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1 Introduction 
Since the pioneering work of Besag, Cross, and Jain, the Gemans, Ripley, and 
others ( cf. the seminal papers reprinted in the monograph edited by Mardia 
and Kanji (1993)), Markov random fields have played a prominent role in sta
tistical image analysis. At first, most attention was paid to tackling low-level 
problems like classification and segmentation with simple categorical or con
tinuously valued pairwise interaction priors or Gaussian autoregression models 
with small neighbourhood systems. Gradually though it was realized that the 
above-mentioned models, despite their appealing simplicity and their relatively 
plausible local characteristics, which form the basic ingredient of most low-level 
algorithms, may have quite unrealistic global properties. Indeed, ensembles of 
connected geometrical shapes with smooth boundaries are unlikely to arise as 
realizations of such discrete random fields. 

Accordingly, there has been a surge of interest in the construction of stochas
tic models with a more satisfying global behaviour. Hurn et al. mention several 
examples, notably the higher-order models of Tjelmeland and Besag (1998), and 
the Gaussian Markov random fields studied in Rue (2001) and Rue and Tjelme
land (2002). In Section 2 below, we present some more recent advances in this 
direction. 

Another interesting development in the last decade has been the shift in 
emphasis towards high-level vision tasks that aim to understand and interpret 
an image in terms of the objects it contains. By their very nature, local Markov 
random fields are not well-suited as prior distributions for object scenes; far 
more natural are the Markov marked point processes suggested by Baddeley and 
Van Lieshout (1992); see also the papers collected in Mardia and Kanji (1993). 
In Section 3 we provide further details and point out some analogies with the 
region-based random fields discussed in Section 2. 

2 Pixel-level modelling 
Hurn et al. note that the Potts model and many other classical categorical mod
els 'do not provide good prior models for real scenes, and estimates of attributes 
such as the number of connected components may be poor'. To tackle these 
problems, M0ller and Waagepetersen (1998) introduce so-called Markov con
nected component fields, the probability density of which factorizes into terms 
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associated with the connected components in the image rather than with cliques 
of neighbouring pixels. They prove that under an additional homogeneity and 
Markov condition with respect to horizontal and vertical neighbours, the proba
bility density can be written as a product of two terms, one governing the area, 
the other the perimeter of the image components. For the second-order neigh
bourhood system, terms for the Euler-Poincare characteristic and the numbers 
of corners and discontinuities must be added. 

Another way to control the size and shape of regions is by means of morpho
logical operators (Serra 1982). For instance, in the binary case, Chen and Kelly 
(1992) suggest a probabilistic model to favour images that are morphologically 
smooth in the sense that its foreground set does not feature narrow isthmuses, 
small islands, or sharp capes. A similar random field for the background pixels 
penalizes small holes. It can be shown that both models are Markov with re
spect to a neighbourhood system that depends on the underlying morphological 
operator. More generally, Sivakumar and Goutsias (1997) use a combination of 
operators to favour certain shapes and sizes of the foreground and background 
regions over others. 

In summary, the higher-order models in Tjelmeland and Besag (1998), Markov 
connected component fields, and morphologically constrained random fields all 
offer some control over the global appearance of likely images, without sacrificing 
the local character of the full conditionals. 

3 High-level modelling 
As indicated in Section 1, the class of marked point processes provides a natural 
framework for object scenes. In such a setup (Baddeley and Van Lieshout 1992, 
1993), a point represents the position of an object in the image, its mark captures 
other attributes. The latter may be a real-valued vector of a few size, shape, and 
texture parameters as in Descombes et al. (1999b); for more complex objects 
a deformable template mark may be more appropriate ( Grenander and Miller 
1994). 

