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1 Introduction 

In this chapter, we show how marked point processes can be used to tackle some 
high-level image analysis problems. Hereafter, an image refers to a digital image. 
It consists of a matrix of numbers; the elements are called pixels (for picture ele­
ment), their values represent a grey level (typically an integer between 0 and 255). 
Therefore, an image is an element of A 8 , where A is the grey level set and S is 
a finite subset of Z (typically a square) called the lattice. The purpose of image 
analysis is to extract some specific items from the image. The items can have a 
cartographic interpretation (roads, buildings, ... ), a medical relevance (tumours, 
vessels, ... ) or may refer to a lower level of interpretation (edges, homogeneous 
areas, ... ). 

One main approach in image analysis is to model the features of interest, and 
to fit this model to the data. The discrete nature of digital images suggests dis­
crete models, where the variables are defined by the pixels. If one chooses to con­
sider a probabilistic model, it is natural to adopt a Bayesian framework that takes 
into account both the data and some prior model on the features to be extracted. 
Typically, the prior is based on homogeneity constraints (the connected compo­
nents in the resulting image are 'big enough' and have a 'regular' shape), the data 
term models the grey level distribution within each object. The resulting model, 
defined on As, is a random field. Focusing on the correlation of pixel values 



288 Spatial Statistics Through Applications 

leads to so-called Markov random fields (MRF), also known as Gibbs fields in 
the statistical physics literature, which have played a leading role in Bayesian 
image analysis [7, 8, 9, 11, 22, 21, 30, 37, 42, 77]. The Markov property states 
that local interactions suffice to describe the random field. This property is well 
adapted to images, as neighbouring pixels tend to belong to the same object, hence 
exhibit strong correlation. The main advantages of this approach are its robustness 
with respect to noise, due to the prior, and its local interaction structure that is 
well suited to iterative feature extraction, and parameter estimation algorithms ( cf. 
e.g. [13, 17] as well as the previously mentioned seminal books and papers). 

The random field models just described have been applied to a range of image 
interpretation tasks, especially in the context of remote sensing (by satellites for 
example) at low or middle range resolutions. Here, a pixel represents a square 
of 10 x 10 metres to a square kilometre on the ground. The new generation of 
sensors provides high resolution images (one metre or less). At such a level ofres­
olution, the object geometry becomes important, and should be used to increase 
the accuracy of feature detection. MRFs and more generally pixel based mod­
els are not well-adapted to high resolution data. Indeed, the notion of object is 
difficult to model within this framework, and geometric constraints are hard to 
impose by means of local interactions only. Therefore, the last decade has wit­
nessed increasing interest in other types of models. Still on the pixel-level, Markov 
connected component fields [49] aim to control the area and perimeter of the image 
components. Alternatively, the size and shape of regions may be held in check 
by means of morphological operators [10, 69, 68]. Multi-body and higher order 
interactions allow control of the length of edges and lines, or some isotropy of 
objects [16, 14, 66, 74]. MRFs on graphs have also been proposed [2, 75]. The 
main drawback is the graph definition. If objects are represented by the graph 
nodes, all of them should have already been detected during the first step. 

Polygonal field models can be seen as a first step away from pixel-level mod­
elling, in that they provide a concise description of the image in terms of a polyg­
onal segmentation [l, 48, 51]. 

In this chapter, following [3, 4, 38, 39, 46, 59, 61] we propose to take the high­
level approach, and no longer regard an image as a pixel matrix but rather as a 
collection of objects defined on a continuous space. The data are considered as a 
projection of the object silhouette onto the discrete lattice S. The objects may be 
simple geometrical shapes such as segments [71] or rectangles, but could also be 
modelled as a random closed set [45] or a deformable template [32, 33, 34, 53, 63, 
64, 65]. In all cases, the object locations constitute a point process. The density 
is controlled by the reference Poisson process whereas interaction between neigh­
bouring objects controls their relative positions. The object parameters (length, 
width, ... ) are random variables representing the marks of the point process. Occlu-
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sion may be formalise~ by ordering scenes according to which objects lie on top 

of others [43]. The mam advantage of such a model is that the geometrv of the 

objects is constrained by the marks. Moreover, the data are taken into ac~ount at 

the object level, which is even more robust with respect to noise than pixel based 

models. 

In section 2, we give an overview of marked point process theory with a view 

towards image analysis. In section 3, we discuss the computational tools needed 

later on, including simulation by Markov chain Monte Carlo and parameter esti­

mation. Section 4 is devoted to the problem of extracting linear structures from 

images. We review the Candy model [71], and discuss how it may be applied 

[70, 72] to detect road and river networks in satellite images. The paper is con­

cluded with a critical evaluation and prospects for future work. 

