
Requirements Speci�cation and Analysis

of

Command and Control Systems

Jaco van de Pol �CWI� Amsterdam�
Jozef Hooman �KUN� Nijmegen�
Edwin de Jong �Hollandse Signaalapparaten BV� Hengelo�

August ��� ����

Abstract

This report presents a method for formally specifying and analyzing requirements speci�ca�
tions of command and control systems� In this method� a speci�cation consists of a number
of speci�cation blocks� each specifying a particular aspect of the system� The main blocks
are�

� Enumeration of input and output events with data�

� Description of state variables� constrained by an invariant�

� Mapping of input events to state transitions�

� Mapping of state changes to output events�

Due to the latter mappings� the relation between input and output events is speci�ed indi�
rectly� An input event causes a particular state transition� A state change can be the trigger
for a number of output events� The speci�cation blocks are mapped onto a machine model�
which is an extension of Mealy Machines� This gives the speci�cation a formal basis�

A formal speci�cation can be rigorously analyzed� We distinguish veri�cation and val�
idation� The veri�cation consists� besides type checking� of proving a number of proof
obligations� These obligations address consistency and completeness of the speci�cation�
Validation is mainly supported by proving formal challenges of a speci�cation� We suggest
induction over the set of reachable states as a powerful proof principle�

The speci�cation language and theorem prover PVS �prototype veri�cation system� is
proposed for tool support� It is explained how the speci�cation blocks can be expressed in
PVS	 language� The speci�cation is type checked by PVS� possibly resulting in a number
of conditions to be checked� The speci�cation is automatically mapped onto the machine
model� Moreover� the veri�cation proof obligations are automatically generated� The formal
challenges can also be expressed in PVS� The type correctness conditions� the proof obliga�
tions and the formal challenges� are proved using the PVS theorem prover� PVS supports
the proof construction by a number of built�in proof strategies� but in principle� theorem
proving is interactive�

We evaluated this method on a realistic system� This is a subsystem of an existing
command and control system� viz� track fusion� The various requirements are formalized�
and then veri�ed� The speci�cation is built in three stages� where each next stage is a
re�nement of the previous one� The �rst re�nement has an informal status only� but the
second re�nement is formal�

Finally� we indicate the directions for future work� The method can be completed by
adding modularity mechanisms� and by �ne�tuning the relation between input and output
events by some protocol description� We expect that this method is fruitful in the design
steps� following the requirements speci�cation� To this end� the basic notions of equivalent
speci�cations and re�nements have to be studied�

Preface

This report is not only a technical report� presenting a number of scienti�c and engineering
results
 in addition it is the �nal report of an enjoyable two�and�a�half year lasting project
at Eindhoven University of Technology� The �rst author started this research on October ��
���� two months before his graduation�

The other authors in a sense started earlier� by getting the research proposal granted� I
am indebted to them for this e�ort� The collaboration was very pleasant� bringing me in
touch with the �ne �eur of industrially motivated science �Jozef Hooman� and scienti�cally
oriented industry �Edwin de Jong�� This continuous cooperation� which was both pleasant
and inspiring� had an immense in�uence on the �nal contents and form of this report�

I like to acknowledge the support of SENTER �part of the ministry of economical a�airs� and
Hollandse Signaalapparaten BV� for �nancing the ORKEST project� of which my position
was a part� The other partners were situated at the universities of Amsterdam �UvA� and
Groningen �RUG�� It was the Eindhoven leg that focused on requirements speci�cations�

I would like to thank other people as well� First of all Prof� Dieter Hammer� who super�
vised the Eindhoven part of the project� for his stimulating advice in the project meetings�
Further Paul Dechering and Martin Streng from Signaal� who were always interested and
willing to share their knowledge� Also the participants in the ORKEST meetings� especially
Rix Groenboom �RUG� from Groningen� Finally� Roel Bloo� involved in another research
collaboration between Signaal and TUE� I thank him for the lengthy and deep discussions
on how systems should be speci�ed and developed� and on any other conceivable practical
or theoretical issue�

I hope that the various collaborations will continue in other forms� I intend to continue
this research in such a way that it supports industry in the design of correctly functioning
systems� and deepens the fundamental understanding of software systems by raising the
right questions�

Jaco van de Pol Amsterdam� August �� �����

�

Contents

� Introduction �

��� Command and control systems �
��� Requirements engineering and formal methods � � � � � � � � � � � � � � � � � �
��� Outline of this report �

� Speci�cation and Analysis Method �

��� Machine model �
��� Concrete Speci�cations �

����� Extensions to the machine model �
����� Building blocks of a speci�cation �

��� Analysis ��
����� Parsing and type checking ��
����� Veri�cation ��
����� Validation ��

��� Tool support ��
����� PVS ��
����� What is supported ��
����� Requirements in PVS ��

� Case study ��

��� Static interface �
����� Types of basic entities �
����� Input events �
����� Output events ��

��� Information model ��
����� State variables ��
����� Invariants ��
����� Initial states ��

��� Mapping input to output ��
����� State transitions ��
����� Triggers for output events ��
����� Mapping of input events to state transitions � � � � � � � � � � � � � � � ��
����� Mapping of state transitions to output events � � � � � � � � � � � � � � ��

��� Assumptions on the environment ��
��� Analysis ��

����� Importing the machine model ��
����� Checking the veri�cation proof obligations � � � � � � � � � � � � � � � � ��
����� Validation ��

�

� Re�nements �	

��� First re�nement� operational requirements ��
����� Parameterizing the speci�cation ��
����� Information model� subtypes vs� invariants � � � � � � � � � � � � � � � ��
����� Re�ning state transitions ��
����� Triggers ��

��� Analysis of �rst re�nement ��
����� Parsing and type checking ��
����� Veri�cation of preconditions ��
����� Validation by formal challenges ��

��� Logical re�nement� adding detail ��
����� Speci�cation of track states ��
����� Kinematic computations ��
����� Correlation criteria ��
����� Analysis of the second re�nement ��

� Conclusion ��

��� Possibilities for future work ��
����� Extension to the speci�cation method � � � � � � � � � � � � � � � � � � ��
����� Semantics ��
����� Other issues ��

��� Evaluation ��

A Templates �

A�� Formalization of the machine model ��
A�� A template for concrete speci�cations ��

B Complete PVS speci�cations ��

B�� Top speci�cation ��
B�� First re�nement �
B�� Second re�nement �

C Proof status reports ��

D Complete PVS proofs �

D�� General machine �
D�� Top speci�cation �
D�� First re�nement �
D�� Second re�nement ��

E Further reading
�

Bibliography
�

�

Chapter �

Introduction

The goal of our research is to compose a method for formalizing and analyzing requirements
speci�cations of command and control systems� and to evaluate this method on a realistic
system� The method should result in requirements speci�cations of better quality� that allow
to predict the functionality and behaviour of the system under construction� The e�ect is
that potential errors are detected very early in the design process of a system�

In selecting or composing this formal method� the following issues should be taken into
account� The method should support the construction of abstract and readable speci�ca�
tions� and it should be scalable to industrially relevant systems in the intended application
domain� Finally� it should support veri�cation of desired properties� like consistency and
completeness�

��� Command and control systems

The general task of a command and control system is to support a team of operators in
monitoring and controlling the environment in order to accomplish a mission� Commonly�
these systems support tasks like navigation� observation� communication� defense� and train�
ing� Similar applications include tra�c management systems� air tra�c control systems and
process control systems�

Command and control systems are equipped with various sensors and actuators� Mea�
surements from the environment are continuously obtained via the sensors and compiled
into an abstract picture that re�ects the current state of the environment� This picture is
communicated to the team of operators� The system supports the decision making process
by tracking di�erences between the perceived state and the required state� and by proposing
and analyzing corrective actions� These actions are scheduled for execution� by assigning a
time�frame and su�cient resources� and eventually executed via the actuators�

Command and control systems are typically large and complex� whereas the standards on
correctness� reliability and availability are high� Hence it is a di�cult and error�prone task
to build such systems� It is important to be able to manage the time and costs needed to
develop a particular system� Too often fatal errors are detected on testing a system that has
been built already� In that case parts of the development must be reiterated� which results
in additional and usually unpredictable costs� Of course� the damage of errors detected after
delivery is even more disastrous� encompassing severe economical as well as social aspects�

�

��� Requirements engineering and formal methods

We refer to �SS��� for a general treatise on requirements engineering� The requirements
speci�cation is the starting point of the development process� To have a solid basis for
system development it is important to have an unambiguous and truthful description of the
requirements on such systems� From the previous section� it appears that it is preferable to
detect errors at an early stage of the development process� viz� in the requirements speci��
cation phase� Errors in the speci�cation propagate to all later phases in the development�
until they are detected� In fact� it is well known from the literature� that errors that are
made early and detected late� are relatively expensive to repair� Therefore� the �quality� of
the requirements speci�cation is an important issue�

This �quality� has many aspects� Surely� the speci�cation should be the true expression
of the requirements of the users� Various validation techniques have been developed to
assess that the speci�cation is according to this intention� like inspection� simulation and
rapid prototyping� However� because there is no authoritative document against which the
speci�cation can be checked� validation� either by users or by domain experts� is always
partial�

Another way to assess the �quality� of the speci�cation� is to �nd intrinsic properties that
a good speci�cation should have� Some desirable criteria that a requirements speci�cation
has to meet are� unambiguity� consistency� completeness and readability� It is also desirable
that a speci�cation is abstract� which means that it is not biased to any particular solution�
but focuses on the problem statement only� Potential errors in the speci�cation can be
detected by analyzing whether the desirable criteria are met�

A rigorous analysis is only possible� if the speci�cation is precise and unambiguous�
Because informal speci�cations� which are written in natural language and illustrated by
diagrams� tend to be ambiguous and imprecise� we think that formal speci�cation techniques
help to detect errors early� It is quite commonly agreed nowadays that formal methods
can be helpful in the earliest phase of system development� Using a formal speci�cation
language ensures that the speci�cation is unambiguous� A formal semantics provides for
a mathematical model of the speci�ed system� which can be analyzed with mathematical
rigour� Thus properties of the speci�cation itself� like consistency� can be veri�ed formally�
Finally� powerful tools� like theorem provers� are available to make this analysis tractable�

��� Outline of this report

Chapter � introduces and explains our speci�cation method� A tool�independent explanation
is given in �������� Section ��� is devoted to tool support for the method� We propose to
use the theorem prover PVS �ORSH��� SSJ��� �Prototype Veri�cation System� in order to
support the method� The explanation in this chapter is deliberately kept global�

For a detailed explanation� we refer to the case study in Chapter �� This chapter follows
the method� serving both as an illustration and as an assessment of the proposed method�
Details of PVS that are required to understand the speci�cation� are explained on the �y�
Sections ������� contain the full speci�cation
 section ��� is devoted to its analysis�

Chapter � contains two re�nements of the speci�cation given in Chapter �� The purpose
is ��� to illustrate some alternative formalizations of certain concepts
 and ��� to show how
a speci�cation can be re�ned� Both re�nements consist of a speci�cation and its analysis�

We evaluate our method and enumerate some possibilities for future work in Chapter ��
Finally� the appendices give full speci�cations and proofs� templates to use the method for
another application� and an overview of related literature�

�

Chapter �

Speci�cation and Analysis

Method

First� the underlying machine model is explained �section ����� From this a concrete speci��
cation format is derived �section ����� It is also explained how a speci�cation can be analyzed
�section ����� In section ��� we explain how PVS can be used for tool support�

��� Machine model

The interface between the system and its environment� is modeled by events� One may
distinguish input events �where the environment has the initiative� from output events �for
which the system is responsible�� Typical input events are sensor measurement reports and
operator commands� Typical output events are display commands and control signals to
actuators� The speci�cation has to de�ne the relationship between input and output events�

For most applications� a direct speci�cation of this relationship is not feasible� For this
reason the state is introduced as an auxiliary means to specify the relationship between
input and output events� On the basis of the input events� the system obtains information
on the current state of a�airs in the environment� This information is represented by the
state of the system� The state is used to decide which output events occur�

We take the following modeling assumption� Input events are atomic� so they occur in�
stantaneously� one at a time� An input event causes a state transition� which also takes place
instantaneously� A state transition may trigger �cause� output events� Similar assumptions
are made in Mealy	s �nite state machines� introduced in �Mea���� As a starting point� we
introduce these Mealy machines� and then we present our machine model as a modi�cation�
Recall �cf� �HU��� p� ���� that a Mealy FSM is a six�tuple �I� O� S� �� �� s��� where

� I is a �nite set of input symbols

� O is a �nite set of output symbols

� S is a �nite set of states

� � � S � I � S is a state transition function

� � � S � I � O is an output function

� s� � S is the initial state�

The machine starts in s�� If during execution� the machine is in some state s � S and it gets
input symbol i � I � then the next state will be ��s� i�� During the transition� the machine
emits output symbol ��s� i�� Note that the machine is always ready to accept any input� is
deterministic� and produces one output at a time�

Such machines stem from language theory� and it appears that all kinds of modi�cations
yield equivalent formalisms� such as associating output events with states rather than transi�
tions� allowing non�determinism� empty steps etc� However� although all these variations are
immaterial from a theoretical point of view� in practice these modi�cations matter� We now
modify the machine model above� in order to make it more useful as a model for software
speci�cations� Four modi�cations are needed� which are motivated below�

� The sets I � O and S may be in�nite

� The transition function � may be de�ned partially and�or non�deterministically�

� On each transition a set of output symbols is emitted� and the occurrence of these
output symbols depends on state transitions�

� A set of possible initial states is allowed�

These modi�cations are introduced for pragmatic reasons� Allowing an in�nite set of
states increases the expressive power of the model considerably� The state can be viewed as
an assignment of values to state variables
 this corresponds to what is known as extended
�nite state machines� Using in�nite sets of events allows events to carry data parameters�

A certain degree of implementation freedom should be allowed in requirements speci�
�cations� This avoids the speci�cation of containing irrelevant requirements and details�
Therefore� the state transition function may be non�deterministic� Design decisions can be
taken in the implementation� which decrease the level of non�determinism� For similar rea�
sons� it can be unnatural to require a unique initial state� It is also allowed that the system
is not ready for some input event at certain moments� We will come back to this later�

In command and control applications� output events are typically triggered by state
transitions� and not directly coupled to input events� As an example� consider the receipt
of some sensor measurement �input event�� which leads to updating the kinematics of the
corresponding system track �state transition�� It may turn out that by this change� the track
is now leaving the air lane which it was supposed to follow� Leaving the airlane �a state
change� should lead to an IFF �identi�cation friend or foe� interrogation �an output event��
Clearly� it is much more natural to couple the IFF interrogation to �leaving the airlane�
than to the �receipt of a sensor measurement��

To formalize these ideas� we could have � � S � I � ��S� and � � S � S � ��O��
However� we choose the following equivalent formulation� which is symmetric and turns out
to be more handy in actual speci�cations� The proposed machine model is a six tuple�
�I� O� S����� S��� where

� I is a �possibly in�nite� set of input events

� O is a �possibly in�nite� set of output events

� S is a �possibly in�nite� set of states

� � � I � ��S � S� is the state transition function

� � � O � ��S � S� is the output trigger function

� S� � S is a nonempty set of possible initial states�

�

This is to be interpreted as follows� Initially� the system is in some state s � S�� Assume
that during execution� the system is in some state s � S� and that input event i � I occurs�
The system then moves �non�deterministically� to some state t� such that �s� t� � ��i� �if it
exists�� During this transition� all output events o� for which �s� t� � ��o� are triggered� If
such a t cannot be found� the system is blocked �deadlock� which is an undesirable situation�
This gives an implicit precondition on the occurrence of input events�

Remark� This gives a precise mathematical model� The physical interpretation is not
completely clear yet� One extreme interpretation could be that all triggered output events
actually occur before the next input event occurs� This is quite unnatural� and even im�
possible �or unnecessarily hard� to implement in distributed systems� The other extreme
interpretation is that output events are merely caused by a state transition� and should
happen eventually� The latter interpretation is preferable� although it would probably be
useful to add time bounds to such a speci�cation�

This issue has a major impact on the notions �equivalence of machines�� and �simulations
between machines�� However� we feel that the outcome of current research on the design
trajectory is needed before these issues can be resolved� See also the discussion on future
work in Chapter ��

��� Concrete Speci�cations

����� Extensions to the machine model

For large�scale applications such as command and control systems� it is not feasible to specify
a system in terms of the above machine model directly� To this end� we propose a more
concrete speci�cation format� We �rst add some parts to the machine model� which are
super�uous from a theoretical point of view� but which greatly improve the conciseness�
abstractness and analyzability of a speci�cation� These ingredients are�

� Inv � ��S�� the invariant� containing integrity constraints on the state�

� Pre � I � ��S�� the precondition of the input events� representing the assumptions
on the environment�

The advantage of having invariants is� that we need not specify for each state transition
how a constraint is maintained� Instead� we can directly specify that a constraint should
always hold� In this way� the speci�cation tends to become less operational and more
declarative� Another advantage is that we cannot forget such constraints in one of the state
transitions� which can easily happen if we have to repeat it�

We mentioned earlier that � imposes an implicit precondition on the input events� These
preconditions can be seen as requirements that the environment of the system should meet
�as long as the environment meets these conditions� the system won	t block�� As we generally
cannot construct the environment� it is important to have an explicit statement of the
assumptions on the environment� In this way� the integration of a system in a certain
environment can be veri�ed to work�

Formally� the invariant and the precondition can be encoded in �� A transition from
state s to t by input event i can happen if and only if s � Pre�i� and �s� t� � ��i� and
t � Inv hold� Alternatively� the invariant could be seen as a restriction on S rather than on
��

�

����� Building blocks of a speci�cation

In the concrete speci�cation� eleven building blocks can be distinguished� Together� these
building blocks de�ne the ingredients introduced above� and can be mapped onto the abstract
machine model� In the following� we divide these blocks into sections� and give a natural
order to pass through the speci�cation process� Of course it is highly unlikely that each step
is always completed before proceeding with the next step� This ordering should be seen as
a rule of thumb� not as an obligation�

A� Static interface� We want to start with the interface� i�e� the input and output events�
because this de�nes the border of the system� which is one of the major tasks of a require�
ments speci�cation� Recall that events may carry data� The type of these data have to
be de�ned too� in the form of a number of �externally visible� basic entities� So the static
interface is de�ned by the following three blocks�

�� De�nition of basic entities

�� List of input events with data parameters �I�

�� List of output events with data parameters �O�

B� Information model� Next� we turn to the internal aspects of the system� starting
with the information that is maintained in the internal state� This state re�ects the system	s
knowledge on its environment� It is advisable to model this information in an implementation
independent way� The ideal situation would be that the information model could just be
derived from the application domain� The description of the internal state consists of�

�� List of state variables with types �S�

�� Speci�cation of integrity constraints �Inv�

� De�nition of allowed initial states �S��

C� Mapping input to output� Then� we couple input to output events� via the state�
For each input event� we have to specify the state transition caused by it� Similarly� for
each output event we specify by which state change it is triggered� The mappings from
input events to state transitions� and from output events to triggers then consist of a simple
enumeration�

�� Speci�cation of state transitions ��i�

�� Speci�cation of triggers ��o�

�� Mapping of input events to state transitions ���

��� Mapping of output events to triggers ���

D� Environment� Finally� the preconditions can be added� Although the precondition in
fact belongs to the system interface� we put it here because it can be derived from � and
Inv�

��� De�nition of assumptions on the environment �Pre�

�

��� Analysis

For the analysis� we distinguish between veri�cation and validation� By veri�cation� the
intrinsic quality of the speci�cation is addressed� Special attention is given to the veri�cation
that the various blocks �t together consistently� It cannot be veri�ed however� whether the
intended system has been speci�ed� This check is the purpose of validation� So validation
addresses the question whether the correct system is speci�ed� while veri�cation addresses
the question whether a system is speci�ed correctly� In fact� type correctness is a part of the
veri�cation� However� because of its importance we deal with it separately� So the analysis
process consists of the following activities�

� Parsing and type checking

� Veri�cation

� Existence of an initial state satisfying the invariant

� Totality of state transitions w�r�t� the preconditions

� Validation

� Inspection

� Formal challenges

We next discuss each of these activities in more detail�

����� Parsing and type checking

Parsing and type checking form the �rst sanity check of a speci�cation� Together� these
checks reveal a lot of errors� In a strongly typed language� most typos are detected by
parsing and type checking� and also a number of conceptual problems are detected by the
latter� In a logical language� type checking can also guarantee semantical completeness� for
instance totality of functions� exhaustiveness of case distinctions and tables etc�

Also� in most formal languages that are used in theorem provers� the addition of well
typed de�nitions is guaranteed to be a conservative extension� so if we refrain from using
axioms� type checking guarantees logical consistency�

����� Veri�cation

It is important to check that the set of possible initial states is non�empty� Recall that all
states have to satisfy the invariant� including the initial state� Note that this establishes
that the combination of all integrity constraints is consistent� since we found a model�

Proof obligation �� �s� s � S� � Inv

Next� recall that on occurrence of input event i in state s� the state changes to some t�
such that �s� t� � ��i� and t � Inv� The system is blocked if such a t doesn	t exist� So there
is an implicit precondition on the occurrence of i in state s� viz� �t� t � Inv � �s� t� � ��i��

This formula is quite complicated in practice� and it is also hard to grasp its meaning�
due to the existential quanti�er� Therefore� we have required the speci�cation of an explicit
precondition� Pre�i�� This precondition needs only be an approximation of the implicit
precondition� so it can be much simpler� In order to verify that the system speci�cation is

��

on the safe side� we have to prove that Pre�i� implies the existence of t above� so it is stronger
than the implicit precondition� Note that we can safely assume that s satis�es the invariant�
By proving this� we establish deadlock freedom in any environment that guarantees the
preconditions� Moreover� it shows that the state transitions and the invariants are consistent
�under assumption of the precondition�� because the existence of transitions that satisfy both
is proved� So we have�

Proof obligation �� 	i � I�	s � Inv � Pre�i�� �t � Inv� �s� t� � ��i�

Other general proof obligations for speci�cations can be stipulated here� Especially� we
don	t yet have an obligation to check that the speci�cation of the output events is reasonable�
As in �HL��� it could be required that the state transitions are deterministic� We think�
however� that this requirement is too strict in the setting of distributed systems�

����� Validation

One form of validation is inspection by domain experts� This requires that the speci�cation is
well documented� Another form that is only possible for formal speci�cations� is to challenge
the speci�cation by proving that it guarantees a number of expected properties� This really
is a form of testing the speci�cation�

Inspection

In order to enable inspection� the speci�cation should be accessible� This is achieved by
the building blocks� giving the speci�cations a fairly standard layout� But of course� formal
languages tend to be less readable than English prose� although � � �

Another way to support inspection is to use a literate speci�cation paradigm� Following
the literate programming tradition� this is a form in which formal parts and informal ex�
planation are intertwined� Special tools can extract the formal part� in order to formally
analyze it� or typeset the whole document� for inspection� In a previous report� we have
used noweb for this purpose �Ram���� Another advantage of such a tool is that the program
text in the source �les and in the documentation cannot diverge� Of course� the informal
and formal parts in the text should be kept consistent by hand�

The literate speci�cation approach supports validation by inspection in two ways�

� A domain expert can validate the informal parts� and glance at the formal part when�
ever ambiguities arise�

� A software expert can validate the formal parts� by comparing them with the informal
parts�

Putative theorems

A way of validation which is only possible for formal speci�cations is to challenge it by
putative theorems� These should be proved to hold for�follow from the speci�cation� The
idea is to check whether certain properties that intuitively are expected to follow are really
implied by the speci�cation� This can reveal numerous errors� The exact form of these
theorems is dependent of the system under speci�cation� so this is an ad hoc method�

In order to prove the putative theorems� we need proof principles� One of the most
powerful principles is induction over the reachable states of the system� A state is reachable�
if the system can reach it from the initial state by inputs satisfying the preconditions�
Formally� it is the smallest set R� satisfying�

��

� S� � Inv � R�

� If s � R� s � Pre�i�� t � Inv and �s� t� � ��i�� then t � R�

The induction principle connected with this inductive de�nition allows us to prove that
a certain property P holds for all reachable states� Basically� it reduces the task of proving
P for all reachable states� to the more feasible tasks of proving P for the initial states� and
proving that P is maintained by all possible transitions� Formally�
From

� 	s � S�� P �s�
 and

� 	s� t � S� i � I�
�
s � R � s � Pre�i� � t � Inv � �s� t� � ��i� � P �s�

�

 P �t��

we may derive 	r � R� P �r��

��� Tool support

We see tool support as an indispensable means to achieve practical applicability and scala�
bility of our requirements speci�cation approach� Theorem provers can be e�ectively used
in the analysis of a speci�cation� Numerous errors can be found by parsing and type check�
ing the speci�cation� and properties of the speci�cation can be checked by computer�aided
veri�cation of certain theorems�

����� PVS

In order to have tool support at this experimental stage of research� we use an existing
general�purpose theorem prover� We have implemented our ideas in PVS �Prototype Veri��
cation System� �ORSH��� SSJ���� PVS is a speci�cation language integrated with support
tools and a theorem prover� developed at SRI� Stanford�

The speci�cation language is strongly�typed higher�order logic� The speci�cation can
be distributed over a number of theories� which are parameterizable� and can import each
other� Each theory consists of a number of de�nitions� axioms� and theorems� These can
be made available in other theories� by the importing�mechanism� A theory can also make
assumptions on its parameters�

A speci�cation can be parsed automatically� and type checked� Type checking is to a
large extent automatic� but due to the rich type system certain checks are undecidable in
general� These cases lead to extra type check conditions �TCCs�� A theory can only be
regarded type correct� if these TCCs are proved�

The TCCs� together with the theorems declared in the speci�cation� can be proved using
the theorem prover� This is an interactive tool� because theorem proving in higher�order logic
is undecidable� So the user provides commands to apply the proof rules� via an EMACS�
interface� However� PVS supports a lot of automation to decrease the number of user
interactions� We like to mention here� term rewriting techniques� decision procedures for
linear arithmetic� model checking on �nite state systems� a BDD�based decision procedure
for propositional logic� and advanced heuristics to deal with quanti�ers�

Finally� PVS provides additional tools� for instance to generate status reports of the
theorems that still have to be proved� to edit and rerun proofs after small modi�cations of
the speci�cation� to pretty print theories and proofs and to visualize proofs and theory trees�

��

In principle there is no fundamental reason why PVS should be chosen� We have some
experience with Coq and Isabelle� and these tools can surely be used for the same purpose�
A number of advantages for PVS could be�

� It has been used for other industrial case studies �in fact it is developed in close
collaboration with NASA�

� It is relatively easy to learn� certainly in comparison with the other mentioned provers
�the main problem seems to be to learn EMACS� the editor used for user interaction��

� The speci�cations are quite readable� due to common notation from functional pro�
gramming� tabular notation and the possibility to use LATEX conversions�

� The language is expressive� due to higher�order logic� record types� subtypes� depen�
dent types and abstract datatypes�

� It has built�in natural and real numbers� and it is equipped with a library� containing
among others lists� sets� orderings� ordinals� in�nite sequences etc� with many useful
theorems�

� It has quite powerful automatic proof search facilities�

We think that the use of more automated theorem provers �such as resolution provers� like
OTTER� will not be successful� because automation is achieved at the cost of simplifying
the language �for instance to �rst�order� or even propositional logic�� Such languages are
not expressive enough for requirements speci�cations�

An advantage of Coq and Isabelle could be that they have true polymorphism� which can
be helpful in the meta theory of speci�cations� Moreover� if it comes to writing advanced
proof tactics� Isabelle might be preferable above PVS�

����� What is supported

PVS supports the proposed speci�cation method in the following ways�

� It provides the language for the speci�cation

� It is used for parsing and type checking the speci�cation� automatically generating
TCCs where needed

� It is used to automatically generate the veri�cation proof obligations of section �����

� It supports the interactive proof of the TCCs� the veri�cation proof obligations� and
the user provided formal challenges�

In our approach� a speci�cation consists of a number of parts� corresponding to the
blocks of section ���� These parts de�ne the components �I� O� S����� init� Inv� P re� for
the machine model� We then import a generic theory� which is �xed for all speci�cations �see
appendix A�� and section ������� This theory has the above mentioned parameters� and it
assumes that the veri�cation proof obligations hold� On importing this theory� we have
to prove that these assumptions hold for the actual parameters� viz� the I� O� � � � of the
speci�cation� This general theory also de�nes the reachability predicate� Meta theory on
speci�cations could be developed in this theory�

��

����� Requirements in PVS

Appendix A�� contains an extensive template� which can be used as a basis for writing
concrete speci�cations in PVS� It contains the various speci�cation blocks� and makes a
number of basic de�nitions� However� because the reader might not be familiar with PVS�
we don	t explain this template here� Instead� we provide a gentle introduction to PVS
by example� The next section contains a complete speci�cation in PVS� The speci�cation
language is explained on the �y�

��

Chapter �

Case study

To illustrate and evaluate our approach� we formally specify and analyze the requirements for
a subsystem of a realistic command and control system� The speci�cations in this report are
based on �PHJ���� which was in turn derived from the informal speci�cation of an existing
command and control system� We now adapt the requirements from that paper to track
fusion� instead of track joining� Another modi�cation is that we now add output events�

We �rst informally describe track fusion� Then we go into the speci�cation� Sections ����
��� correspond to the blocks of the speci�cation method� Section ��� describes the analysis
of this speci�cation� Each concept is �rst informally introduced� then the formalization in
PVS follows� Where needed� some remarks on the PVS language follow in italic font�

The speci�cation in this section is quite global� A number of requirements is missing� and
a number of details is missing� In section � we introduce two re�nements of the speci�cation�
the �rst ����� introduces more requirements on the operational behaviour of the system� and
the second re�nement ����� adds detail�

Track fusion

A track is a description of a real�world object� reporting on e�g� measured position� velocity�
identi�cation etc� Tracks occur on �at least� two levels�

� Sensor tracks� as reported by a sensor�

� System tracks� as generated by track fusion�

An object in the real world may be detected by various sensors� Since sensors are not
perfect� this results in slightly di�erent sensor tracks� In order to present a global and
coherent picture� sensor tracks should be fused into a single system track� if they represent
the same real�world object� One of the tasks of track management is to derive and maintain
the set of system tracks� Certain correlation criteria de�ne whether tracks are considered to
represent the same object� or not�

The various sensors can initiate new sensor tracks� and update or wipe existing sensor
tracks
 this is the input to the system� An abstract picture is compiled� containing the
current sets of sensor� and system tracks� their relationship� and the derived kinematic
information� The system has to report the derived system tracks to the operator� We
distinguish between the initiation� an update� or the deletion of a system track� The system
also has to generate a warning to the operator whenever a sensor track decorrelates from a
system track�

��

In the sequel� we formalize the relationship between sensor� and system tracks� and we
introduce the manipulations on them in a rather global way� The exact kinematic calcula�
tions will not be speci�ed� The formalization is along the lines of the method described in
section ���� but the emphasis of the �rst speci�cation lies on the information model�

��� Static interface

����� Types of basic entities

We start with declaring some basic types� of which it is decided that they need no further
formalization� Types Sensor track and System track can be seen as identi�ers for sensor
and system tracks� Their actual values is an implementation issue� The types that de�ne
the actual sensor and system track states are important for the speci�cation� but since we
don	t yet specify kinematic computations� these details are deferred to later re�nements�

Sensor�track�System�track� TYPE

Sensor�track�state� System�track�state� TYPE�

We use PVS uninterpreted type declarations� using the keyword TYPE or TYPE�� The latter
indicates that the type is non�empty� Uninterpreted types are guaranteed to be disjoint with
each other and with any other type� i�e� they don�t overlap�

����� Input events

We have three di�erent input events� new� update and wipe� with the purpose of initiating�
updating and deleting sensor tracks� To each event� certain data parameters are attached�
For instance� for wiping a sensor track we need to know which track is wiped� For the other
events we additionally need the current state of that track� The set of input events can be
de�ned as an abstract datatype� In this way we can have �nitely many event names� and
each event name is coupled to a �xed number of parameters� with a possibly in�nite range�

IEvents� DATATYPE

BEGIN

new�sn�Sensor�track�s�Sensor�track�state�� new�sens�

update�sn�Sensor�track�s�Sensor�track�state�� update�sens�

wipe�sn�Sensor�track�� wipe�sens�

END IEvents

We used a powerful PVS construct� abstract data types� distinguished by the keyword DATATYPE�
An abstract data type de�nition de�nes a new type �here IEvents	� disjoint with all other
types� together with constructors� destructors and recognizers� The constructors correspond
with the event names� here new� update and wipe� They exhaustively enumerate the elements
of the data type� Constructors can take arguments corresponding to the data parameters�
whose types are listed in an argument list� The names of the destructors are declared in
this argument list too� The destructors correspond to the argument names� They serve as
accessors to the arguments of the constructors� We typically have� sn�new�x�y��	x and
s�new�x�y��	y� Finally� we get recognizers� which are predicates to recognize the top sym�
bol of a term of the data type� These can be useful in tests� or in subtypes� Typically�
wipe sens��wipe�sn�� equals TRUE�

�

In PVS�
s��t denotes the type of functions with domain s and range t� bool is
the built�in type of boolean values� �new sens�� denotes the subtype corresponding to the
predicate new sens�� Subtypes are explained in more detail in section
�����

Armed with these types� we can indicate the types of the recognizers� constructors and
destructors�
new sens��
IEvents��bool
 new�
Sensor track�Sensor track state���new sens��

sn�
�wipe sens����Sensor track� In fact we use overloading� because we introduce three
di�erent functions sn�

����� Output events

The de�nition of the output events is similar� We introduce three di�erent output events�
new� update� and wipe� which correspond to the creation� update or deletion of system
tracks� The operator should be warned whenever a pair of sensor track and system track
decorrelates� which we model by the output event warn�

OEvents� DATATYPE

BEGIN

new�tn�System�track�t�System�track�state�� new�sys�

update�tn�System�track�t�System�track�state�� update�sys�

wipe�tn�System�track�� wipe�sys�

warn�sn�Sensor�track�� warn�sys�

END OEvents

��� Information model

����� State variables

We model the global state as a record with the following components� The set of sensor
tracks received until now
 the set of system tracks derived from these
 a relation indicating
which sensor tracks are currently joined to which system tracks
 and a function which returns
for each system track its state� Note that the state vectors of the sensor tracks are not kept
in the global state�

State� TYPE 	

� sensor�ids� setof
Sensor�track�

system�ids� setof
System�track�

system�info�
System�track��System�track�state�

joined� pred

Sensor�track�System�track

�

Here we have used the record construction �
� ����	� which denotes a tuple �or Cartesian
product	 with named �elds� Each �eld has its own type the order of the �elds is immaterial�
The �eld names can be used as accessors to the components of the records� Given X�State�
joined�X� for instance denotes the fourth component� We now explain the types of the
components�

The type
T��S denotes the type of total functions from T to S� Product types �pairs	
are denoted by
T�S� We have used the type constructors setof
T� denoting the type of
sets over T �powerset	� and pred
T� denoting the type of predicates over T� In fact� both are
just abbreviations of
T��bool� so sets and predicates are represented by their characteristic

��

functions� By de�nition� x is a member of S if and only if S�x� holds� Note that pred

T�S
denotes predicates over pairs� which can be identi�ed with binary relations� At this point we
pro�t from higher�order logic� where functions� and hence sets and predicates� are �rst class
citizens� so they can appear as components in record types�

Alternative

It would also be possible to see the sensor track identi�ers as a part of the sensor track
state� and similarly for system tracks� The joined relation could then be de�ned as a relation
between track states� and the function system info would be super�uous� Although this
simpli�es the structure of the global state� a complication would arise later� because after a
change in the kinematics of a sensor track state� the corresponding pair in the joined relation
has to be updated too� In the current de�nition the pairs in the joined relation are stable
under kinematic changes�

����� Invariants

By formulating a number of invariants� or integrity constraints� we can �x a number of
global properties of the system� without indicating how they should be maintained� In this
section� the relation between sensor and system tracks is established via constraints� In
particular� we require that the joined relation is a surjective� total function from the current
set of sensor tracks to the current set of system tracks� In this way� a system track can be
perceived as a group of one or more sensor tracks�

Variable declarations

In the sequel a number of variables is used� In order to avoid that we have to indicate the
type of these variables again and again� we can declare their types once and for all�

s�s�� VAR Sensor�track�state

sn�sn�� VAR Sensor�track

t� VAR System�track�state

tn�tn��tn�� VAR System�track

ie� VAR IEvents

oe� VAR OEvents

X�Y� VAR State

The keyword VAR marks these declarations as variable declarations� which should be dis�
tinguished from constant declarations� Variables have no global value� they only appear in
function de�nitions �as in f�x�y� 	 ���	 or as bound variables �as in FORALL x� ���	�
The type of x and y in these examples are derived from the variable declarations� A fre�
quently occurring error in PVS texts is to drop the keyword VAR� This would result in a
constant declaration�

Constraints

We now come to the de�nition of the invariant properties� The invariant is represented as
the conjunction of a number of constraints� A constraint is a property of the state� so it can
be de�ned as a function
State��bool� Here we de�ne the following constraints�

The joined�relation only contains tracks that actually are present in the current state�

��

constraint��X��bool 	 FORALL sn�tn �

joined�X��sn�tn� 	� sensor�ids�X��sn� � system�ids�X��tn�

This is a constant declaration� de�ning the constant �or function	 constraint� of type

State��bool� In higher�order logic� formulae are just data terms of type bool� Note that
joined�X� is a predicate� which can be applied to a pair �sn�tn�� yielding a boolean�

We can use the well�known connectives and quanti�ers of predicate logic� using the fol�
lowing symbols�

Symbol Meaning

TRUE truth
FALSE falsehood
NOT negation

� or AND conjunction
OR disjunction

	� or IMPLIES implication
FORALL universal quanti�cation
EXISTS existential quanti�cation
exists�� unique existence

We continue with the constraints� Each sensor track in the state is joined to precisely
one system track�

constraint��X��bool 	 FORALL sn�

sensor�ids�X��sn� 	� exists�� tn� joined�X��sn�tn�

To each system track in the state at least one sensor track is joined�

constraint��X��bool 	 FORALL tn�

system�ids�X��tn� 	� EXISTS sn� joined�X��sn�tn�

As mentioned before� the invariant is just the conjunction of all constraints�

Invariant�X��bool 	

constraint��X� � constraint��X� � constraint��X�

����� Initial states

We can now de�ne the set of allowed initial states of the system� In an initial state� the sets
of sensor tracks is empty� Note that the invariant then restricts the set of system tracks and
the join�relation �cf� exercise � on page ����

initial�X��bool 	 empty��sensor�ids�X��

empty� is de�ned in the prelude as a predicate on sets�
The �result� of the information model is a type State� with a predicate Invariant on

it and an element initial�State� In the analysis �section ���� we show that there exist at
least one initial state satisfying the invariant�

��

Alternative

Instead of having separate invariants� we could incorporate the invariant properties directly
into the state from Section ������ Using subtypes� we can view the result as the type
fX�State � Invariant�X�g� denoting the type of those states that satisfy the invariants�
This type can be abbreviated by �Invariant�� So the initial state could then be de�ned
as initial � �Invariant� 	 ���� This would of course generate a proof obligation� See
section ����� for more on subtypes�

��� Mapping input to output

Recall that both state transitions and triggers� are represented as binary relations R�s� t��
where s denotes the state before the change� and t the state after�

����� State transitions

For each type of input event� we next de�ne the corresponding state transition� When
a new sensor track is reported� it might be joined to an existing system track� provided
certain correlation criteria are met� Conversely� it might be that� after receiving a sensor
track update� the sensor track and the system track to which it was joined decorrelate�
This is decided by a set of decorrelation criteria� In order to obtain a stable system� the
decorrelation criteria are usually not exactly the negation of the correlation criteria�

In order to avoid detailed calculations at this level of the speci�cation� we introduce
the correlation and decorrelation criteria as uninterpreted relations between a sensor and a
system track state� However� to avoid arbitrary interpretations of these relations� we add
some restrictions on them� It should be possible to initiate some system track on a sensor
track� and the correlation and decorrelation criteria should be exclusive�

correlates�s�t��bool

decorrelates�s�t��bool

corex � AXIOM EXISTS t � correlates�s�t�

cordecor� AXIOM NOT �correlates�s�t� � decorrelates�s�t��

We used AXIOMs� in order to formalize the assumptions on the correlation and decorrelation
criteria� An axiom is regarded true by PVS without any proof obligation� The axioms above
contain free variables� PVS takes the universal closure of the axioms� so the �rst axiom
really means FORALL s � ��� and the second axiom means FORALL s�t � ����

There is an important distinction between axiom declarations� and constant declarations
of type bool� The latter merely de�ne certain formulae� while axiom declarations additionally
assert that these formulae should be considered true�

It is quite dangerous to add axioms to a speci�cation� because they may introduce logical
inconsistencies into the speci�cation� Restricting to de�nitions only� guarantees logical con�
sistency of a speci�cation �provided PVS is consistent�� If the added axioms are inconsistent
any proofs that are carried out are worthless� In section ��� we will explain how axioms can
be avoided altogether�

We are now in a position to de�ne the state transitions for the input events� When a
new sensor track is initiated� we require that the track is added to the current set of sensor
tracks� and that it correlates to the system track to which it is joined�

��

new�sensor�track�sn�s��X�Y��bool 	

sensor�ids�Y� 	 add�sn�sensor�ids�X��

� FORALL tn� joined�Y��sn�tn�

	� correlates�s�system�info�Y��tn��

Note that exactly one system track is joined to sn by the invariant property of Section ������
By using FORALL we need not know which system track this is� We use the function add�x�S�

from the prelude� which adds an element x to a set S�
When a sensor track is wiped� we require that it is removed from the current set of sensor

tracks� Furthermore� we require that the set of system tracks and the joined relation can
only shrink�

wipe�sensor�track�sn��X�Y��bool 	

sensor�ids�Y� 	 remove�sn�sensor�ids�X��

� subset��system�ids�Y��system�ids�X��

� subset��joined�Y��joined�X��

We use subset��S�T� from the prelude� which denotes that S is a subset of T� The function
remove�x�S� denotes the set S n fxg�

Finally� when a sensor track is updated� the set of sensor tracks remains unchanged� We
furthermore require that in the new state� the sensor track and the system track to which
it is joined don	t decorrelate�

update�sensor�track�sn�s��X�Y��bool 	

sensor�ids�Y� 	 sensor�ids�X�

� FORALL tn� decorrelates�s�system�info�Y��tn��

	� NOT joined�Y��sn�tn�

����� Triggers for output events

We next de�ne the state changes that triggers the output events� Given the states �X�Y�

before and after a state transition� a system track is

� apparently new if it occurs in Y but not in X�

� updated if the corresponding track state in X and Y are di�erent�

� wiped if it occurs in X but not in Y�

Finally� we detect a decorrelation of sn if it is joined to di�erent system tracks in X and Y�
We de�ne four triggers accordingly�

��

new�system�trigger�tn�t��X�Y��bool

	 system�ids�Y��tn�

� NOT system�ids�X��tn�

� t	system�info�Y��tn�

update�system�trigger�tn�t��X�Y��bool

	 system�ids�X��tn�

� system�ids�Y��tn�

� system�info�X��tn� �	 system�info�Y��tn�

� t 	 system�info�Y��tn�

wipe�system�trigger�tn��X�Y��bool

	 system�ids�X��tn�

� NOT system�ids�Y��tn�

detect�decorrelation�sn��X�Y��bool 	

EXISTS tn��tn� �

joined�X��sn�tn��

� joined�Y��sn�tn��

� tn� �	 tn�

The in�x symbol �	 denotes inequality�

����� Mapping of input events to state transitions

The e�ect of an input event is given by the following table� translating each event to a
�non�deterministic� state transition� de�ned before�

Input�table�ie��
State�State��bool 	

CASES ie OF

new�sn�s� � new�sensor�track�sn�s��

update�sn�s�� update�sensor�track�sn�s��

wipe�sn� � wipe�sensor�track�sn�

ENDCASES

We use the CASES construction� which denotes pattern matching on a term of an abstract
data type �here ie	� The cases should be exhaustive� or a �nal ELSE clause is obliged� A
pattern may contain variables� which are local to a line� This construction is very convenient
to map events with data to parameterized state transitions�

����� Mapping of state transitions to output events

For each output event� we introduce a corresponding state change that triggers that event�
by the following mapping�

��

Output�table�oe��
State�State��bool 	

CASES oe OF

new�tn�t� � new�system�trigger�tn�t��

update�tn�t�� update�system�trigger�tn�t��

wipe�tn� � wipe�system�trigger�tn��

warn�sn� � detect�decorrelation�sn�

ENDCASES

��� Assumptions on the environment

The speci�cation is completed by making the assumptions on the system interface explicit�
In our example� this is quite easy� It amounts to the following conditions�

� Only existing sensor tracks can be updated and wiped

� Only fresh sensor tracks can be initiated
 and

� There always exist fresh system track identi�ers �this is only needed for new and update

events��

It is clear that these are reasonable assumptions� The �rst and second assumptions are
satis�ed by any sensible sensor� The third condition requires that the set of identi�ers used
in the implementation is large enough for the number of tracks the system should be able
to handle �actually� this isn	t a condition on the environment� of course�� The preconditions
are de�ned as a mapping on input events�

Precondition�ie��X��bool 	

CASES ie OF

new�sn�s� � �NOT sensor�ids�X��sn��

� �EXISTS tn� NOT system�ids�X��tn���

update�sn�s� � sensor�ids�X��sn�

� �EXISTS tn� NOT system�ids�X��tn���

wipe�sn� � sensor�ids�X��sn�

ENDCASES

��� Analysis

We now proceed with the veri�cation of the proof obligations� In order to proceed with
the veri�cation� we have to import the generic PVS theory� which represents the machine
model� and generates the proof obligations� In the next section� we describe this generic
theory� and in section ����� we report on the veri�cation of the automatically generated
proof obligations�

����� Importing the machine model

In our approach� the abstract machine model �section ���� consists of a number of compo�
nents� viz� �I� O� S����� init� Inv� P re�� The concrete speci�cation consists of a number of
blocks� de�ning such components� In the previous sections� we have de�ned�

� IEvents

��

� OEvents

� State

� Input table

� Output table

� initial

� Invariant

� Precondition

We now import a generic theory �machine�� which is �xed for all speci�cations� This
theory has the following parameters� I� O� S� Imap� Omap� init� Inv and Pre� corresponding
to the components mentioned above� As assumptions� it contains the veri�cation proof obli�
gations of section ������ On importing this theory� we have to prove that these assumptions
hold for the actual parameters� viz� the IEvents� OEvents�� � � of the concrete speci�cation�
The general theory also de�nes the reachability predicate� Finally� it proves that the invari�
ant holds for all reachable states� The general theory reads as follows�

machine
 I�O�S� TYPE�

Imap�
I �� pred

S�S�

Omap�
O �� pred

S�S�

init� pred
S�

inv� pred
S�

pre�
I��pred
S

� THEORY

BEGIN

ASSUMING

i� VAR I

x�y� VAR S

init� ASSUMPTION EXISTS x� init�x� � inv�x�

no�deadlock� ASSUMPTION

pre�i��x� � inv�x� 	� EXISTS y� inv�y� � Imap�i��x�y�

ENDASSUMING

Reachable�x��INDUCTIVE bool 	

init�x� � inv�x�

OR EXISTS y�i � Reachable�y� � pre�i��y� � inv�x� � Imap�i��y�x�

Invariant�holds� LEMMA FORALL x� Reachable�x� 	� inv�x�

END machine

A theory starts with a name� followed by a number of parameters �types or constants	�
then the keyword THEORY� The speci�cation itself is between BEGIN and END name� The

��

parameters may be dependently typed �the types I� O and S are used in the other parameters	�
A theory can be imported by another theory� which can provide actual types and values for
the parameters�

ASSUMPTIONs go into the ASSUMING section� When the theory is imported with actual
parameters� a proof obligation is generated for the importing theory� that the assumptions
hold on the instance �see section �����	� In the imported theory� the assumptions can be used
just as if they were AXIOMs�

We also use an INDUCTIVE de�nition� This means that we may use the function being
de�ned� i�e� Reachable� in the right hand side of the de�nition� Thus the set of reachable
states is de�ned as the smallest set of states containing the initial state� and closed under
transitions caused by input events that satisfy the precondition�

Such inductive de�nitions automatically generate a powerful induction scheme� which
reduces the task to prove P for all reachable states� to the task of proving P for the initial
state� and proving that for each possible input event� P is maintained by the corresponding
state transition�

����� Checking the veri�cation proof obligations

We can now proceed with importing the theory of the previous section�

IMPORTING machine
IEvents�OEvents�State�

Input�table�Output�table�

initial�Invariant�Precondition

This will� on type checking� automatically generate two proof obligations� The �rst one
is to check that the initial state satis�es the invariants� It reads as follows�

IMPORTING��TCC�� OBLIGATION EXISTS x� initial�x� � Invariant�x�

In the interactive prover� this lemma can be proved by �rst instantiating x to the state
below� where all sets are empty� Then the single PVS command �GRIND� �nishes the proof
by automatically verifying that all constraints are satis�ed� The complete proof can be
found in Appendix D��

�� sensor�ids �	 emptyset�

system�ids �	 emptyset�

joined �	 emptyset�

system�info �	 LAMBDA tn � epsilon� t � TRUE

��

Elements of record types can be constructed with �� ��� ��� with assignments to all record
labels� An alternative way of de�ning a record is by modifying an existing one� we could
e�g� write X WITH
sensor ids �	 S� In the new record� the omitted �elds are taken from
X� and the sensor ids �eld is set to S�

In order to �nd an arbitrary track state� we used epsilon�� Hilbert�s choice operator�
epsilon� �x�T�� P denotes an arbitrary element x from T� for which P�x� holds� This
is type correct for nonempty types� We used TYPE�� so the set of system track states is
nonempty�

The second proof obligation is displayed below� It states roughly speaking that transi�
tions are possible� whenever the environment guarantees the preconditions� We need some
auxiliary lemmas� viz� that for each individual input event a transition is possible� We give

��

an indication of the main steps in the proofs� Full proofs can be found in appendix D���
Note that it is not needed to type the full proof at once
 a proof is constructed interactively
with PVS� The process of �nding a proof is beyond the scope of this report� �In fact the
auxiliary lemmas go above the IMPORTING clause in the actual PVS �le��

new�next� LEMMA

Invariant�X� � Precondition�new�sn�s���X�

	� EXISTS Y� Invariant�Y� � new�sensor�track�sn�s��X�Y�

A LEMMA declaration can be compared to an AXIOM declaration� The only di�erence is that a
lemma requires a proof� �Axioms don�t appear in the proof status reports generated by PVS�
see appendix C�	 As with axioms� PVS takes the universal closure of each lemma� in this
case FORALL X�sn�s�

Here is an outline of the proof� By the axiom corex ������� there exists a system track
state t� such that s and t correlate� By the precondition there exists a fresh system track
identi�er tn� Then we can instantiate Y with the following term�

�� sensor�ids �	 add�sn�sensor�ids�X���

system�ids �	 add�tn�system�ids�X���

joined �	 add��sn�tn��joined�X���

system�info �	 system�info�X� WITH
tn�	 t ��

It remains to verify that the invariant and the new sensor track relation hold� This can
be done nearly automatically� using a number of variants of �GRIND��

Next we consider the wipe event�

wipe�next� LEMMA

Invariant�X� � Precondition�wipe�sn���X�

	� EXISTS Y� Invariant�Y� � wipe�sensor�track�sn��X�Y�

The proof runs as follows� Let tn be the system track joined to sn in X� Then Y can be
found by removing sn from sensor ids�X� and the pair �sn�tn� from joined�X�� In order
to satisfy constraint�� we also have to remove tn� in case sn is the only sensor track joined
to the tactical track tn�

Next we check the update event�

update�next� LEMMA

Invariant�X� � Precondition�update�sn�s���X�

	� EXISTS Y� Invariant�Y� � update�sensor�track�sn�s��X�Y�

This can be proved very simply� by applying lemma wipe next we obtain Z� satisfying the
invariant� where sn has been removed� By lemma new next we obtain Y� again satisfying
the invariant� and incorporating the pair �sn�s�� In proving all the side conditions �which
PVS forces you to do quite painfully�� we need axiom cordecor ��������

All these pieces can be glued together to prove the second veri�cation proof obligation�
which expresses deadlock freedom in any environment satisfying the precondition� The
proof proceeds by case distinction over the possible input events� each case using one of the
previous lemmata�

�

IMPORTING��TCC�� OBLIGATION

�FORALL �i� IEvents� x� State��

Precondition�i��x� � Invariant�x�

	� �EXISTS �y� State�� Invariant�y� � Input�table�i��x� y����

Having this� we can request an automatically generated status report from PVS� in order
to check that all proofs have been carried out� The result can be found in appendix C� which
contains the proof summary for theory spec��

Remarks

The proofs in this section were non�trivial� because we had to construct the next state Y�
satisfying all requirements� However� the actual construction of the next state is the main
concern that must be addressed during the implementation of the system� Moreover� in view
of the re�nements of Chapter �� the proof obligations seem super�uous� the �nal correct
implementation is the ultimate proof that the requirements are consistent�

However� notice that we want to establish consistency before addressing an implemen�
tation� The construction used in the proof might be much simpler� as we only have to
prove existence of some next state� while the designer also has to take issues of e�ciency
and resources into account� Actually� in our previous proof� an update is �implemented�
by a wipe followed by an initiate� which is much simpler than the algorithm used in actual
implementations�

����� Validation

Validation by means of formal challenges is deferred to the re�ned speci�cation in sec�
tion ������ where more requirements are present� To give an indication of what could be
proved in this abstract speci�cation� consider the following exercises�

Exercise �� �beginner� Prove that the invariant forces that in the initial states also the
set of system tracks is empty�

Exercise �� �experienced� Prove that for all reachable states� the set of sensor tracks is
�nite�

Exercise �� �expert� Prove that for all reachable states� the set of system tracks is �nite�

��

Chapter �

Re�nements

This chapter introduces two re�nements of the top level speci�cation developed in the pre�
vious chapter� The �rst re�nement adds more requirements to the state transitions
 the
e�ect is that the speci�cation becomes more operational� The second re�nement adds the
detailed computations on the track states� so the speci�cation becomes more detailed�

The re�nement relation between the top speci�cation and the �rst re�nement is rather
informal� although we think that the relation could be formalized� The relation involves a
more structured data speci�cation� and it reduces non�determinism�

In order to show that the second re�nement formally re�nes the �rst� we parameterize
the �rst re�nement� The parameters are instantiated by the second re�nement� So the
notion of re�nement is a logical one� All models permitted by the second re�nement� are a
model of the �rst re�nement�

��� First re�nement� operational requirements

We refer to the speci�cation of Chapter � as the top speci�cation� The �rst re�nement
incorporates three major changes compared to the top speci�cation�

� Operational requirements are added�

� The invariant is converted into subtypes�

� The speci�cation is parameterized�

The top speci�cation was rather global� We left out the kinematic computations� and
the connection between sensor and system tracks was speci�ed in a number of invariants�
However� the speci�cation allows a number of unintended implementations� So the main
purpose of this �rst re�nement is to add extra requirements�

The top speci�cation allows for instance that each system track is joined to only one
sensor track
 so the sensor tracks are never really joined� The top speci�cation also allows
that the join relation is completely changed after each new and update event� which would
result in a very unstable picture for the operator�

These problems are removed in the �rst re�nement� by stating more exactly how the next
state is computed from the previous one� So we add requirements to the state transitions
�section ������� stating how sensor tracks shall be joined to system tracks� and how the
system track state shall be updated� As a side e�ect� certain properties are automatically

��

induced by the strengthened state transitions� and need not be required as an invariant�
Another e�ect is that the speci�cation becomes more operational�

We also shift some constraints from the invariant to the types of the variables� This also
makes the speci�cation more operational� because assertions �constraints� are converted into
structural properties of the model �construction�� This is explained in section �����

Finally� the top speci�cation contained a number of uninterpreted type parameters and
constants� and axioms to restrict their interpretations� We now use the parameter mecha�
nism and assumptions on the parameters� thus avoiding axioms� and making formal re�ne�
ments possible �section �������

����� Parameterizing the speci�cation

In the top speci�cation� some types and constants have not been de�ned� They were left
uninterpreted� thus allowing some degree of freedom in the implementation� In order to
be able to re�ne the speci�cation� we now actually specify these uninterpreted symbols
as parameters of the theory� In fact� what we get is a set of speci�cations� one for each
value of the parameters� A logical re�nement can be seen as a partial instantiation of these
parameters� thus decreasing the set of possible speci�cations� In PVS this corresponds to
importing the theory with actual parameters�

The set of identi�ers for sensor and system tracks� and the actual contents of their states
are type parameters� The correlation and decorrelation criteria are constant parameters�
We also introduce the parameters initiate� which starts a system track on a given sensor
track� and update� which updates a system track with a given sensor track�

spec�

 Sensor�track� Sensor�track�state�

System�track� System�track�state� TYPE��

correlates� decorrelates�
Sensor�track�state�System�track�state��bool�

initiate�
Sensor�track�state��System�track�state�

update�
Sensor�track�state�System�track�state��System�track�state

� THEORY

BEGIN

���

END spec�

We need some assumptions on these parameters� which correspond with the axioms
of section ������ The correlation and decorrelation criteria should be exclusive �cf� axiom
cordecor�� a sensor track and the system track initiated on it should correlate �this replaces
axiom corex�� and the decorrelation test on an updated system track should not fail� unless
it failed already before the update� In section ����� this theory is imported by the second
re�nement� and the assumptions have to be shown for the actual parameters�

��

ASSUMING

s� VAR Sensor�track�state

t� VAR System�track�state

cordecor� ASSUMPTION NOT �correlates�s�t� � decorrelates�s�t��

corin� ASSUMPTION correlates�s�initiate�s��

decorup� ASSUMPTION decorrelates�s�update�s�t�� 	� decorrelates�s�t�

ENDASSUMING

The set of input and output events is unchanged� Therefore we now proceed with the
information model� The reader is referred to Section B�� for the complete speci�cation�

����� Information model� subtypes vs� invariants

We have made a distinction between the structure of a state� de�ned as a record with a
number of typed �elds� and the invariant properties of a state� consisting of a conjunction
of predicates on this record� However� due to the expressiveness of PVS as it comes to type
de�nitions� this border is not clear� In principle� every speci�cation can do without separate
invariants� This strength is due to the combination of subtyping and dependent typing in
PVS�

In section ���� system info is de�ned as a total function with domain System track�
However� using subtypes we can restrict its domain to the system tracks actually in system ids�

In section ������ the joined relation is restricted to pairs in the current sensor and system
track sets by constraint�� Moreover� constraint� requires the joined relation to be func�
tional and total� We can avoid these constraints by giving joined a function type� instead
of a relation type� We then get the following state de�nition�

State� TYPE 	

� sensor�ids� setof
Sensor�track�

system�ids� setof
System�track�

system�info�
�system�ids���System�track�state�

joined�
�sensor�ids����system�ids�

�

Consider a set X�setof
t� Recall that in PVS this is equivalent to X�
t��bool� We can
now form a subtype of type t� fx�t � X�t�g �set comprehension	� consisting of precisely
those elements of type t that are in X� This type can be abbreviated as �X��

The example uses subtypes� but also dependent typing� because the type of the third �eld
depends on the value of the �rst two �elds� In this case� the domain of system info is
restricted to the sensor tracks actually in sensor ids� the only tracks of which the state
vector is known to the system� This re�ned de�nition is much more precise than the original
one in Section ������

We now declare a number of variables�

��

tn� VAR System�track

sn� VAR Sensor�track

X�Y� VAR State

ie� IEvents

oe� OEvents

We don	t have constraints in the re�ned speci�cation� As explained before� constraint�
and constraint� are super�uous� The de�nition of the state transitions �section ������
subsume constraint�� These statements are formally proved in section ���� So we have
the empty invariant�

Invariant�X��bool 	 TRUE

The initial state can be de�ned straightforwardly� The sets of sensor and system tracks
are de�ned to be empty� Note that both functions in the state are determined by the fact
that their domain is empty�

initial�X��bool 	 empty��sensor�ids�X�� � empty��system�ids�X��

Intermezzo subtypes and TCCs

The introduction of subtypes above has some implications� Each time a term of a subtype
is used� it must be checked that the subtype restrictions indeed hold� As this may be
undecidable� the PVS type checker generates the corresponding subtype TCCs �type check
correctness conditions�� These TCCs have to be proved interactively using the PVS proof
checker� A theory is only regarded type correct if all generated TCCs have been proved�

As an example� consider the following constraint� which is constraint� adapted to the
new type State� We don	t put boxes around this PVS text� because it doesn	t belong to
the speci�cation
 it is only there for expository purposes�

constraint����X��bool 	 FORALL tn�

system�ids�X��tn� 	� EXISTS sn� tn 	 joined�X��sn�

This appears to be not type correct This is because the joined function is applied to
an arbitrary sensor track� and it is de�ned only for sensor tracks in sensor ids� This can
be repaired as follows�

constraint��X��bool 	 FORALL tn� system�ids�X��tn� 	�

EXISTS sn� sensor�ids�X��sn� � tn 	 joined�X��sn�

Although these extra checks and conditions seem a nuisance� it helps in �nding errors
in the speci�cation� Consider the following unintended alternative formulation of the third
constraint�

Problematic�constraint��X��bool 	

FORALL tn� EXISTS sn� joined�X��sn�tn�

This is unintended� because it requires that any conceivable system track �not only those
known to the system� is joined to some sensor track� This error would go undetected without
subtyping� but in the context of the state de�nition above� this would result in an unprovable
TCC� This error would also have been detected using the method of section ������

Summarizing� subtypes can be used to shift requirements from the invariants to the types
of the state variables� The result is the generation of more TCCs� This yields more work�
but it may reveal some errors�

��

����� Re�ning state transitions

A naive implementation of new sensor track in section ����� can easily decide always to
create a new system track� This is ruled out in the current re�nement� by requiring that
creating a new system track is only allowed if all correlation tests with existing system tracks
fail� Note that this requires �optimal performance� of the system� whereas the original
speci�cation would allow a certain degree of degradation� Similarly� we require that when
updating a sensor track� disjoining is only possible if there is a decorrelation� Furthermore�
tracks not involved in the operation shall remain unchanged�

Sensor track initiation� Hence we introduce a predicate no correlation� which states
that there is no correlation between a given sensor track and any of the current system
tracks�

no�correlation�s�X��bool 	

FORALL tn� system�ids�X��tn�

	� NOT correlates�s�system�info�X��tn��

The type of s was declared in the ASSUMING section on page ���
If a new sensor track is received� a new system track is initiated� unless it is possible

to join the new sensor track to an existing system track� To this end� two auxiliary state
transitions are introduced� new system track and correlate to system track�

Let a new sensor track sn with state s be given� Assume that it correlates with some
system track tn� Then sn should be added to the set of sensor tracks� the pair �sn�tn�

should be added to the join relation� while the set of system tracks remains unchanged�
The system track state is to be recomputed with the auxiliary function update� which was
declared before� It might also be the case that more than one system track correlates with
sn� in which case the result is not completely determined�

Note that correlate to system track is not applicable if there is no system track with
which sn correlates�

correlate�to�system�track�sn�s��X�Y��bool 	

EXISTS tn�

system�ids�X��tn�

� correlates�s�system�info�X��tn��

� Y 	 X WITH

sensor�ids �	 add�sn�sensor�ids�X���

joined �	 joined�X� WITH
sn�	tn�

system�info �	 system�info�X�

WITH
tn�	update�s�system�info�X��tn��

We use the WITH construction on records� to obtain Y from X� Note that the set system ids

is not changed� The WITH construction can also be used on functions� The function f WITH

x �	 n denotes the function that equals f on all arguments apart from x� where it returns
n� This construct is used to change the joined and system info function�

The alternative transition� which creates a new system track� is de�ned below� This is
again non�deterministic� because any identi�er tn is allowed� as long as it is a fresh identi�er�
The auxiliary function initiate is used to compute the initial system track state�

��

new�system�track�sn�s��X�Y��bool 	

no�correlation�s�X�

� EXISTS tn�

�NOT system�ids�X��tn��

� Y 	

�� sensor�ids �	 add�sn�sensor�ids�X���

system�ids �	 add�tn�system�ids�X���

joined �	 joined�X� WITH
sn�	tn�

system�info �	 system�info�X� WITH
tn �	 initiate�s� ��

Finally� the new sensor track�transition of section ����� can be re�ned as follows�

new�sensor�track�sn�s��X�Y��bool 	

new�system�track�sn�s��X�Y�

OR correlate�to�system�track�sn�s��X�Y�

Sensor track deletion� Wiping a sensor track involves deleting it from sensor ids� The
joined relation has to be restricted accordingly� If the corresponding system track was
joined to the wiped sensor track only� it will become unsupported by any measurement� and
it should be removed� To this end� we use the auxiliary function filter� which removes
unrelated system tracks�

filter�X��State 	

X WITH

system�ids �	 �tn � system�ids�X��tn�

� EXISTS sn� sensor�ids�X��sn� � tn	joined�X��sn���

system�info �	 restrict�system�info�X��

The notation fx � Sg is not only used for subtyping� but also to de�ne a subset by set
comprehension� We use the function restrict from the library� which restricts a function
to a smaller domain� The actual domain is derived by PVS from the context�

wipe�sensor�track�sn��X�Y��bool 	

sensor�ids�X��sn�

� Y 	 filter�X WITH

sensor�ids �	 remove�sn�sensor�ids�X���

joined �	 restrict�joined�X���

Sensor track updates� When a sensor track update is received� the state of the assigned
system track shall be updated accordingly unless the decorrelation test succeeds� In the
latter case� the sensor track shall be assigned to another system track �existing or newly
created�� To this end we can use new sensor track� The original system track may become
unrelated� so we filter the intermediate result�

��

update�sensor�track�sn�s��X�Y��bool 	

sensor�ids�X��sn�

� LET tn 	 joined�X��sn�� t 	 system�info�X��tn� IN

IF decorrelates�s�t�

THEN EXISTS �Z�State�� new�sensor�track�sn�s��X�Z� � Y	filter�Z�

ELSE Y 	 X WITH

system�info�	 system�info�X� WITH
tn �	 update�s�t�

ENDIF

We use the LET � � � IN � � � construction as an abbreviation mechanism� We also use the
IF ���THEN ���ELSE ���ENDIF construction of PVS� Note that the intermediate result Z is
only for internal use� so it is encapsulated with existential quanti�cation�

����� Triggers

The triggers remain nearly unchanged w�r�t� the top speci�cation �section ������� Only
the references to joined in detect decorrelation have to be modi�ed� We refer to ap�
pendix B�� for the complete speci�cation� Here we only incorporate the new de�nition of
detect decorrelation�

detect�decorrelation�sn��X�Y��bool 	

sensor�ids�X��sn� � sensor�ids�Y��sn�

� joined�X��sn� �	 joined�Y��sn�

This concludes the speci�cation of the �rst re�nement� The input and output tables� as
well as the preconditions� remain unchanged� The reader is referred to section B�� for the
complete speci�cation�

��� Analysis of �rst re�nement

����� Parsing and type checking

Due to the subtyping� PVS generates a number of proof obligations� called TCCs� These
have to be proved using the PVS prover� because in general TCCs are not decidable� Only
after these proofs are completed� the speci�cation can be regarded as type correct� In this
case� PVS generates eight type check conditions �besides the veri�cation proof obligations��
which PVS is able to prove automatically� One of these obligations is�

correlate�to�system�track�TCC�� OBLIGATION

�FORALL �X� State� s� Sensor�track�state� sn� Sensor�track� tn��

system�ids�X��tn� AND correlates�s� system�info�X��tn��

IMPLIES add�sn� sensor�ids�X���sn���

This rather trivial TCC is generated because in correlate to system track� we add
sn to the domain of joined� By the type of joined� sn should be in the new sensor ids�
Note that the typing rules are context dependent� so in the proof we may use for instance
that tn is a known system track� In this case� the context is not needed� however�

��

����� Veri�cation of preconditions

Next� analogously to section ������ we prove for the individual state transitions� that if their
precondition holds then there exists a successor state� These lemmas are a preparation for
the veri�cation proof obligation� The proofs are similar to those of the previous section �in
fact �nding the next state is more straightforward� due to the operational description��

e�� LEMMA system�ids�X��tn� � correlates�s�system�info�X��tn�� 	�

EXISTS Y� correlate�to�system�track�sn�s��X�Y�

e�� LEMMA no�correlation�s�X� � �EXISTS tn� NOT system�ids�X��tn��

	� EXISTS Y� new�system�track�sn�s��X�Y�

e�� LEMMA �EXISTS tn� NOT system�ids�X��tn��	�

EXISTS Y� new�sensor�track�sn�s��X�Y�

e�� LEMMA sensor�ids�X��sn� � �EXISTS tn� NOT system�ids�X��tn��

	� EXISTS Y� update�sensor�track�sn�s��X�Y�

e�� LEMMA sensor�ids�X��sn�

	� EXISTS Y� wipe�sensor�track�sn��X�Y�

Next we import the generic machine model �the same as before�� which automatically
generates the veri�cation proof obligations�

IMPORTING machine
IEvents�OEvents�State�

Input�table�Output�table�

initial�Invariant�Precondition

This generates the veri�cation proof obligations� The �rst of them is proved by providing
a possible initial state� The other one is more complicated and is displayed below� The proof
is by induction over the set of input actions and uses the lemmas e��e� for the subcases�

IMPORTING��TCC�� OBLIGATION

�FORALL �i� IEvents� x� State��

Precondition�i��x� � TRUE

	� �EXISTS �y� State�� TRUE � Input�table�i��x� y����

����� Validation by formal challenges

We now prove some extra theorems� which we expect to hold� Most of these theorems are
inspired by the top level speci�cation in Chapter �� so they give some con�dence in the fact
that this really is a re�nement�

Proving invariants

We suggested that by adding subtypes to the state de�nition� constraint� and constraint�

would become implicit by the speci�cation� Let us check whether this is indeed the case�

��

constraint�� LEMMA

sensor�ids�X��sn� � tn 	 joined�X��sn� 	� system�ids�X��tn�

constraint�� LEMMA

sensor�ids�X��sn� 	� exists�� tn� tn 	 joined�X��sn�

Both can be proved with a single GRIND command� This is not surprising in view of the type
of the joined function�

Proving new invariants

Note that constraint� cannot be proved as easily as constraint� and constraint�� be�
cause it doesn	t follow from the information model� But all state transitions are de�ned
in such a way that constraint� holds for all reachable states� Let us �rst �re�de�ne
constraint��

constraint��X��bool 	 FORALL tn�

system�ids�X��tn� 	�

EXISTS sn� sensor�ids�X��sn� � tn 	 joined�X��sn�

Next� we prove that each state transition maintains constraint��

l�� LEMMA constraint��X� � new�system�track�sn�s��X�Y�

� �NOT sensor�ids�X��sn�� 	� constraint��Y�

l�� LEMMA constraint��X� � correlate�to�system�track�sn�s��X�Y�

� �NOT sensor�ids�X��sn�� 	� constraint��Y�

l�� LEMMA constraint��filter�X��

l�� LEMMA constraint��X� � new�sensor�track�sn�s��X�Y�

� �NOT sensor�ids�X��sn�� 	� constraint��Y�

l�� LEMMA constraint��X� � update�sensor�track�sn�s��X�Y�

	� constraint��Y�

l�� LEMMA constraint��X� � wipe�sensor�track�sn��X�Y�

	� constraint��Y�

As can be seen from these lemmas� certain assumptions on the environment have been
made� in order to prove that constraint� is a global invariant� These assumptions all follow
from the precondition� So we have the following invariant�

constraint�� LEMMA Reachable�X� 	� constraint��X�

This is proved by induction over the reachable states �RULE�INDUCT �Reachable���
where the lemmata before �l��l�� serve to prove the induction step�

Updating never leads to decorrelation

In the top speci�cation� it is required ������� that a sensor track and the system track joined
to it don	t decorrelate after a sensor track update� We might want to check this in the

�

re�nement�

update�no�decorrelation� LEMMA

update�sensor�track�sn�s��X�Y� 	�

NOT decorrelates�s�system�info�Y��joined�Y��sn���

The proof of this lemma reads as follows�

�GRIND �IF�MATCH NIL�

����� �USE �corin�� �USE �cordecor�� �PROP��

���� �USE �cordecor�� �USE �decorup�� �PROP��

���� �USE �decorup�� �PROP���

Here GRIND is an automatic tactic� which among others unfolds all de�nitions in the proofs�
The tactic USE allows us to use previously proved theorems� axioms or assumptions� Finally
PROP solves the goal using propositional logic only� This exercise learns us that under
reasonable assumptions �and we know exactly which� a sensor track update doesn	t introduce
decorrelation�

Causal relationships between events

The link between input and output events is quite indirect in the speci�cation� Therefore�
it is interesting to inspect what output events may be caused by the input events� and what
output events can occur simultaneously� We �rst de�ne these concepts �this could be done
in the abstract machine model��

oe��oe�� VAR OEvents

OE� VAR setof
OEvents

tn��tn�� VAR System�track

t��t�� VAR System�track�state

sn�� VAR Sensor�track

May�cause�ie�OE��bool 	 EXISTS X�Y�

Precondition�ie��X�

� Input�table�ie��X�Y�

� forall oe� OE�oe� 	� Output�table�oe��X�Y�

May�appear�together�OE��bool 	

EXISTS ie� May�cause�ie�OE�

Next we can prove the following interesting theorems �all by just typing GRIND��

CONVERSION singleton
OEvents

L�� LEMMA NOT May�cause�new�sn�s�� wipe�tn��

L�� LEMMA NOT May�cause�wipe�sn�� new�tn�t��

L�� LEMMA NOT May�cause�wipe�sn�� update�tn�t��

L�� LEMMA NOT May�cause�wipe�sn�� warn�sn���

L�� LEMMA NOT May�appear�together� �� new�tn��t���update�tn��t�� ���

Above we wrote a single output action� instead of a set of output actions� This is allowed�

��

because we introduced a CONVERSION� viz� the singleton function from the prelude� instan�
tiated to output events� There is also a hidden conversion from lists to sets� as we used the
list notation �� x�y�z �� in the �nal lemma�

So one of the conclusions is that initiating a new sensor track can never lead to wiping
an existing system track �L��� Furthermore� wiping a sensor track cannot lead to the update
or the initiation of any system track �L�� L��� at most to a wipe �it might go undetected��
Finally� it is never the case that in one transition some system track is created� and another
updated �L���

��� Logical re�nement� adding detail

In this section� we add some details to the speci�cation� This is achieved by specifying a
number of parameters� A parameterized theory can be seen as a set of possible speci�cations�
By providing actual parameters� we obtain a subset of the set of possible speci�cations� This
can be seen as a re�nement� because it reduces the implementation freedom by incorporating
additional decisions�

In this case� we specify the actual track states� and the kinematic computations� For�
mally� the speci�cation of section ��� is imported� and a number of parameters is instantiated�
This amounts to the following modi�cations�

� It is decided that the track states consist of three dimensional position and velocity
vectors� and identi�cation information� Moreover� sensor tracks contain information
on their source�

� The correlation and decorrelation criteria are now de�ned� The criteria involve that
the distance is within a certain margins and that identi�cations are compatible�

� The functions initiate and update are de�ned�

For presentation purposes the actual computations have been simpli�ed� In reality� we
would formalize e�g� Kalman �ltering here� There is no fundamental problem in formalizing
this �ltering process� but it would take some time� The current formalization is su�cient to
show how such details can be added to a speci�cation� and how PVS supports speci�cations
with computations on real numbers� The simpli�cations that we have made are�

� The accuracy of measurements and tracks is omitted�

� We work in Cartesian coordinates only�

� Time alignment is skipped�

Because accuracies are dropped� the only thing we can do when updating a system track
with a sensor track� is copying the latest sensor track�

����� Speci�cation of track states

The second re�ned theory still has parameters for the track identi�ers �these are mere
implementation details�� for the Source of the tracks� and for the Margins that play a role
in the correlation and decorrelation criterion� So it would be possible to re�ne this theory
even further�

��

spec�

 Sensor�track� System�track�

Source� TYPE��

Margin��Margin�� posreal

� THEORY

BEGIN

ASSUMING

Margins� ASSUMPTION Margin� � Margin�

ENDASSUMING

����� �see below�

END spec�

A track state consists of identi�cation and kinematic information� Only �nitely many
identi�cations are distinguished�

Identification� TYPE 	 �friend� hostile� pending�

Here we used enumeration types� which are a special case of abstract data types� The elements
of enumeration types are pairwise distinct� and enumerate the whole type�

The kinematic information of a track contains its �x� y� z��position and velocity� as real
numbers�

Kinetic� TYPE 	
� px�py�pz�vx�vy�vz� real �

real is the built�in type of real numbers�
We are now in a position to de�ne the state variables of a single sensor track and system

track�

Sensor�track�state� TYPE 	

� source� Source�

identification� Identification�

kinetics� Kinetic

�

System�track�state� TYPE 	

� identification� Identification�

kinetics� Kinetic

�

Note that records can be nested� Recall that the �eld names can be used as accessors�
Given a system track state t� we can �nd its velocity in the x�coordinate by the term
vx�kinetics�t���

����� Kinematic computations

We continue with the kinematic computations� At initiation� the state of the new system
track is just copied from the sensor track� For updating a track� we just copy the sensor
track� In reality� we would take the statistic mean of the system and sensor track� taking

��

the accuracies into account�

s� VAR Sensor�track�state

t� VAR System�track�state

initiate�s��System�track�state 	

�� identification �	 identification�s�� kinetics�	kinetics�s� ��

update�s�t��System�track�state 	

�� identification �	 identification�s�� kinetics�	kinetics�s� ��

����� Correlation criteria

There are two correlation criteria� The distance criterion is straightforward� In reality� a
statistic distance would be used� The criterion on identities is that they are not con�icting�
which is speci�ed by a table�

distance�s�t��real 	

LET k� 	 kinetics�s�� k� 	 kinetics�t� IN

�px�k���px�k��� � �px�k���px�k���

��py�k���py�k��� � �py�k���py�k���

��pz�k���pz�k��� � �pz�k���pz�k���

We can use ordinary arithmetic operators on real numbers� like �� �� �� �� Natural num�
bers �nat	 are a subtype of the real numbers� They can be typed as ��������� There is no
�oating point notation for real numbers only rational numbers can be written down� The
existence of numbers �like ��

p
�	 can be proved� but there is no notation for them�

conflicting�s�t��bool 	

LET id� 	 identification�s�� id� 	 identification�t� IN

TABLE

id�� id� �
pending� friend �hostile�

!��������������������������������������

�pending � FALSE � FALSE � FALSE ��

�friend � FALSE � FALSE � TRUE ��

�hostile � FALSE � TRUE � FALSE ��

ENDTABLE!������������������������������

PVS supports a tabular notation� which can be used for unary and binary functions� Tables
can also be nested� The number of terms after the opening TABLE keyword de�nes the dimen�
sion of the table� The rest of the format is self�explanatory� Note that anything following a
! is a comment only�

correlates�s�t��bool 	

distance�s�t� �	 Margin� � Margin�

� NOT conflicting�s�t�

decorrelates�s�t��bool 	

distance�s�t� �	 Margin� � Margin�

OR conflicting�s�t�

��

This completes the speci�cation of the track states and the computations�

����� Analysis of the second re�nement

In order to check that the second re�nement actually re�nes the �rst one� we can now import
the �rst re�nement� with as actual parameters the de�nitions from the previous sections�

IMPORTING spec�

Sensor�track�Sensor�track�state�

System�track�System�track�state�

correlates�decorrelates�initiate�update

This automatically generates a number of proof obligations� corresponding to the assump�
tions made in the �rst re�nement �section ������ These proof obligations read as follows�

IMPORTING��TCC�� OBLIGATION

�FORALL �s� Sensor�track�state� t� System�track�state��

NOT �correlates�s� t� � decorrelates�s� t����

IMPORTING��TCC�� OBLIGATION

�FORALL �s� Sensor�track�state�� correlates�s� initiate�s����

IMPORTING��TCC�� OBLIGATION

�FORALL �s� Sensor�track�state� t� System�track�state��

decorrelates�s� update�s� t�� 	� decorrelates�s� t���

These obligations can be proved by GRIND except the �rst one� which needs the assump�
tion that we have made� Margin� � Margin�� Having proved these obligations� we know
that the second re�nement is a logical re�nement of the �rst� in the sense that it admits less
implementations�

Because the second re�nement spec� is an instance of the �rst re�nement spec�� ev�
ery theorem proved in the �rst re�nement automatically holds in the second� This holds
especially for the veri�cation proof obligations� so a further veri�cation is not needed�

��

Chapter �

Conclusion

��� Possibilities for future work

����� Extension to the speci�cation method

It is expected that the method has to be extended� We think that more case studies are
needed to decide on these extensions� Some simple extensions are�

� Addition of internal events �or transitions without input events�

� Triggers that depend on input events �this can already be encoded by storing the last
event in the state��

� Invent more proof obligations� for instance to verify that each trigger will sometimes
be true�

The reason that these extensions have not been incorporated is �rst of all pragmatic� they
were not needed for the examples considered� Moreover� we think that especially the addition
of internal events could� when used carelessly� compromise the abstractness of the speci��
cation� This option becomes interesting if the same method will be used for describing the
design of the system�

We now describe other extensions� which we regard useful�

Modularity

In order to get more structured speci�cations� a speci�cation could be decomposed into
logical components� These don	t necessarily coincide with the physical components of the
system� The physical decomposition is typically decided in a later design phase� Each logical
component should be de�ned by a number of speci�cation blocks� and it should be possible

� to verify that the composition of the components is consistent

� to construct a particular view on the whole system�

With the latter requirement we mean that it should be simple to �nd the invariant of the
whole system� the state of the whole system� the transitions of the whole system� etc�

In �PHJ���� we proposed a modular interpretation of temporal logic� which satis�es both
requirements above� This solution has not yet been fully integrated into the method� Future
work on modularity could start with this integration� Temporal logic is also mentioned in
the next section�

��

Protocol on occurrence and timing of events

The physical interpretation of the Mealy machine in this paper has two extremes�

� The output events on a state transition should occur before the next input event�

� The output events on a state transition should occur eventually�

The �rst interpretation is too strict for distributed systems� where input events can happen
on di�erent locations� The second interpretation allows too much freedom� because the
reaction of the system can be postponed arbitrarily long�

An extra speci�cation block could specify requirements on the actual occurrence of these
output events� To this end one can use either process algebra� which has an operational
�avour� or temporal logic� In the latter formalism� one can express for instance that a
certain output event shall always occur before a particular input event happens� Also real
time constraints can be expressed in temporal logic� for instance that some output event
shall happen within t seconds after a certain input event�

In �PHJ��� we proposed the use of temporal logic� A general problem is that it is hard
to directly specify a system in temporal logic� Future research should make clear which
requirements are best expressed in temporal logic� The speci�cation patterns that will
emerge could be captured by a number of �template� formulae� For certain requirements�
for instance the life cycle of a track� a speci�cation in process algebra might be simpler�

����� Semantics

Not all semantical issues have been solved� We think that these issues can only be resolved
after some experiments with the design process� Also typical issues of the underlying archi�
tecture� for instance SPLICE� will emerge here� At this moment it is too early to take any
decisions here� We discuss three semantical issues in more detail� equivalence of speci�ca�
tions �this is related to what is observable�� re�nement of speci�cations� and the composition
of machines�

Equivalence

A requirements speci�cation is mapped to a particular machine model� We can ask the
question which aspects of the machine are observable� As said before� the input and output
events form the interface with the environment� However� in the Mealy machine� also the
structure of the internal state is visible� This problem can be solved by de�ning a suitable
equivalence relation on machines� in such a way that two machines are equivalent if they
cannot be distinguished by the observations� This question has not been addressed in our
project� The literature gives a wide variety of equivalence relations� Some well�known
possibilities are �in order of decreasing granularity��

�� Two machines are equivalent if they are exactly the same�

�� Two machines are equivalent if they are isomorphic �i�e�� there is an isomorphism
between states� maintaining all transitions�� This means that the structure of the
states is discarded�

�� Two machines are equivalent if they are strongly bisimilar�

�� Two machines are equivalent if they produce the same input�output traces of the form
i�� O�� i�� O�� � � �� where ik is the k�th input event� and Ok the set of triggered output
events�

��

�� Two machines are equivalent if they produce the same function of input to output�
that is �i�� � � � � in� �� �O�� � � � � On��

We feel that the minimal identi�cation should be ��� because the state should be internal�
The last de�nition is used in language theory� where Mealy machines were �rst studied
 this
is not well�suited for system speci�cations� as it neglects the causal relationship between
input and output events in the reactive behaviour� Option ��� is also often used� In fact
this option was chosen in �PHJ���� as it is the basis of linear temporal logic� However� using
traces� the precise interaction of the machine with an operator cannot be modeled� because
choice points aren	t preserved under trace equivalence� The precise e�ect of the combination
of traces and input enabledness has still to be studied� Probably the best choice is to adapt
bisimulation to an asynchronous setting� where events that are independent �e�g� physically
distributed� can be swapped�

Re�nement

It is important to de�ne when a system can be seen as an implementation of the require�
ments speci�cation� The implementation needs not be equivalent� but merely re�nes the
speci�cation� A re�nement may involve additional choices� which can be recognized already
in our re�nements at several places�

�� Data re�nement� choosing more concrete data� such as lists instead of sets� functions
instead of relations� etc�

�� Reduction of non�determinism� If the speci�cation allows two di�erent behaviours on
a certain input� the implementation may choose one of them�

�� Addition of internal actions� A state transition can be re�ned into several smaller
steps� Care has to be taken that the environment cannot view an intermediate state

on the interface the invariant has to be kept�

�� Invariants can be eliminated by �implementing� them on each transition�

Several of these steps would result in the same underlying machine� which is only speci�ed
more operationally� viz� � and �� Data re�nement ��� might be visible if the data appears
as parameters of the events� Other steps� for instance � and �� constitute a modi�cation of
the underlying system� Future research should solve which re�nement steps are necessary�
and how they can be formally de�ned� Maybe the literature on forward and backward
simulations is applicable here�

Composition

The �nal semantical issue is composition of machines� This is important in system inte�
gration� and in the research for modularity� It would be nice if two Mealy machines could
be composed� e�g� by communication� one of them could consume output events of the
other� As the second machine belongs to the environment of the �rst �and vice versa�� the
assumptions on the environment must be taken into account somehow in this composition�

����� Other issues

There are other possibilities for future work� that mostly serve the development of tool
support for the speci�cation method� This can be quite time consuming� so it might be
advisable to �ne�tune the method by a number of larger case studies �although prototype

��

tool support� like the use of PVS might be essential for the feasibility of the case studies��
We now list these directions�

�� A user friendly interface� for instance Emacs�forms that are automatically translated
into a PVS speci�cation� and visualisation techniques to inspect the PVS speci�cation�
Ideally� PVS �or another proof tool� would be completely hidden from the user� so
feedback from failed type checking and theorem proving should be translated back
to the user interface� Also� the proposed requirements speci�cation method could be
integrated with popular engineering approaches� like UML and STATEMATE�

�� Development of proof strategies� in order to solve the proof veri�cation obligations�
As the type of theorems is known� one can conceive general strategies for solving
them� It might well be the case that other theorem provers have better capabilities for
de�ning strategies� Maybe automated theorem proving� e�g� combinations of resolution
and term rewriting� can be applied� provided the speci�cation uses a suitably simple
format�

�� The use of common notations for parts of the speci�cation� For instance� the state�
invariants and transitions can be speci�ed by Z�schemes� which would immediately
provide some form of modularity� States� invariants and a protocol could be directly
speci�ed in TLA� etc� It can be tried to cover the whole method with existing methods�
so that existing tools can be used� The states�protocol could also be speci�ed in
Statecharts�

�� A speci�cation simulator could be built� This would greatly improve the validation
abilities of the speci�cation� As we have quite declarative and abstract speci�cations�
it will not be directly executable� However� after some transformations �e�g� making
all domains �nite and eliminating 	 and � quanti�ers�� simulation in for instance the
�CRL�toolkit �GP��� seems possible� In this case� a transition would translate to the
process de�nition �Dk denotes the types of the parameters of input event ik��

M�X � State� !
"�p�D�

�"Y �State� �i��	p� �M�Y ��
 Pre��X� ����X�Y � � Invariant�Y � � �
"�p�D�

�"Y �State� �i��	p� �M�Y ��
 Pre��X� ����X�Y � � Invariant�Y � � �
� � �
# "�p�Dn �"Y �State� �in�	p� �M�Y ��
 Pren�X� ��n�X�Y � � Invariant�Y � � �

This models that M�X� can perform ik with parameters 	p� and then proceed to state
M�Y �� provided certain conditions hold �between
 ��� The machine would then be
modeled as the process "X�StateM�X�
Initial�X��Invariant�X���� This translation
doesn	t yet capture the ouput events�

��� Evaluation

The goal of the research was to �nd a method for the speci�cation and analysis of require�
ments on realistic command and control systems� The tangible result of this project is
a template �A��� with a pseudo PVS speci�cation� which can be �lled in for a particular
requirements speci�cation� The speci�cation blocks are explained in section ������ These
blocks can be translated onto a machine model� c�f� ���� The theorem prover of PVS �������
can then be used to type check this speci�cation� and to automatically generate the proof
obligations� In this way� the speci�cation can be analyzed ������

��

In order to arrive at the proposed method� a lot of decisions have been taken� These
decisions were motivated by

� The engineering phase� requirements speci�ation

� The application domain� command and control systems� or more generally large�scale�
distributed� reactive systems�

The engineering phase is taken into account by allowing abstract speci�cations� The
used language is very expressive �higher�order logic�� Furthermore� integrity constraints
and transitions can be de�ned declaratively� and details can be deferred to re�nements�

The application domain is taken into account be decoupling input and output events�
The relation between input and output events in command and control systems is via an
internal representation� capturing the state of a�airs in the environment� The method is
developed with real cases in mind� The case study shows that the method is �t for typical
applications�

The use of PVS provided us with tool support already in the research phase� PVS
supports the method� by automatically generating the veri�cation proof obligations� It is
also used in the case study as a proof tool� verifying that these obligations and several other
theorems hold with the largest possible certainty� Although not very hard� a number of
proofs were rather time consuming� It is expected that especially for the veri�cation proof
obligations� dedicated proof commands can be programmed� which make the veri�cation
more feasible�

It is not possible to estimate afterwards the time needed for the speci�cation of the case
study� The time spent in the project is mixed with the time needed to develop the method�
A completely new case study should be carried out� preferably by other people� in order to
verify feasibility of the method in terms of human e�ort�

It is advised that a number of large scale case studies will be conducted by Signaal� or
in close collaboration with Signaal� or possibly in other companies� in order to assess the
feasibility of the method and to �ne tune it� Based on these experiences� and based on
current research on the further design process� research should be conducted along the lines
of Section ����

�

Appendix A

Templates

A�� Formalization of the machine model

The following theory de�nes the framework for speci�cations� It can be imported by a
concrete speci�cation� by giving actual values to the parameters� It then generates the
veri�cation proof obligations� Moreover� it de�nes the reachability predicate�

machine
 I�O�S� TYPE�

Imap�
I �� pred

S�S�

Omap�
O �� pred

S�S�

init� pred
S�

inv� pred
S�

pre�
I��pred
S

� THEORY

BEGIN

ASSUMING

i� VAR I

x�y� VAR S

init� ASSUMPTION EXISTS x� init�x� � inv�x�

no�deadlock� ASSUMPTION

pre�i��x� � inv�x� 	� EXISTS y� inv�y� � Imap�i��x�y�

ENDASSUMING

Reachable�x��INDUCTIVE bool 	

init�x� � inv�x�

OR EXISTS y�i � Reachable�y� � pre�i��y� � inv�x� � Imap�i��y�x�

Invariant�holds� LEMMA FORALL x� Reachable�x� 	� inv�x�

END machine

��

A�� A template for concrete speci�cations

The template in this section is not a complete PVS speci�cation� It is meant as a starting
point for new speci�cations� Actual details have to �lled in on the ���	s� The veri�cation
proof obligations are generated by the �nal IMPORTING clause� If this is proved� and all
generated type check conditions are proved� then the speci�cation is regarded as correct�
The order of the blocks can be changed at will� as long as every identi�er is de�ned before
it its �rst use� which is a PVS requirement�

specification
 ��� parameters ��� � THEORY

BEGIN

ASSUMING

A��� ASSUMPTION ��� formula ���

���

A�j� ASSUMPTION ��� formula ���

ENDASSUMING

!!!!!!!!!!!!!!!!!!!!!!!

! A� STATIC INTERFACE !

!!!!!!!!!!!!!!!!!!!!!!!

! �� Basic Types

!!!!!!!!!!!!!!!!

��� type declarations ���

T�� � TYPE 	 ��� type expression ���

���

T�k � TYPE 	 ��� type expression ���

! �� Input events

!!!!!!!!!!!!!!!!!

IEvents� DATATYPE

BEGIN

ie������i�params������� ie���

���

ie�n����i�params�n����� ie�n�

END IEvents

! �� Output events

!!!!!!!!!!!!!!!!!!

OEvents� DATATYPE

BEGIN

oe������o�params������� oe���

���

oe�p����o�params�p����� oe�p�

END OEvents

��

!!!!!!!!!!!!!!!!!!!!!!!!

! B� INFORMATION MODEL !

!!!!!!!!!!!!!!!!!!!!!!!!

! �� State variables

!!!!!!!!!!!!!!!!!!!!