Hurn et al. discuss in detail a range of stochastic shape models, but pay little 
attention to the interactions between objects. As in low-level image analysis, it 
is highly desirable from a computational point of view that the conditional de
pendence structure be local. To quantify this notion, Baddeley and Van Lieshout 
(1992) assign to each marked point its 'silhouette' in the image, which may be 
thought of as the discrete representation of the actual object, and define two 
marked points to be neighbours if their silhouettes overlap. If the conditional 
intensity of finding an object at some given location with a given mark depends 
only on this object's neighbours, then the model is called a Markov overlapping 
object process. A simple, but nevertheless very useful, example is the hard core 
process (Baddeley and Van Lieshout 1993; Hurn 1998; Rue and Syversveen 1998) 
consisting of a Poisson number of independent objects conditioned on the event 
that all silhouettes are disjoint. Alternatively, the amount of overlap may be 
taken into account as in the area-interaction process (Baddeley and Van Lieshout 
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1995) defined by an unnormalized probability density that is exponential in the 
total area occupied by the silhouettes. Occlusion can be formalized by ordering 
scenes according to which objects lie on top of others (Mardia et al. 1997). 

Various generalizations have been proposed recently. Considering the fact 
that images are discrete reflections of a continuous reality, it is especially grati
fying to note that the models discussed in Section 2 have analogues in the class 
of Markov overlapping object processes. For instance, the quermass interac
tion processes (Mecke 1996; Kendall et al. 1999) form an exponential family in 
the plane with the area, perimeter, and Euler-Poincare characteristic as canon
ical sufficient statistics. In contrast to connected component fields (M0ller and 
Waagepetersen 1998), in the continuous case some care has to be taken to ensure 
the model is well-defined (Kendall et al. 1999). The point process counterparts 
of morphologically constrained random fields (Chen and Kelly 1992; Sivakumar 
and Goutsias 1997) are studied in Van Lieshout (1999). Since the density of both 
models mentioned above depends on the silhouette image only, a corresponding 
random set is readily defined (Van Lieshout 2000). 

4 Concluding remarks 
In this note we have concentrated on models. However, no real progress would 
have been possible without the simultaneous development of efficient sampling 
and parameter estimation schemes. As remarked by Hurn et al., perhaps the 
'most notable development . . . has been the use of Markov chain Monte Carlo 
maximum likelihood (MCMCML)' (Geyer and Thompson 1992) at the expense 
of the pseudo-likelihood method, Monte Carlo Newton-Raphson techniques, 
and stochastic approximation algorithms; see Geyer (1999) for a comprehen
sive overview. The MCMCML approach focuses on the full likelihood surface, 
thus allowing for the computation of statistics such as the Fisher information 
without extra computational effort. The method is easily embedded in a fully 
Bayesian inference scheme, and an asymptotic theory is available for the Monte 
Carlo error with respect to the 'true' maximum likelihood estimator. Recently, 
similar asymptotics have been developed for a combination of the EM algorithm 
and stochastic approximation (Delyon et al. 1999). However, careful tuning of 
the discount factors involved in the approximation part remains necessary. 

Another exciting development is that of exact (or perfect) simulation, fol
lowing the seminal paper by Propp and Wilson (1996). In contrast to classical 
MCMC techniques, an exact simulation algorithm outputs an unbiased sample 
from the target distribution, and neither requires a burn-in time nor sufficiently 
large time lags between sub-sampled states. 

Finally, I would like to congratulate Merrilee Hurn, Oddvar Husby, and 
Havard Rue on an interesting overview of recent developments in image analysis, 
and express the hope that their article will act as a stimulus to further progress. 
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1 Introduction 
The ideas presented by Hurn et al. offer an excellent review of the impres 
work carried out by the statisticial community on the Bayesian framework 
its application to image analysis. Necessarily the presentation could no1 
exhaustive and with respect to applications, a consensus has guided the 
with modelling illustrated mainly for restoration problems. My aim is to c 
attention to detection, labelling, and eventually three-dimensional (3D) segr. 
tation. This will be addressed in Section 3. The first part of the discus 
gives a very short presentation of the work done by Zhu et al. (1997-2000 
texture modelling and estimation. In Section 2, I will illustrate the usefulne: 
intensity-level curves as very important clues for image interpretation. 

2 Texture modelling 
In relating some aspects of the work of Zhu et al. on texture modelling, my 
is to provide the reader with recent information on generic texture mode 
and parameter estimation that complements Section 2.1 of the article. 

