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Abstract 

The strength and range of interpoint interactions in a spatial point process can be quantified by the function 

J = (1 - G)/(1 - F).where G is the nearest-neighbour distance distribution function and F the empty 

space function of the process. J(r) is identically equal to 1 for a Poisson process; values of J(r) smaller or 

larger than 1 indicate clustering or regularity, respectively. We show that, for a large class of point processes, 

J(r) is constant for distances r greater than the range of spatial interaction. Hence both the range and 

type of interaction can be inferred from J without parametric model assumptions. It is also possible to 

evaluate J(r) explicitly for many point process models, so that J is also useful for parameter estimation. 

Various properties are derived, including the fact that the J function of the superposition of independent 

point processes is a weighted mean of the J functions of the individual processes. Estimators of J can be 

constructed from standard estimators of F and G. We compute estimates of J for several standard point 

pattern datasets and conclude that it is a useful indicator of spatial interaction. 

1. INTRODUCTION 

The statistical analysis of a point pattern usually begins with the computation of estimates of 
the summary functions F (empty space function), G (nearest-neighbour distance distribution 
function) and K (reduced second moment function), defined e.g. in [11, 14, 34, 35]. While 
these are useful descriptions of spatial pattern, and can easily be estimated from data, there 
are very few stochastic models for which F, G or K is known analytically, so that parameter 
estimation and inference based on F, G, K are difficult. 

Recall that, for a stationary point process, F is the distribution function of the distance 
from an arbitrary fixed point to the nearest random point of the process, and G of the distance 
from a point of the process to the nearest other point of the process. This paper advocates 
the use of 

J(r) = 1 - G(r). 
1 - F(r) 
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is a nonparametric measure of the type of spatial interaction: the value 1 can be in­
terpreted as indicating complete randomness or lack of interaction, while values less than 1 

pattern and values greater than l imply 'ordered' or 'inhibitory' pattern. 

\\·e show that, for a very large class of point processes, the function J is constant for values 
of r larger than the effective range of spatial interaction. Hence J can be used to infer both 
the range and type of spatial interaction. Furthermore we are able to evaluate J explicitly 
for stochastic models, so that it could be used directly for parameter estimation. 

An appealing interpretation of J is that it compares the environment of a typical random 
point of the process with the environment of a fixed arbitrary point. J(r) is the ratio of 
the probabilities, under these two situations, of the event that there are no points within a 
distance r of the given point. In terms of survival analysis, J is the ratio of the survival 
functions of the distance-to-nearest-point under these two situations; and our main result 
states that the hazard measures [25] of F and G are equal beyond the effective range of 
interaction r. 

Special cases of these results are implicit in the literature. The forms of F and G for a 
Neyman-Scott duster process were derived by Bartlett [9]; see [1, 31, 32], !10, pp. 8-9], and 
for detailed derivations [12, §8.3, p. 243 ff.], [41, p. 143]. For a general Poisson cluster process 
(Poisson parent points, i.i.d. offspring) 

l - G(r) = (1 - F(r)) E(r) 

where E(r) is the probability that a randomly-chosen point in a typical cluster is more than 
r units distant from any other point belonging to the same cluster. Hence in particular if all 
offspring lie within a radius t of the parent point, we have J(r) = 1 for all r > 2t. Again, for a 
stationary, pairwise-interaction Gibbs process, Stoyan et al. [41, p. 159) exhibit a relationship 
between 1 - F(r) and 1 - G(r) when r is exactly equal to the interaction distance R. In this 
paper we extend the relationship to all r ~ R. 

Statistical inference based on comparisons between F and G has occasionally been sug­
gested. Diggle !13, (5.7)] proposed the statistic D = supr I F(r) - G(r) I as a measure of 
deviation from the Poisson process. 

This paper is organised as follows. In Section 2 we review the main techniques from spatial 
statistics that are used in the sequel. Section 3 introduces the )-function; the main theorem 
states that J(r) is constant beyond the effective range of interaction. We also examine the 
behaviour of J under the basic operations of superposition and thinning and show that the 
J-function of a superposition of independent processes is a convex combination of the ]­
functions of the components. The relationship between the ]-function of a thinned process 
and that of the original process appears to be rather complex; in particular, in contrast to 
Ripley's K-function, the }-function is not invariant under thinning. 