2 Marked point processes 

As mentioned in section 1, in higher level vision, an image is interpreted as a 

collection of objects. A convenient mathematical formalisation of such a viewpoint 

is to model the image as an object process [3, 4, 38]. More specifically, we will 

describe an image by the set 

of objects it contains. Here n = 0, 1, 2, ... denotes the number n(x) of objects in 

x, and each Xi lies in some space X determined by the application. If all objects are 

identical, X = K c JR2 is some compact subset of the plane, and a point x E X 

describes the location of the object in the image; more often, a mark describing 

the shape, the texture or colour, and in cases of several kinds of objects, its type is 

required as well. In that case, X = K x M where M contains the geometrical and 

textural marks. Throughout this chapter, we assume that M is a locally compact, 

second countable Hausdorff space equipped with its Borel a--algebra M. Clearly, 

K has the same topological properties. The link to the data is made by assigning to 

each object x EX its projection R(x) ~Sin the image; similarly, the projection 

of an object configuration x is denoted by R( x). It will prove convenient to sepa­

rate location information from the marks, so henceforth we shall write x = (k, m), 

where k EK andm EM. 
In order to define a probabilistic model for random object configurations, we 

need to provide distributions for the number of objects, as well as for their positions 

and marks. Thus, let 

qn = P(N = n), n E No, 
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denote the mass function for the number, and, given that n objects are present, 
write 

Pn(X1, · · ·, Xn) 

for the joint density of the objects. Since object configurations are unordered sets, 
Pn (., ... , . ) must be a symmetric, measurable function. As an example, suppose 
µK(·) is a finite, diffuse Borel measure on K, and µM(·) a probability measure on 
(M, M) (often, µK(·) is the Lebesgue measure andµM(·) the uniform distribution 
on M, but spatial or geometric non-homogeneity may be taken into account, as in 
the case study later). Then 

Pn(X1,. ·. ,Xn) = µK(K)-n 

defines a Poisson process on K with intensity measure µK ( ·) marked indepen­
dently according to µM(·). The dominating measure for Pn(·, ... , ·)is then-fold 
product measure (µK X µM) n ( ·) on Xn. 

The Poisson process distribution 7r is a convenient benchmark because of its 
lack of interactions. More complicated models may be defined by a probability 
density, say p( · ), with respect to 7r, in which case 

and, given N = n, the n random objects have joint probability density 

with respect to the n-fold product measure of µK x µM. Clearly, since p( ·) is 
permutation invariant, so is Pn ( ·, ... , ·). For more details on measurability and the 
topological structure of object configuration spaces, see [12, 57]. 

The intuitive concept of interaction can be formalised by means of a symmetric 
relation "', cf. [5, 60]. Thus, two objects x and y interact if and only if x ,...., y, in 
which case they are called neighbours. The neighbourhood of an object x E X is 
denoted by 8( { x}) = {y E X : x ,...., y}. Note that the interaction relation ,...., may 
depend on the marks, but need not. For instance, under the fixed range relation 

(k, m),...., (l, n) <=? Ilk - Zll ::;; r 

two objects are neighbours whenever their locations are not further than r apart. 
Especially in the case of objects that may vary in shape, the overlapping object 
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relation [3] 

x"' y ~ R(x) n R(y) =I= 0 

seems more natural. However, specific tasks may call for more tailor-made interac­
tion relations, as for example those that define the Candy line segment model [71] 
used in the case study in section 4. 

Hard object processes are obtained by simply forbidding objects to overlap. 
Conditioning the Poisson model to this event yields the density 

({ }) -{ 0 ifR(xi)nR(x;):/=0 forsomei:f=j 
p X1, ... ,Xn -

o: otherwise 
(106) 

The normalising constant a > 0 ensures the density integrates to unity. Note that 
the hard object density is hereditary in the sense that if p(x) > 0 for some con­
figuration x of objects, then also p(y) > O for any y ~ x as whenever no pair of 
objects in x overlap each other, the same is true for those objects belonging toy. 
Moreover, provided p(x) is non-zero, the ratio 

depends only on the neighbours of 'f/ in x. This observation, simple though it is, 
has important practical implications, since it means that for any iterative procedure 
based on small changes to a current configuration, such as adding, deleting or 
changing an object, only the local neighbourhood has to be taken into account. 