Given a class of images (e.g. outdoor images) and a set of filters (e.g. S 
filters and Gabor filters, the impulse response of which is a complex sim 
centred at a frequency and modulated by a Gaussian envelope), the aim 
identify a probability distribution p, associated with elements of this class. 
estimator of this distribution is obtained from a learning set of M images. 
togram statistics of filter responses are computed as 

1 M 
µ~bs(z) = MI: #{(x,y) EA; F1(Im)(x,y) = z}, 

m=l 

where (x,y) E A denotes a pixel of the lattice A underlying the images; 
F 1 (Im)(x, y) is the filter response of the lth filter at position (x, y) when ap 
to the mth image of the learning set. If one looks for an estimator of maxi: 
entropy with similar histogram statistics: 

E_p (I: I{F1(I)(x,y) = z}) = µ~bs(z), 
(x,y) 

l = 1, ... ,L, z E Z1, 
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then p is a Gibbsian distribution: p(I) ex exp{-I:1I:z>.1(z)SZ(I)(z)} with 
HI (l)(z) = ff l{F1(l)(x, y) = z} dx dy. 

Of course, the potential functions >.1 (analogous to Lagrange multipliers) 
depend upon the observed statistics µ~bs. First of all, two distinct potential 
functions are identified. At fine scales, V-shape potential functions with rather 
fiat tails occur with derivative filters. At coarse scales, these curves turn 'up
side down'. The Gibbs distribution learned from images has energy that one 
can attempt to minimize by gradient descent. This leads to a non-linear PDE 
equation of the diffusion-reaction type with two terms. Starting from an input 
image I(x, y; 0), the first term diffuses the image whereas the second term forms 
patterns. 

An interesting application of texture learning through this framework is clut
ter removal. Here the problem is eliminating or attenuating the presence of a 
complex background (e.g. trees, landscape) in an image displaying objects from 
a class of interest (e.g. buildings). This difficult problem is handled in three 
stages in Zhu et al. (1997): 

(a) learning the background images class: p(Jb) ex exp{-Ub(Ib)}; 

(b) learning the objects of interest images class: p(I0 ) ex exp{-U0 ( J0 ) }; 

( c) assuming that Jobs = 1° + Jb, looking for a MAP estimator of J0 according 
to p(IolJ°bs) CX exp{-Ub(Jobs _JO)+ uo(Io)}. 

In order to gain accuracy and speed in the learning process, Zhu et al. realize 
that filter selection and parameter estimation can be separated. They address 
the selection problem in Zhu et al. (1999) and estimation in Zhu et al. (2000). In 
these papers, the reader can find new ideas for parameter estimation in Gibbsian 
models. 

3 Level curves and segmentation 
My aim in this section is to draw attention to level curves of filter response 
(mainly intensity filter) as a carrier of very useful information for image represen
tation and segmentation. This is related to Section 2.2 devoted to intermediate
level modelling and illustrated with tessellations obtained through the simula
tion of a posterior distribution combining grey-level homogeneity and number or 
length of edges between regions. The supports for labels of regions are triangles. 
During the simulation process triangles are merged, split, or distorted with the 
help of different proposals of a Metropolis-Hastings algorithm. The posterior 
energy is related to the Mumford and Shah functional widely used in image 
segmentation. Triangles have a long history in computer science and approxi
mation (e.g. in finite element techniques for partial differential equations) but 
in image representation other geometric primitives could be considered. Hence, 
it appears that in many cases, level curves of intensity function are good can
didates for boundaries between objects. Actually, as pointed out by Kervrann 
et al. (2000), a subset of level curves is the optimal solution with respect to the 
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energy: 
P P-1 