In Section 4 we show that the J-function can be computed explicitly for a large class of 
point process models, including Poisson processes, Markov point porcesses, Neyman-Scott 
and Cox processes. For these examples at least, the classification of patterns as 'clustered' 
or 'regular' on the basisof their J-function values agrees with similar classifications based on 
F, G and K. 
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In Section 5 we discuss briefly how the J-statistic can be used for parameter estimation, 
while Section 6 is a simple illustration on three standard data sets [14], representing regular, 
random and clustered patterns. 

2. BACKGROUND 

Throughout this paper we consider a stationary point process X in JRk, regarded as a random 
set of points. For details of the theory of point processes see [12] or [11, 41]. 

Define the empty space function F of X to be the distribution function 

F(r) = lP {p(y, X) ::; r} 

of 

p(y,X) = min{lly - xii : x EX}, 

the distance from an arbitrary fixed point y E JR.k to the nearest point of the process. By 
stationarity, the definition of F does not depend on y. 

Write B (y, r) = { x E JR.k : p( x, y) ::; r} for the closed ball of radius r > 0 centred at y in 
JR.k. Then 1 - F(r) is the probability that X puts no points in B(y, r): 

1 - F(r) = lP {X n B(y,r) = 0}. 

For example, for a Poisson process of intensity >. in llt2 we obtain F(r) = 1 - exp{->.7rr2 }. 

F has been variously dubbed the 'empty space, 'point-event distance' and 'spherical contact' 
distribution function. 

To define G we need the Palm distribution JED!' of X at y E JR.k, which can be regarded as 
the conditional distribution of the entire process given that there is a point of X at y [12, 
chap. 12], [11, pp. 630-631], [41, p. 110 ff.]. Then define 

G(r) = ]p>Y {p(y, X \ {y})::; r}; 

again this does not depend on y, by stationarity. Thus G is the distribution function of the 
distance from a point of the process to the nearest other point, and is known variously as the 
'nearest-neighbour' or 'event-event' distribution function. 

It is convenient to use the reduced Palm distribution Jll>~ defined as the distribution of X\ {y} 
under ]p>Y, i.e. the conditional distribution of the rest of the process given that there is a point 
at y. Then the definition of G reads 

G(r) = Jll>~ {p(y, X) ::; r} 

in harmony with the definition of F. For example, for a stationary Poisson process of intensity 
>., the reduced Palm distribution lP~ is identical to Jll>, and G =F. 

Our main tool will be the Takacs-Fiksel formula which relates the reduced Palm distribu­
tion of X to its (ordinary) distribution: 
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>. JBtJ(X) = JE[>.(y; X) J(X)} (2.1) 

holding (under suitable conditions on X) for any bounded nonnegative measurable function 
on the space of realizations of X [22, 24, 42, 43} (see also [37], [29, 30], [35, p. 54-55], [15, 
§2.4]). Here >. is the intensity of X and >.(y; X) is the Papangelou conditional intensity of X 
at y. In other words, (2.1) states that JP>~ is equivalent to the >.(y; X)-weighted distribution 
of X. In particular 

>. = lE>.(O; X). (2.2) 

A necessary and sufficient condition (in the stationary case) for validity of (2.1) is that lP~ 
be absolutely continuous with respect to JP>, whereupon >.(y; X) is uniquely defined by (2.1 ). 
The Takacs-Fiksel formula holds in particular for all stationary Gibbs point processes [33, 35} 
and for Poisson cluster processes when the cluster distribution is absolutely continuous. The 
corresponding expressions for >.(y; X) are given in Section 4. Examples of processes which 
fail to satisfy (2.1) are randomly translated grids, and cluster processes consisting of pairs of 
points separated by a fixed distance. 

Kallenberg [29, 30] gives a detailed explanation of the duality between the Palm distri­
bution and Papangelou conditional intensity. The reduced Palm distribution is concerned 
with the remainder of the pattern given that a point falls at a particular location ('internal 
conditioning'), while the conditional intensity describes the behaviour of the process at a 
single point in space given the realisation everywhere else {'external conditioning'). 

3. THE J-FUNCTION 

Definition 1 For a stationary point process X define 

J(r) = 1 - G(r) 
1 -F(r) 

for all r ~ 0 such that F(r) < 1. 

