). The hereditary property follows as ill the JH"<'Vions 
proof. 

D 
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