Any object process exhibiting the two properties mentioned above (hereditary 
density, and a likelihood ratio ( 107) depending only on the neighbours of the added 
object) is called a Markov object process (3, 4, 38, 39], in accordance with the def­
inition of Markov point processes [5, 60]. By the Hammersley-Clifford theorem, 
such processes can be characterised by the fact that their density factorises as a 
product over subsets of interacting objects of functions that describe the attrac­
tion or repulsion between these objects. See (60], [5], or [40] for more details. It 
should be noted that in the physics literature, the term 'Gibbs' [67] is used instead 
of 'Markov', and an exponential notation of the form 

p(x) = p(0) exp[-U(x)] (108) 

is preferred, at least when p( ·) is strictly positive. 
The Hammersley-Clifford factorisation amounts to expressing the energy func­

tion U(x) as a sum of potentials over those subsets of x that consist of pairwise 
interacting objects. 
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3 Tools for manipulating the point processes 

The density p(·) of object processes typically contains a normalising constant, for 
instance a in the hard object model (106), that cannot be calculated explicitly. 
Moreover, the number of objects is allowed to vary, so that direct sampling from 
such a model is usually out of the question. On the other hand, the local charac­
teristics (107) are, at least for Markov object process, both low-dimensional and 
easy to compute. These observations suggest that Markov object processes may 
be well suited to simulation by Markov chain Monte Carlo. The idea is to run a 
Markov chain with the density we wish to sample from an equilibrium distribution 
for a sufficiently long time to be justified in considering the final state of the chain 
as an approximate realisation of the desired object process. Of course, there are 
many such Markov chains, the art is to select one that converges fast and is easy to 
implement. Below, we will describe several well-known types of chains that can be 
applied quite generally. Nevertheless, huge improvements are possible by tailoring 
the chain to the model one wants to sample from. 

3.1 Spatial birth-and-death processes 

The simple form of likelihood ratios such as (107) suggests we build a Markov 
process whose transitions are births and deaths. Ifwe adopt a continuous time for­
mulation, let b( x, u) denote the birth rate for a transition from x to x U { u}, and 
d( x \ { Xi}, x;) the death rate for deleting Xi from x. Intuitively speaking, the prob­
ability ofa birth at dry during the time interval (t, t + dt) is b(x, ry)dtdTJ; similarly 
the probability of deleting x; E x during the same time interval is d(x \ { x;}, x;)dt 
for dt ~ 0, and the probability of multiple transitions is ignored. More formally, 
regarding the birth kernel, for each x, b( x, ·) is a density of a finite Borel measure 
on X, and for each Borel set F, B(x, F) = JF b(x, (k, m))dµK(k)dµM(m) is a 
measurable function of x; d( ·, ·) is a jointly measurable function. 

Conditions must be imposed to rule out explosion, that is an infinite number 
of transitions in finite time [55, Prop. 5.1, Thm. 7.1], [5, 47]. Write B(x) for the 
total birth rate, and D(x) for the total death rate from state x, and define "-n = 
SUPn(x)=n B(x) and On = infn(x)=n D(x). Assume On > 0 for all n 2 l. Then, 
ifthere are relatively few births compared to deaths, in the sense that either "-n = 0 
for all sufficiently large n 2 0, or that "-n > 0 for all n 2 1 but both 

00 

L "-1 · · · "-n-1 ----<oo· 
01 ... 0 ' 

n=2 n 

~ 01 ·"0n 
L...,,--- = 00 
n=l "-1 • .. "-n 

hold, a unique spatial birth-and-death process with the given rates exists; this pro­
cess has a unique equilibrium distribution to which it converges in distribution 
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from any initial state. For a discussion of the rate of convergence see [47]. 
In our context of Markov object processes, if we require that under the equilib­

rium density p( ·) births are matched exactly by deaths, i.e. 

b(x,TJ) p(xU{TJ}) 
d(x, TJ) = p(x) 

(109) 

whenever p(x U { 1J}) > 0, then the birth-and-death process is indecomposable 
and time reversible, with unique invariant density p(-) (cf. [58]). Thus, it suffices 
to specify the death rate. A common choice is d(x, 17) = l, which implies the 
birth rate b(x, T]) must be equal to the likelihood ratio for adding 17 to the object 
configuration x. If this likelihood ratio is uniformly bounded in both arguments, 
explosion is ruled out (40]. 

3.2 Metropolis-Hastings and reversible jump processes 

An alternative paradigm for simulating point processes is that of Metropolis and 
Hastings (26]. Again, the transitions are births and deaths, but, in contrast to the 
spatial birth-and-death processes discussed in section 3 .1, this chain proceeds in 
discrete time. At each step, a proposal is made to either add or delete an object; 
subsequently, the proposal is accepted or rejected with probabilities designed in 
such a way as to en.sure convergence to the desired equilibrium distribution. 