(3.3) 

For example, if X is a Poisson process then F = G, so we obtain J(r) = 1. Note that, even 
in a completely nonparametric context, the function J has an interpretation as the ratio of 
the survival functions of the distance to the nearest (other) point of X from (a) a point of the 
process, (b) a fixed arbitrary point. Values J(r) < 1 indicate that the survival function in 
situation (a) is smaller than that for {b), which may be interpreted as indicating 'clustered' 
pattern; values J(r) > 1 indicate 'ordered' pattern. In the examples in Section 4 we will 
reconcile this with other definitions of 'clustering' and 'ordering'. 

Note that J(O) = 1 always. The denominator 1-F is always absolutely continuous [3] but 
the numerator 1 - G need not be, so the discontinuity points of J are those of G. In general 
1 - G(r) might be nonzero when 1 - F(r) is zero (e.g. for a randomly-translated unit square 
grid when r = 1/..../2) but this does not occur for point processes of real interest. 

Theorem 1 Let X be a stationary point process with intensity >. whose Papangelou condi­
tional intensity >.(y;X) exists. Then G(r) < 1 implies F(r) < 1 and 
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J(r) = ( ~ (>.(O~ X) I X n B(O, r) = 0])- 1 (3.4) 

In particular, suppose X has 'interactions of finite range R' in the sense that >.(O; X) i3 
constant (and thw equal to >.(O; 0)) for all point patterns X which contain no points in 
B(O, R). Then 

J{r) = >.(O; 0> for r ~ R. (3.5) 
>. 

Proof: Let A be the event {X n B{O, r) = 0}, so that 1-F(r) = P(A) and 1-G(r) = P/i(A). 
Apply the Takacs-Fiksel formula (2.1) to 

IlA 
J(X) = ,\{O; X)' r>O 

(cf. [41, (5.5.18), p. 159]). The right hand side of (2.1) is E[>.(O; X) f(X)] = 1 - F(r) giving 

1 - F(r) = ,\~ [>.(~~J 
Dividing this by 1 - G(r) = Ph(A) gives the reciprocal of (3.4). 

In the second case, if >.(O; X) = >.(O; 0) on A then 

f(X) =: >.~;0) 
so that the left side of (2.1) is 

1 I A 
,\ >.(O; 0) P'0 (A) = ,\(O; 0) (1 - G(r)) 

yielding (3.5). 0 

Next we examine the behaviour of J under the basic point process operations of superposition 
and thinning. 

Theorem 2 Let X 1, X 2 be independent, stationary point processes with intensities >.1, -\2 and 
J-functions Ji, h respectively. Then the J-functi.on of the superposition X = X1 U X2 i3 a 
convex combination of the J-functions of the components: 

>.1 >.2 
J(r) = >. >. J1(r) +). >. J2(r). 

1+ 2 i+ 2 
(3.6) 

Proof: By independence 

1 - F(t) = (1 - F1(t))(l - F2(t)). 

Writing .?(!) for the Palm distribution (on the entire probability space) with respect to Xi, 
i = 1, 2 and p0 for the Palm distribution with respect to X, we have (e.g. [41, p. 1161) 
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0 AI 0 A2 0 
p = AI + A2 p(I) + AI + A.2 p<2l. 

The joint distribution of XI and X 2 under P(~) is independent, with X1 governed by its Palm 
distribution (the Palm distribution of its marginal distribution) and X2 by its {ordinary) 
marginal distribution. Similarly for 1(°2). Hence 

1 -G(t) = A.1 (1 -G1(t))(l - F2(t)) +A. A.2 ,\ (1- F1(t))(l -G2(t)). 
>-1 + >-2 1 + 2 

Dividing this by the identity for F gives (3.6). D 

Theorem 3 Let Xp be the process obtained from a stationary point process X by randomly 
deleting or retaining each point independently of other points, with retention probability p > 0. 
Then the J-function of Xp is 

l ( ) = Q~(1 - p) 
Pr Qr(1 - p) 

(3.7) 

where Q~,Qr are the generatingf'unctions ofn(XnB(O,r)) under Pb and IP respectively. [The 
J-f'unction of X itself is the case p = 1.j 

Proof: Let Fp, Gp be the F and G functions for Xp. Clearly 1 - Fp(r) = Qr(l - p). To 
prove 1- Gp(r) = Q~(l -p) use the fact that the Palm distribution of Xp coincides with the 
effect of random p-thinning on the Palm distribution of X. D 

Thus while the K-function is invariant under random thinning [14, p. 67], [41, p. 134], 
in general the J-function is not. There does not appear to be a simple general relationship 
between Jp and J. 