U>-.(f, f!1, ... , f!p) = t; k; (f(x) - foY dx + >. ~ lfl;lq, (3.1) 

where f denotes the image intensity function, fo, the mean grey-level over object 
f!; with area lfl;I, P the unknown number of objects including the background, 
and q = -1, 0, 1, 2. The first term of (3.1) controls homogeneity whereas the 
second term controls the number of objects when q = 0. It is not possible 
to penalize directly edge lengths while keeping solutions inside the set of solu
tions whose object boundaries are intensity level curves. However, it is clear 
that quite often the triangulation and the level curve approach should be able to 
provide representations similar to each other. An efficient algorithm has been de
signed for minimizing (3.1). It relies on a coarse discretization of the grey levels. 
An object-guided smoothing can be incorporated with the help of anisotropic 
diffusion to restore surfaces and boundaries of objects. The advantage of the 
approach, described by Nicholls (1997) over the level curve approach, lies in the 
direct inclusion of edge lengths which is not possible in the level curve frame
work, even if more or less controllable through penalization and the smoothing 
trick. The advantage of the level curve approach is mainly due to fast estimation 
and concordance in many situations of level lines of original or smoothed images 
with perceptible edges in images. Within the level curve selection approach de
scribed herein, different configurations of objects are obtained depending on the 
grey-level quantitation chosen. My feeling is that this family of configurations 
could be used by colouring schemes like the one described by Nicholls. This 
could make it possible to incorporate a priori some geometric on objects. 

4 Applications 
From a practical point of view, the relevance of the Bayesian framework has been 
demonstrated by Hurn et al. in restoration and object-based segmentation of 
complex ultrasound images. I would also like to draw attention to an important 
issue for imaging in biology: 3D microscopy of biological samples. 

Let me consider the fine analysis of complex structures (e.g. antenna! lobes) 
or tissues (e.g. intestinal crypts) for which the ultimate objective is comparing 
samples. Very often these structures or tissues are made of dozens to hundreds 
of smaller sub-structures (e.g. glomerulii, cells). The structures are partially 
observed and often very close to each other in a 3D domain, see Fig. 1 displaying 
an intestinal crypt. By formulating the problem in the right way, all the tricky 
algorithms designed for probability distributions may be used to obtain some 
hints on the spatial organization of sub-structures. Let me illustrate this on 
nuclei detection in a volume observed through an optical section in confocal 
microscopy. The nuclei detection process we have used can be divided into four 
stages: 

(a) detection of seeds inside objects, 
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FIG. 1. Volume rendering of nuclei detection of an intestinal crypt. 

(b) sub-sampling of seeds, 

(c) seed aggregation, 

( d) validation. 

329 

At the end of stage (b), we have a set S = {s;, i = 1, ... , N} of seeds in 3D 
space. The objective is to associate a unique label, l;, to each seed according to 
its membership to a nucleus. Here the number of objects (nuclei) is unknown 
but assumed bounded by N. Moreover, we expect there is at least one seed per 
object and few false seeds. We define a graph whose nodes are the seeds. An 
edge is created between two nodes when they are neighbours. In practice, the a 
priori knowledge about nucleus size is used to define neighbours, vi, of a seed, s;, 
11; consisting of seeds that are no more than a given distance from the considered 
seed. The probability distribution of labels is chosen as 

with Ui,j(li, lj) = ( exp{-Q(s;, Sj)} - e-1 exp Q(s;, Sj) )1 {li = li }. The quantity 
Q ( s;, s i) is related to image content in a local region between s; and s j. If one 
knows that objects are convex, then a low value of Q is associated with the 
presence of a rupture in the grey-level intensity profile betweens; and Sj. So the 
potential Q expresses the relationship between parameters and data. This model 
is similar to an inhomogeneous Potts model on a graph. An estimate of a mode of 
p can be searched for by a relaxation algorithm or a more efficient algorithm like 
the one proposed by Boykov et al. (1999). Moreover, constraints can be intro
duced which may reduce energy computation towards plausible configurations. 
This has been done and is illustrated in Fig. 1 which depicts a volume rendering 
visualization of the crypt with incrustation of small spheres for each centre of 
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inertia of homogeneous label subsets. Even if these results are encouraging, they 
are not completely satisfactory. Indeed, validation is a hard task when hundreds 
of labels have to be examined from 2D slices of a 3D volume. My feeling is that 
efficient simulation tools can provide us with relevant validation clues, detecting 
regions of interest in the data where visual inspection should be encouraged. 
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