Thus, let Pb be the probability of choosing to propose a birth, and Pd = 1 - Pb 
the complementary death proposal probability. For each object configuration x, 
denote by b(x, ·) the proposal density (with respect to µK x µM) for adding a 
new object to the current configuration x, and let d(x \ {xi}, xi) be the probability 
for suggesting we delete Xi from x. By the detailed balance equations (109), the 
acceptance probability for the transition from x to x U { 17} is 

a(x, x U {17}) = min {1, Pd d(x, ry) p(x U {17})}; (110) 
Pb b(x, 17) p(x) 

a similar expression holds for death transitions. By the results in (26, section 4], 
the algorithm converges in total variation to the target density p( ·) for p-almost all 
initial configurations provided Pb E (0, 1) and the proposal densities are strictly 
positive, but in order to obtain the stronger property of geometric ergodicity, we 
must assume additionally that the likelihood ratio is uniformly bounded, and that 
relatively few births are accepted in the sense that (41] 

d(x, 11) 
l'i:n = sup -- -..O· 

,.,ex ,n(x)=n b(x, 1J) ' 
8n = inf b(x, ry) -+ 00 

T/EX,n(x)=n d(x, TJ) 
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as n -+ oo. The reader is urged to compare this assumption with the non-explosion 
condition in section 3.1. Note that for the generic choice of uniform proposal dis­
tributions, geometric ergodicity holds [25, Prop. 3.3]. 

The mixing properties of a Metropolis-Hastings chain may be significantly 
increased by including proposals other than births or deaths. For example, change 
moves may be used which propose to modify object characteristics [26, 52]. For 
objects whose shapes are modelled by landmarks scattered around the boundary, 
the mark space dimension depends on the number of such landmarks, and the 
Metropolis-Hastings algorithm as described above is no longer applicable. Fortu­
nately, a generalisation exists, known as the reversible jump algorithm [31]. The 
general idea is the same as that underlying the Metropolis-Hastings sampler, but 
the acceptance probabilities are modified to compensate for changes in dimension. 
Typical transition types include births and deaths, but also the splitting of an object 
n two, object mergers, or changes in the boundary shape [34, 53, 63, 64, 65]. 

3.3 Coupling from the past 

Despite the greater flexibility of the Metropolis-Hastings framework compared to 
spatial birth-and-death processes, the latter are enjoying a renaissance because of 
their greater suitability to coupling. Indeed, the proofs for existence and conver­
gence in [55] rely on a coupling to simple birth-and-death processes on N0 . 

As mentioned at the beginning of this section, the idea behind Markov chain 
Monte Carlo methods is to run a Markov process into equilibrium. However, since 
equilibrium is never actually reached, the main problem the user of such a tech­
nique has to face is that of deciding when to stop. No stopping criterion is neces­
sary for coupling from the past algorithms [56]. In order to describe the method, 
for the moment suppose one wishes to simulate a given probability distribution on 
some finite state space, and imagine running a series of coupled Markov chains 
(naturally with the target distribution as their equilibrium) from time -oo, one for 
each possible initial state. If after some time all chains have reached the same state, 
clearly the initial state influence has worn off, and they proceed as one. The state 
reached at time 0 would then be an unbiased sample from the equilibrium distribu­
tion. Of course it is not possible to run the chain for an infinite amount oftime, but 
we may start the chain further and further into the past, until coalescence occurs at 
time 0. The art is to find paths that couple quickly and an efficient way of checking 
for coalescence. This can be done if a partial order on the state space exists, and the 
transition kernel respects this order, since then only two chains have to be consid­
ered, one associated with the maximal, the other with the minimal state. For object 
processes, the state space is not finite. Nevertheless, spatial birth-and-death pro­
cesses may be coupled to a randomly evolving maximum in such a way that exact 
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samples can be obtained, see [35, 36]. For the Metropolis-Hastings dynamics the 
construction of a coupling from the past sampler seems more cumbersome [36]. 

Finally, it should be mentioned that the simulation algorithms discussed so far, 
although they seem to be the most widely used ones, are by no means the only 
options. Alternatives include the jump-diffusion processes in (32], simulated tem­
pering [28, 44], block updating or auxiliary variables schemes. The interested 
reader is referred to [29] for more information. 

3.4 Inference 

Next, tum to statistical inference in high-level vision. Given a data image y = 
(Ys )sES, with each grey level Ys at pixels taking a value in the set A, the goal is to 
interpret yin terms of the set of objects x present in it. As in section 2, we assume 
that the true set of objects is distributed as a Markov object process. Furthennore, 
we shall suppose that its density p( ·) is strictly positive, hence it can be written in 
the exponential form (108) with energy U(·). The projection of the configuration 
x to the pixel lattice we take to be governed by a strictly positive distribution 

Ps(y;x) = a:exp [-ti(x,:Y)]. 