4. EXAMPLES 

4.1 Poisson process 
For a stationary Poisson process of intensity ). we have F = G so that J = 1. We could also 
derive this from Theorem 1 by observing that A.{O; X) =).for arbitrary X. 

4.2 Pairwise-interaction Markov point process 
For a pairwise interaction point process [36], [41, section 5.5] with activity constant f3 and 
interaction -y( u, v) between points u, v E JR.k, 

A.(y;X) = /3 IT ry(x,y). (4.8) 
xEX 
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The process is Markov (in the Ripley-Kelly sense [36)) with interaction range R, if-y( u, v) = 1 
when llu - vii ? R. Examples include the hard core process defined by 

i(u,v)={ 01 ifhllu-_vll<R 
ot erw1se 

and the Strauss process defined by replacing 0 in ( 4.9) by a constant 0 < 1 < 1. 

Theorem 4 For a Markov painuise-interaction process with interaction range R, 

(a) J( r) is defined for all r; 

{b) 
/3 

J ( r) = );" for r ~ R; 

(4.9) 

(4.10) 

( c) for 'purely inhibitive' interactions (/(u, v) :5 1 for all u, v} we have J(r) ? 1 for all r; 

{d) for the hard core process J(r) = 1/(1-F(r)) forr < R, and in particular J is continuous 
and monotone increasing for r < R. F'urthermore J(r) = 1/(1 - ).m(B(O,r))) for 
r < R/2. 

Thus, the hard-core and Strauss processes yield values (for r outside the interaction range) 
indicating 'ordered' pattern in the sense defined below Definition 1. Equation (4.10) was 
implicitly computed in [41, (5.5.18}, p. 159] for the valuer= R only. 
Proof: To prove this we note that the product in (4.8) depends only on points x EX with 
llx - Yll :5 R, so ..X(y; X) depends only on X n B(y, R). Hence X has finite range interaction 
in the sense of Theorem l(b) with ..\(O; 0) = /3, and we get (4.10). 

Note that..\, the intensity of X, is determined by the parameters f3 and -y(·, ·)in a generally 
complex way. However for a purely inhibitive process we have ).(O; X) :5 f3 a.s. so that ). :5 /3 
using (2.2). This gives J(r) ~ 1 for r ~ R. 

For values r < R it is again a complex task to compute J(r}, except that for purely in­
hibitive 'Y we can again show that J(r) ~ 1 for all r. For a hard core process, clearly G(r) = 0 
for r < R, so J ( r) = 1 / ( 1 - F ( r)) for r < R. In particular J is monotone nonincreasing. 
Furthermore since spheres of radius r < R/2 centred at the points of a hard core process do 
not overlap, we have F(r) = ..\m(B(O,r)) for r < R/2, and hence J(r) = 1/(1-).m(B(O,r))), 
for r < R/2. D 

4.3 Markov point processes (general) 
Many of the arguments in the preceding paragraph carry over to Markov point processes in 
general. A stationary process X is Markov with finite interaction range R if its conditional 
intensity ).(O; X) at 0 exists and depends only on X n B(O, R). It follows that for any X 
satisfying X n B(O, R) = 0 

A(O; X) = ..X(O; 0) 

so that Theorem 1 (b) applies and J ( r) is constant for r > R. 
An example of interest is the area-interaction process [4] for which 
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).(O; X) = 131 -m(B(O,t)\U(X)) ( 4.11) 

where m is Lebesgue measure and U(X) = UxEX B(x, t) for a fixed t > 0. The process 
is defined for all finite "f, with 'Y < 1 generating 'ordered' patterns and 'Y > 1 'clustered' 
patterns. For any X such that X n B(O, 2t) = 0 we have U(X) n B(O, t) = 0 so that 
).(0, X) = /31-m(B(O,t)) = /3'f}, say. Thus Theorem l(b) applies with R = 2t, and 

J(r) = /3ri 
). 

for r > 2t. (4.12) 

Since 0 $ m(B(O, t) \ U(X)) $ m(B(O, t)) we have for/ < 1 that ).(0; X) $ f3"! for all X so 
that).$ f3TJ and hence J(r) 2: 1 for all r, i.e. this is also 'ordered' in terms of J. Similarly, for 
/ > 1 we have ).(O; X) 2: f3TJ a.s. so that ). 2: /3'T/ and J(r) $ 1 for all r, i.e. this is 'clustered' 
in terms of J. 