The reference distribution depends on the value space A. For the usual grey levels 
between 0 and 255, it is the counting measure, hence Ps(·;x) is amass function. In 
contrast top(·), Ps(Y; x) is usually ofa simple form. For instance, for white noise, 
p8 (y) factorises in independent contributions from individual pixels. Usually, both 
the Markov object process and the projection density will contain parameters, that 
is U(x) = U(x;w) and U(x,y) = U(x,y;w) respectively. Combining all ingre­
dients, we shall perform statistical inference based on the Gibbs process described 
by its density 

_ _ exp[-(u(x;w)+U(x,y;w))] 
p(x;y,w,w) = Z(w,w) (111) 

with respect to tr, the law of a Poisson process on K with intensity measure µK ( · ), 
marked independently according to µM(·), cf. section 2. The energy function is 
the sum of two terms: fj ( x, y; w) describes the goodness-of-fit between the object 
configuration x and the data y, while U(x) is a regularisation energy constraining 
the geometry of, and the interactions between, the objects. 

Three types of 'parameters' occur in ( 111 ), first of all, the objects to be extracted, 
but also the regularisation parameters w, and the parameters w of the projection 
model. Clearly, each type of parameter plays a different role. The configuration x is 
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meant to provide a concise description of the image. The parameters ware crucial 
in linking the description to the observed image, while the vector w regulates the 
strength and type of geometric constraints, or 'smoothness' of the description. 

Focus first on the feature extraction problem, and suppose both w and w are 
fixed. Hence, the penalised maximum likelihood estimator x is obtained by min­
imising the total energy of ( 111 ), that is 

(112) 

where the minimum is over all object configurations x. Naturally, for each applica­
tion, existence and uniqueness ofx have to be established. On rare occasions, the 
optimisation can be done explicitly. However, the simulation methods discussed in 
the previous sections stand us in good stead here. Indeed, simulated annealing is 
based on sampling from the family of distributions defined by the rescaled ener­
gies (U(-;w) + U(·,y;w))/T. For large positive values ofT, the state space is 
explored; subsequently lowering T gradually to 0 forces the sampler towards the 
states with minimal energy [38, 77). 

Next, suppose x and w are fixed. Consider estimation of w given the image y and 
the pattern x. Thus, we must maximise the function exp[-U(x, y; w)]/Z(w) with 
respect tow. As mentioned above, usually this function is relatively simple. Hence 
the integration needed to compute Z(w) can be carried out explicitly, and optimi­
sation is straightforward. Furthermore, if in a practical application the parameters 
represent known characteristics of the imaging equipment, or may be estimated 
from training data with the benefit of ground truth knowledge, assigning a value to 
w is no real problem. 

Thirdly, let us turn to the regularisation parameters. Since their aim is to penalise 
undesired characteristics, some authors prefer not to estimate these parameters at 
all, but to fix them according to the amount of regularisation deemed advisable. If 
an estimation is carried out, one has to maximise p(x; w )=exp[-U(x; w)]/Z(w) 
over w. Unlike Z(w), the normalisation constant Z(w) with respect tow is not 
available in closed form for the vast majority of models. No unique optimum is 
guaranteed, and even if it does, explicit evaluation of its value is seldom possi­
ble. Hence a range of approximate solutions have been proposed, from analytic 
approximations of the expectation in its right hand side, through various iterative 
schemes, to a Monte Carlo approach [27, 24]. The latter is based on the observation 
that the log likelihood ratio with respect to some given value w0 can be expressed 
as 

p(x; w) 
log ( ) =U(x;w0 )-U(x;w) 

p x;wo 

- logEw0 [exp[U(x;wo) - U(x;w)]] 
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so the expectation in the right hand side may be replaced by its Monte Carlo coun­
terpart in a sample under the parameter value wo, and the result optimised with 
respect tow. For an overview and critical comparison see [19, 25]. 

Finally, the inference steps discussed above have to be integrated. Perhaps the 
first idea that comes to mind is that of iteratively updating each type of parameter 
in tum. The disadvantage is that such an approach does not necessarily converge, 
as any asymptotics for each step depend on the output of the previous one. Alter­
natively, a fully Bayesian approach may be taken, which imposes hyper priors on 
each of the parameters and samples from the resulting posterior distribution. The 
obvious problem here is the specification of the hyper priors. No consensus seems 
to have been reached. We will describe our choice for the case study below. 