4.4 Poisson cluster processes 
A stationary Poisson cluster process is constructed by generating a stationary Poisson process 
Y of 'parent points'; generating i.i.d. finite point processes ('clusters') Zy for each y E Y; 
and forming the superposition x = uyEY(Y + Zy) of the translated clusters. Neyman-Scott 
processes are the special case where the typical cluster Z consists of a random number N of 
i.i.d. points. The Matern cluster process is the further special case of Neyman-Scott processes 
where N is a Poisson variable and the common distribution of the cluster points is uniform 
over the ball of radius t centred on the parent point. 

Stoyan et al. [41, p. 142 ff.] (and Bartlett [10, p. 8-9]) show that for any stationary Poisson 
cluster process 

1 - G(r) = [1 - F(r)] C0 {Z n B(O, r) = {O} }, r 2: O 

where Co is the Palm distribution of the typical cluster Z. This follows from a fundamental 
identity for the Palm distribution of a Poisson cluster process [41, (5.3.2), p. 142]. 

Since Z is a finite point process, Co can be interpreted as the n(Z)-weighted distribution 
of Z - z where, given Z, z is one of the points of Z chosen with equal probability. Hence we 
may interpret Co{Z n B(O, r) = {O}} as the defective distribution function of the distance 
from a typical point of Z to the nearest other point of Z, if any [41, p. 143]. Hence we have 
the following result. 

Theorem 5 For any stationary Poisson cluster process, J(r) is defined for all r 2: O; 

J(r) = C0{Z n B(O,r) = {O}} 

is a monotone non increasing function, with values J( r) $ 1, determined only by the distri­
bution of the clusters. 

If the typical cluster Z is a.s. contained within the ball of radius t around the parent point, 
then J(r) is constant for r > 2t where it is equal to P{n(Z) = 1} /En(Z). 

Hence all stationary Poisson cluster processes are 'clustered' with respect to J as defined 
below Definition 1. 
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For example, for the Matern cluster process in R2 with En(Z) = µ points per cluster we 
find 

J(r) = 1 f e-µll(:r,r,t)dx 
m(B(O,t)) }B(O,t) 

for r > 2t 

where l/(x, r, t) = m(B(x, r) n B(O, t))/m(B(O, t)). 
Note that Theorem 5 is proved using the cluster formula 141, (5.3.2), p. 142] rather than 

Theorem 1, and holds even in cases when the Papangelou conditional intensity does not 
exist. However, if the Palm distribution of the typical cluster Z is absolutely continuous 
with respect to the distribution of Z, then Theorem 1 applies and yields the conclusions of 
Theorem 5. 

This result is perhaps less surprising in view of the recent proof [5J that Poisson cluster 
processes with bounded clusters are nearest-neighbour Markov processes in the sense of [6]. 

4.5 Cox processes 
Cox point processes are constructed by generating a random measure A and, conditional 
upon A, generating an inhomogeneous Poisson point process X with intensity measure A. 

Theorem 6 Let X be a Cox point process with driving random measure A which is stationary 
and a.s. nonatomic. Then the J-fu.nction of X is defined for all r ;:: 0 and equals 

£0 e-A(B(O,r)) 

J(r) = Ee-A(B(O,r)) 

where E° denotes expectation with respect to the Palm distribution of A. 

This follows from the fact that the reduced Palm distribution of X is the distribution of a 
Cox process with driving measure distributed as the Palm distribution of A, cf. [41, p. 141]. 