4 Case study: linear network extraction 

The patterns formed by roads, blood vessels, rivers and other waterways, or fis­
sures in materials are known in the image processing community under the com­
mon denominator of 'linear networks'. The automatic extraction of such networks 
would be of use in fields such as cartography or computer-assisted medical diag­
nosis. 

Many current algorithms to extract linear networks are two-step procedures [62, 
Ch. 1 O]. The first step consists of using a line detection operator such as the Hough 
transfonn, a directional or morphological filter [54, 76]. The result is subjected to a 
linking procedure performed in the second step to improve its connectivity, which 
may be based on dynamic programming [6, 20, 50], Markov random fields [76] or 
infonnation theory [23]. 

Linear networks have the following characteristic properties: 
• a locally homogeneous radiometry; 
• contrast between a line segment and its surroundings; 
• a slowly varying width; 
• piecewise linearity. 

While a network extraction algorithm may exploit the above properties, it may also 
encounter difficulties posed by, for instance, the presence of noise in the image, 
occlusion by other objects, potential false alarms due to objects with a radiometry 
that is similar to that of the features to be detected, and dependence of the network 
topology on its location (for instance, roads tend to be more straight in the United 
States than in Europe). 

Except for the method proposed in (6], the previously mentioned techniques are 
supervised methods in the sense that the user has to provide a region of interest 
or points belonging to the network in order to make the detection feasible. These 
approaches are also pixel oriented, a trait that makes them sensitive to noise and 
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local optima. The intermediate-level approach to road detection by means of a 
Markov random field on a graph whose nodes represent road segments is found 
in (75]. It can be seen as a first attempt in the direction of object based modelling, 
and has proved its efficiency on radar images. The drawback of the method is the 
fact that segments that are not detected in the first step cannot be linked in the 
second one, cf. section 1. 

4.1 Candy model 

In the object process approach to high-level vision [4], a linear network is regarded 
as a pattern of connected line segments. Hence, instead of searching the image for 
pixels belonging to the linear network, one tries to locate directly the different 
components of the network. To do so, a model is needed for such collections of 
segments. Here we use the Candy model introduced in [70, 71]. 

A segment ry = (k, (l, 8)) is parametrised by its centre k E Kc JR2, its length 
l E [lmini lmax], and its orientation 8 E [0, 7r). Thus, a line segment process can be 
seen as a marked point process with marks for specifying the lengths and orienta­
tions. For linear networks approximated by segments, longer segments ought to be 
preferred to shorter ones, but there is no preference in orientation. 

Attraction region 
for sl 

,/Rejection region 
' for sl 

Connection region 
for s 1 (black) 

Figure 1: Different types of segment interaction for the Candy model. 

Two segments ry and ( are said to be connected if at least one extremity of each 
segment is closer than some r c > 0 to an extremity of the other, see Figure 1. A 
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11 no extremities connected is called a free segment. If only one end 
1ected, the segment concerned is singly connected, and a segment with 
,ints connected is called doubly connected. In a connected network, 
gly connected segments typically occur less frequently than doubly 
::gments, hence the Candy density penalises the fonner events. 
rery segment T/ = (k.,,, (l 11 , 811 )), a rejection region is defined by a circle 

11 with radius rr = 111 /2. If the centre k.,, is situated in the rejection 
;egrnent (and if 11811 - Bd - 11'/21 > c5min for some threshold value 
gments T/ and ( are said to reject each other, and the Candy model 
configurations containing both rJ and (. 
,t T/ has an attraction region which is the union of the two circles cen­
tremities with radius r o = l11 /4. If one extremity of a segment T/ is in 
i region of another segment(, ifmin{IB11 -Or;!,11'-1811 -Bc;I} > 'Tmax 

i.x > 0, and if the segments TJ and (are not in the rejection described 
are said to reject each other orientationwise. The energy term of the 
:l penalises such pairs of segments that are ill-aligned. 
illustrates the interaction structure. The black discs around the end 
ire its connection regions, so 85 is connected to 8 1 . All other segments 
e larger discs indicate the regions of attraction and rejection. Note 
12 reject each other, but that the crossing segments s 1 and s 3 do not. 
. and s 4 reject each other orientationwise, but s 1 and s 5 do not as they 
orientations. 
ry, with parameters Wt E IR, and Wf, W 8 , Wr, w0 < 0, the negative 
s 