For example, consider a mixed Poisson process, where A is a random constant multiple of 
Lebesgue measure, A= aem(·) where a is any nonnegative random variable not identically 
equal to zero. Then the Palm distribution of A is simply the a-weighted distribution, and 

5. STATISTICAL ASPECTS 

5.1 Nonparametric estimation of J 
Edge-corrected estimators for F and G based on observations of X within a bounded window 
W c ]Rk are reviewed in (35, chap. 3J, [41, pp. 122-131], [11, chap. 8]. For recent variations 
see (3, 7, 8, 16, 17, 18, 19, 20, 21, 23, 39]. 

We propose estimating J by plugging into (3.3) estimates of F and G obtained by methods 
that are comparable to one another. For example one may estimate F by the stand~rd 'border 
correction' estimator [35, chap. 3] and G by Hanisch's border correction estimator G4 [26] (see 
[41, p. 128] where G is called D). These are Horvitz-Thompson type ratio estimators with 
comparable denominators, and are pointwise unbiased for F and pointwise approximately 
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unbiased for G, respectively. Alternatively the Kaplan-Meier style estimators of F and G 
proposed by Baddeley & Gill !3] could be used. These have the advantage of being proper 
distribution functions (possibly defective), and correspond to unbiased and approximately 
unbiased estimators of the hazard measures of F and G, respectively. Furthermore the 
estimator of F in !3] has the same continuity properties as F itself. ~ 

We know little about the sampling properties of either estimator of J. Clearly J(O) = 1 
always. It seems plausible that the relative error of J will increase with r, since this is true 
of standard estimators of F(r) and G(r) (3, 18, 20, 21]. Central limit theorems have been 
proved for F and G of both the Horvitz-Thompson aE-d ~Kaplan-Meier tyJ?_es under various 
regimes (2, 3, 27, 28, 40], [11, p. 480]; a joint CLT for (F, G), and hence for J, seems plausible 
but has not been established to the authors' knowledge. 

Edge effects have a far greater influence on G than on F [35, chap. 3],[3]. The sampling 
properties of G and therefore of J may be particular cause for concern when the sampling 
window W is irregular, or in dimensions higher than two [3, 7]. 

5.2 Eatimation and inference baaed on J 
In section 4 we were able to calculate the J function (at least for r > R) for a number of 
parametric or semi-parametric stochastic models. One could use these results to estimate the 
para.meters of a chosen model from values of J. 

It should be stressed that this approach is merely a special case of the Takacs-Fiksel 
estimation method [22, 24, 42, 43], [35, p. 54-55], (15, §2.4], [37, 38] since the basic equations 
(3.4)-(3.5) are special cases of (2.1) with the choice off given in the proof of Theorem 1. 

For a Markov pairwise-interaction process, (4.10) gives the constant value of J(r) for all 
r > R in terms of the parameter (3 and the intensity >.. The intensity is determined by /3 and 
by the interaction function -y(·, ·) in a complex way. However ). may be estimated directly 
from the data, as~= n(X n W)/m(W) in the usual way. If R is assumed known then (3 can 
be estimated via (4.10). This is semi-parametric estimation, since 'Y is unknown apart from 
the constraint that 'Y( u, v) = 1 for llu - vii > R. 

Similarly, for an area-interaction process, (4.12) allows us to estimate the parameters (3 
and 1/ = 'Ym(B(O,t)) given the interaction radius R = 2t. 

Estimation of the interaction distance R, in any of the models studied, amounts to esti­
mating the largest interval [R, oo) on which J is constant. At present we have only the ad 
hoe suggestion of taking 

R = inf {R : sup J(r) - inf J(r) <f.} 
r~R r~R 

where f. is of order n(X n Wt 112• 

6. EXAMPLES 

We have taken three standard point pattern datasets discussed at length by Diggle [14], 
entitled pines ('Japanese pine saplings'), redwood ('Californian redwood seedlings') and 
cells ('biological cells'). These were exhibited as typical examples of random, clustered, and 
ordered patterns respectively. 

Figures 1-3 show the data and corresponding estimates J obtained using the Kaplan-Meier 
estimators of F and G [3]. For pines the value of J is close to 1 for almost the entire range of r 
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values expect at high r values; for redwood it is below 1 and monotonically decreasing except 
for small fluctuations; and for cells it is above 1 for the entire range and is monotonically 
increasing. These results are consistent with our expectations. 

We may conclude provisionally that the J-statistic is a useful indicator of the type of spatial 
pattern. Further numerical experiments will be described elsewhere. 
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