U( ) "'""' [ l - lmax ] 
- X = L..J l +Wt 

(k,(l,ll))Ex max 

+ n1(x)w1 + ns(x)ws + nr(x)wr + no(x)w0 (113) 

and n 8 (x) denote the number of free and singly connected segments 
vely, nr(x) the number of segment pairs in x that reject each other, 
e number of pairs of orientationwise rejecting segments. The domi­
. process is a unit rate Poisson process on K marked independently 
y. For a full definition, the reader is referred to [70, 71]; regarding the 
:ture, see [41]. 
[cal realisations are plotted in figure 2, obtained by the Metropolis­
amics discussed in section 3.2 with as transitions [41] births - both 
.d prolonging the current network - deaths, and segment changes, 
ts components simultaneously or in orientation only. It might seem 
~ropose instead the birth of, say, a singly connected segment, but 
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• 

~ 
Model parameters Sufficient statistics 

Wt= 2.5 nt = 114 

WJ = -11.0 n1 =4 

Ws = -5.5 ns = 30 

. .• - - - Wr = -2.5 nr = 14 

W0 = -2.5 n 0 =13 

a) 

I 

• 
Model parameters Sufficient statistics 

Wt= 4.0 nt = 154 

WJ = -12.5 n1=1 

Ws = -7.0 n 8 = 26 

. . .• - - Wr = -2.5 n 0 =17 

Wo = -2.5 n 0 = 19 

b) 

Model parameters Sufficient statistics 

Wt= 2.5 nt = 145 

WJ = -7.5 n1=68 

Ws = -5.5 n 8 = 20 

Wr = -2.5 nr = 13 

Wo = -2.5 no= 10 

c) 

Figure 2: Realisations (left plot) of the Candy model with Zmin = 30, Zmax = 40, 
8min = 0.057!", and 7'"max = 0.271" for the parameters values given in 
the middle column. The observed values of the sufficient statistics are 
tabulated at the right. 
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the complicated nature of the set of such segments forces one to use approxima­
tions [70, 71]. 

Depending on the model parameters, different topologies are obtained. For exam­
ple, a network with long rectilinear curves is plotted in figure 2a; if we increase 
the intensity parameter the denser pattern of figure 2b is obtained, while if free 
segments are penalised less stringently, the network tends to have fewer connected 
segments as in Figure 2c. 

4.2 Data model 

In order to extract a linear network from a given image, the data energy term has 
to check whether a segment belongs to the network or not using the characteristics 
listed at the beginning of this section. Several situations must be analysed. 

First, we verify ifthe segment is in the middle ofa homogeneous region. To do 
so, we build a one-block mask [Dh] around the segment's main symmetry axis. 
For a segment x = (k, m), the mask [Dh] is centred at k with a shape depend­
ing on the mark m, cf. Figure 3. We write YH1(x) for the grey levels within this 
mask. Using a Gaussian distribution with parameters wH!(x), we obtain the log 
likelihood function, which is denoted by L HI ( x, y HI ( x); w HI ( x)). 

Next, we check whether the segment is situated at the frontier of two homoge­
neous regions, i.e. on an edge. A two-block mask [Del] - [Der] is built around 
the main symmetry axis of the segment. As in the first case the position of the 
mask depends on the centre of the segment we analyse, whereas the dimension 
of the mask depends on the mark of the segment. Again, y H 2 ( x) represents the 
grey levels within the mask [Del] - [Der]. The log likelihood is denoted by 
L H 2 ( x, y H2 ( x); w H2 ( x)) and derived as an equal weights mixture of two Gaus­
sian distributions. The parameter vector is denoted by WH2(x). 

Finally, as in the previous two cases, depending on the centre and the mark of 
the segment x, we build a three-block mask [Dsl] - [Ds] - [Dsr] around the main 
symmetry axis of the segment, in order to test whether the segment reflects an 
actual linear feature. Once again, write y H3 { x) for the grey levels under the mask, 
and take an equal weights mixture of, in this case, three Gaussian distributions 
to arrive at the log likelihood LH3 (x, YH3 (x); WHJ(x)). The parameter vector is 
WH3(x ). For an illustration, please consult Figure 3. 
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monotone with respect to the inclusion relation, implying the optimisation steps in 
the exact simulation algorithm of [36] would be difficult to implement. Therefore, 
we opt for a Metropolis-Hastings algorithm, cf. section 3.2. 

Suppose we propose to add a segment T) to the configuration x. Then, the detailed 
balance equations ( 109) hold if 

{ 
Pdd(x,1)) exp [-(U(xu {1/}) + U(xu {1/},y))]} 

a(x,xU{1/})=min 1, _ 
Pb b(x, 1)) exp [-(U(x) + U(x, y))J 

. { Pdd(x,1)) - } 
=mm 1, Pb b(x,ry) x exp[-(6U(1/) + 6U(77))] . (116) 

Here 6.U(TJ) = U(x U {TJ}) - U(x) represents the difference in regularisation 
energy caused by the addition of T), and 6. U ( T)) = U ( x U { T)}, y) - U ( x, Y) that to 
the data energy. We suppress the dependence on w and w in the notation. Thus, a 
new segment is accepted depending on its contribution to both 6.U (TJ) and 6.U(77), 
that is both the goodness-of-fit to the data image and the geometrical constraints 
as represented by the regularisation model are taken into account. Moreover, the 
computation of (116) is 'local', which is one of the main advantages of using the 
Metropolis-Hastings dynamics. As in section 4.1, we used the proposal densities 
developed in [41], but with acceptance probabilities modified as in (116) to incor­
porate the data energy. 

4.4 Real data results 

We applied the model ( 111) with ( 113) and ( 115) to publicly released SAR images 
obtained from the NASAJJPL website 

http: I I southport. jpl. nasa. gov. 
To sample from (111), we used the Metropolis-Hastings algorithm of section 4.3, 
incorporated into a simulated annealing framework ( cf. section 3 .4) in order to find 
the optimal linear network. The cooling schedule was 

Tk = To 
log(l + k) 

(117) 

for T0 > 0 and k = 1, 2, ... , n. At each temperature, 103 Metropolis-Hastings 
iterations were carried out, after which the temperature was decreased. The whole 
procedure was repeated 3 x 103 times. The initial temperature was To = 35. 
The parameters of the Candy model were, after some trial and error to balance 
network completeness against false alarms, fixed at Wt = 7.5, Wf = -92.5, 
w8 = -27.5, w0 = -25.0 and Wr = -35.0. The minimum length of a segment 
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lmin = 21, whereas lma.x = 51. The range of the single segment data potential was 
[25.0, 50.0]. In contrast to the Candy model parameters, which remain unchanged 
throughout the annealing procedure, the Gaussian mixture parameters w = w(x) 
must be re-estimated at each update of the Metropolis-Hastings sampler by their 
current empirical counterparts. 

Figure 4a shows a countryside region close to the city of Muar in Malaysia. 
The extracted roads are shown in Figure 4b. The main structure of the network is 
detected. There are some false alanns, which may be caused by the presence of 
thin, long, crop fields, but most such cases are avoided. 

,., 
"" 

,., 
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b) 

Figure 4: Countryside region in Malaysia: a) original image; b) result of extraction. 

From Figure 5, we extract the tracks in between crop fields in an agricultural 
region of the Ukraine. The result seems quite complete, although some paths are 
not fully detected, and there are a few spurious instances. 
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Figure 5: Agricultural region in the Ukraine: a) original image; b) result of extrac­
tion. 

The third image, shown in Figure 6, depicts a fragment of the Nile delta in 

Egypt. The lower curve represents one arm of the Nile, the two straighter ones are 
irrigation canals. The gap in the network can be explained by the low quality of 
the data in this region over a longer stretch than the typical segment length. 

Without access to ground truth data, no truly objective claim can be made about 
the quality of our results. Nevertheless, most of the more pronounced parts of the 

linear structure were detected in all three of the images, without introducing an 
unduly large number of false situations. We experimented with a range of values 
for the regularisation parameters, and found the results to be quite robust. Indeed, 
the same values were used for all three images, even though they are quite different. 
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Figure 6: Nile river delta region in Egypt: a) original image; b) result of extraction. 

5 Conclusion and future work 

In this chapter we presented an application of point processes to image analysis. 
We suggested a line segment process [15, 41, 70, 71, 72] as a regularisation term 
in the context of linear network extraction, and presented new results for SAR 
images. 

Several perspectives may be outlined. One possibility would be to investigate 
exact simulation algorithms for line segment processes; another is to incorporate 
spatial inhomogeneity [73] into the Candy model. For example, one may detect 
urban areas and texture parameters linked with the building density. This parameter 
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could drive the road network density as there are more roads in dense urban areas 
than in the countryside. 

Current work is devoted to the generalisation of line segment processes to 3D. 
Such a generalisation would be particularly relevant in medical MRA imaging, 
where one is interested in dectecting blood vessels, and a more complex model 
based on broken lines instead of segments is under development. 

Last but not least, we would like to stress one of the most exacting, therefore 
one of the most expensive perspectives: scene modelling. As a first step in this 
direction, in [18], a point process model is applied to building extraction. Indeed, 
object processes are quite flexible and lend themselves to the high-level modelling 
of images, hence could be well suited to dealing simultaneously with linear net­
work extraction, texture segmentation and building extraction as well as to similar 
image interpretation tasks. 
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