State� TYPE 	

� v��� T���

���

v�k� T�k

�

X�Y� VAR State

ie� VAR IEvents

oe� VAR OEvents

! �� Integrity constraints

!!!!!!!!!!!!!!!!!!!!!!!!!!

constraint���X��bool 	 ��� boolean expression ���

���

constraint�m�X��bool 	 ��� boolean expression ���

Invariant�X��bool 	

constraint���X� � ��� � constraint�m�X�

! �� Initial state

!!!!!!!!!!!!!!!!!!

initial�X��bool 	 ���

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! C� MAPPING INPUT TO OUTPUT !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! "� State transitions

!!!!!!!!!!!!!!!!!!!!!!

Transition���i�params����X�Y��bool 	 ��� boolean expression ���

���

Transition�n�i�params�n��X�Y��bool 	 ��� boolean expression ���

! #� Output triggers

!!!!!!!!!!!!!!!!!!!!

��

Trigger���o�params����X�Y��bool 	 ��� boolean expression ���

���

Trigger�p�o�params�p��X�Y��bool 	 ��� boolean expression ���

! $� Mapping of inputs to state transitions

!!!

Input�table�ie��
State�State��bool 	

CASES ie OF

ie���i�params��� � Transition���i�params����

���

ie�n�i�params�n� � Transition�n�i�params�n�

ENDCASES

! � � Mapping of state changes to triggers

!!

Output�table�oe��
State�State��bool 	

CASES oe OF

oe���o�params��� � Trigger���o�params����

���

oe�p�o�params�p� � Trigger�p�o�params�p�

ENDCASES

!!!!!!!!!!!!!!!!!!

! D� ENVIRONMENT !

!!!!!!!!!!!!!!!!!!

! ��� Preconditions

!!!!!!!!!!!!!!!!!!!

Precondition�ie��X��bool 	

CASES ie OF

ie���i�params��� � ��� boolean expression ���

���

ie�n�i�params�n� � ��� boolean expression ���

ENDCASES

!!!!!!!!!!!!

! ANALYSIS !

!!!!!!!!!!!!

! Check preconditions

!!!!!!!!!!!!!!!!!!!!!

ie���next� LEMMA

��

Invariant�X� � Precondition�ie���i�params�����X�

	� EXISTS Y� Invariant�Y� � Transition���i�params����X�Y�

���

ie�n�next� LEMMA

Invariant�X� � Precondition�ie�n�i�params�n���X�

	� EXISTS Y� Invariant�Y� � Transition�n�i�params�n��X�Y�

! Generate verification proof obligations

!!!

IMPORTING machine
IEvents�OEvents�State�

Input�table�Output�table�

initial�Invariant�Precondition

! Putative Theorems

!!!!!!!!!!!!!!!!!!!

���

END specification

��

Appendix B

Complete PVS speci�cations

B�� Top speci�cation

spec�� THEORY

BEGIN

!!!!!!!!!!!!!!!!!!!!!!!

! A� STATIC INTERFACE !

!!!!!!!!!!!!!!!!!!!!!!!

! �� Basic Types

!!!!!!!!!!!!!!!!

Sensor�track� System�track� TYPE

Sensor�track�state� System�track�state� TYPE�

! �� Input events

!!!!!!!!!!!!!!!!!

IEvents� DATATYPE

BEGIN

new�sn�Sensor�track�s�Sensor�track�state�� new�sens�

update�sn�Sensor�track�s�Sensor�track�state�� update�sens�

wipe�sn�Sensor�track�� wipe�sens�

END IEvents

! �� Output events

!!!!!!!!!!!!!!!!!!

OEvents� DATATYPE

BEGIN

new�tn�System�track�t�System�track�state�� new�sys�

update�tn�System�track�t�System�track�state�� update�sys�

wipe�tn�System�track�� wipe�sys�

warn�sn�Sensor�track�� warn�sys�

��

END OEvents

!!!!!!!!!!!!!!!!!!!!!!!!

! B� INFORMATION MODEL !

!!!!!!!!!!!!!!!!!!!!!!!!

! �� State variables

!!!!!!!!!!!!!!!!!!!!

State� TYPE 	

� sensor�ids� setof
Sensor�track�

system�ids� setof
System�track�

system�info�
System�track��System�track�state�

joined� pred

Sensor�track�System�track

�

s�s�� VAR Sensor�track�state

sn�sn�� VAR Sensor�track

t� VAR System�track�state

tn�tn��tn�� VAR System�track

ie� VAR IEvents

oe� VAR OEvents

X�Y� VAR State

! �� Integrity constraints

!!!!!!!!!!!!!!!!!!!!!!!!!!

constraint��X��bool 	 FORALL sn�tn �

joined�X��sn�tn� 	� sensor�ids�X��sn� � system�ids�X��tn�

constraint��X��bool 	 FORALL sn�

sensor�ids�X��sn� 	� exists�� tn� joined�X��sn�tn�

constraint��X��bool 	 FORALL tn�

system�ids�X��tn� 	� EXISTS sn� joined�X��sn�tn�

Invariant�X��bool 	

constraint��X� � constraint��X� � constraint��X�

! �� Initial state

!!!!!!!!!!!!!!!!!!

initial�X��bool 	 empty��sensor�ids�X��

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! C� MAPPING INPUT TO OUTPUT !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! "� State transitions

��

!!!!!!!!!!!!!!!!!!!!!!

correlates�s�t��bool

decorrelates�s�t��bool

corex � AXIOM EXISTS t � correlates�s�t�

cordecor� AXIOM NOT �correlates�s�t� � decorrelates�s�t��

new�sensor�track�sn�s��X�Y��bool 	

sensor�ids�Y� 	 add�sn�sensor�ids�X��

� FORALL tn� joined�Y��sn�tn�

	� correlates�s�system�info�Y��tn��

wipe�sensor�track�sn��X�Y��bool 	

sensor�ids�Y� 	 remove�sn�sensor�ids�X��

� subset��system�ids�Y��system�ids�X��

� subset��joined�Y��joined�X��

update�sensor�track�sn�s��X�Y��bool 	

sensor�ids�Y� 	 sensor�ids�X�

� FORALL tn� decorrelates�s�system�info�Y��tn��

	� NOT joined�Y��sn�tn�

! #� Output triggers

!!!!!!!!!!!!!!!!!!!!

new�system�trigger�tn�t��X�Y��bool

	 system�ids�Y��tn�

� NOT system�ids�X��tn�

� t	system�info�Y��tn�

update�system�trigger�tn�t��X�Y��bool

	 system�ids�X��tn�

� system�ids�Y��tn�

� system�info�X��tn� �	 system�info�Y��tn�

� t 	 system�info�Y��tn�

wipe�system�trigger�tn��X�Y��bool

	 system�ids�X��tn�

� NOT system�ids�Y��tn�

detect�decorrelation�sn��X�Y��bool 	

EXISTS tn��tn� �

joined�X��sn�tn��

� joined�Y��sn�tn��

� tn� �	 tn�

! $� Mapping of inputs to state transitions

!!!

��

Input�table�ie��
State�State��bool 	

CASES ie OF

new�sn�s� � new�sensor�track�sn�s��

update�sn�s�� update�sensor�track�sn�s��

wipe�sn� � wipe�sensor�track�sn�

ENDCASES

! � � Mapping of state changes to triggers

!!

Output�table�oe��
State�State��bool 	

CASES oe OF

new�tn�t� � new�system�trigger�tn�t��

update�tn�t�� update�system�trigger�tn�t��

wipe�tn� � wipe�system�trigger�tn��

warn�sn� � detect�decorrelation�sn�

ENDCASES

!!!!!!!!!!!!!!!!!!

! D� ENVIRONMENT !

!!!!!!!!!!!!!!!!!!

! ��� Preconditions

!!!!!!!!!!!!!!!!!!!

Precondition�ie��X��bool 	

CASES ie OF

new�sn�s� � �NOT sensor�ids�X��sn��

� �EXISTS tn� NOT system�ids�X��tn���

update�sn�s� � sensor�ids�X��sn�

� �EXISTS tn� NOT system�ids�X��tn���

wipe�sn� � sensor�ids�X��sn�

ENDCASES

!!!!!!!!!!!!

! ANALYSIS !

!!!!!!!!!!!!

! Check preconditions

!!!!!!!!!!!!!!!!!!!!!

new�next� LEMMA

Invariant�X� � Precondition�new�sn�s���X�

	� EXISTS Y� Invariant�Y� � new�sensor�track�sn�s��X�Y�

wipe�next� LEMMA

��

Invariant�X� � Precondition�wipe�sn���X�

	� EXISTS Y� Invariant�Y� � wipe�sensor�track�sn��X�Y�

update�next� LEMMA

Invariant�X� � Precondition�update�sn�s���X�

	� EXISTS Y� Invariant�Y� � update�sensor�track�sn�s��X�Y�

! Generate verification proof obligations

!!!

IMPORTING machine
IEvents�OEvents�State�

Input�table�Output�table�

initial�Invariant�Precondition

END spec�

B�� First re�nement

spec�

 Sensor�track� Sensor�track�state�

System�track� System�track�state� TYPE��

correlates� decorrelates�
Sensor�track�state�System�track�state��bool�

initiate�
Sensor�track�state��System�track�state�

update�
Sensor�track�state�System�track�state��System�track�state

� THEORY

BEGIN

ASSUMING

s� VAR Sensor�track�state

t� VAR System�track�state

cordecor� ASSUMPTION NOT �correlates�s�t� � decorrelates�s�t��

corin� ASSUMPTION correlates�s�initiate�s��

decorup� ASSUMPTION decorrelates�s�update�s�t�� 	� decorrelates�s�t�

ENDASSUMING

!!!!!!!!!!!!!!!!!!!!!!!

! A� STATIC INTERFACE !

!!!!!!!!!!!!!!!!!!!!!!!

! �� Basic Types

!!!!!!!!!!!!!!!!

! See the parameters of the theory

! �� Input events

�

!!!!!!!!!!!!!!!!!

IEvents� DATATYPE

BEGIN

new�sn�Sensor�track�s�Sensor�track�state�� new�sens�

update�sn�Sensor�track�s�Sensor�track�state�� update�sens�

wipe�sn�Sensor�track�� wipe�sens�

END IEvents

! �� Output events

!!!!!!!!!!!!!!!!!!

OEvents� DATATYPE

BEGIN

new�tn�System�track�t�System�track�state�� new�sys�

update�tn�System�track�t�System�track�state�� update�sys�

wipe�tn�System�track�� wipe�sys�

warn�sn�Sensor�track�� warn�sys�

END OEvents

!!!!!!!!!!!!!!!!!!!!!!!!

! B� INFORMATION MODEL !

!!!!!!!!!!!!!!!!!!!!!!!!

! �� State variables

!!!!!!!!!!!!!!!!!!!!

State� TYPE 	

� sensor�ids� setof
Sensor�track�

system�ids� setof
System�track�

system�info�
�system�ids���System�track�state�

joined�
�sensor�ids����system�ids�

�

tn� VAR System�track

sn� VAR Sensor�track

X�Y� VAR State

ie� VAR IEvents

oe� VAR OEvents

! �� Integrity constraints

!!!!!!!!!!!!!!!!!!!!!!!!!!

! No constraints

Invariant�X��bool 	 TRUE

! �� Initial state

��

!!!!!!!!!!!!!!!!!!

initial�X��bool 	 empty��sensor�ids�X�� � empty��system�ids�X��

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! C� MAPPING INPUT TO OUTPUT !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! "� State transitions

!!!!!!!!!!!!!!!!!!!!!!

! The main transitions are�

! � new�sensor�track

! � update�sensor�track

! � wipe�sensor�track

no�correlation�s�X��bool 	

FORALL tn� system�ids�X��tn�

	� NOT correlates�s�system�info�X��tn��

correlate�to�system�track�sn�s��X�Y��bool 	

EXISTS tn�

system�ids�X��tn�

� correlates�s�system�info�X��tn��

� Y 	 X WITH

sensor�ids �	 add�sn�sensor�ids�X���

joined �	 joined�X� WITH
sn�	tn�

system�info �	 system�info�X�

WITH
tn�	update�s�system�info�X��tn��

new�system�track�sn�s��X�Y��bool 	

no�correlation�s�X�

� EXISTS tn�

�NOT system�ids�X��tn��

� Y 	

�� sensor�ids �	 add�sn�sensor�ids�X���

system�ids �	 add�tn�system�ids�X���

joined �	 joined�X� WITH
sn�	tn�

system�info �	 system�info�X� WITH
tn �	 initiate�s� ��

new�sensor�track�sn�s��X�Y��bool 	

new�system�track�sn�s��X�Y�

OR correlate�to�system�track�sn�s��X�Y�

filter�X��State 	

X WITH

system�ids �	 �tn � system�ids�X��tn�

� EXISTS sn� sensor�ids�X��sn� � tn	joined�X��sn���

��

system�info �	 restrict�system�info�X��

wipe�sensor�track�sn��X�Y��bool 	

sensor�ids�X��sn�

� Y 	 filter�X WITH

sensor�ids �	 remove�sn�sensor�ids�X���

joined �	 restrict�joined�X���

update�sensor�track�sn�s��X�Y��bool 	

sensor�ids�X��sn�

� LET tn 	 joined�X��sn�� t 	 system�info�X��tn� IN

IF decorrelates�s�t�

THEN EXISTS �Z�State�� new�sensor�track�sn�s��X�Z� � Y	filter�Z�

ELSE Y 	 X WITH

system�info�	 system�info�X� WITH
tn �	 update�s�t�

ENDIF

! #� Output triggers

!!!!!!!!!!!!!!!!!!!!

new�system�trigger�tn�t��X�Y��bool 	

system�ids�Y��tn�

� NOT system�ids�X��tn�

� t	system�info�Y��tn�

update�system�trigger�tn�t��X�Y��bool 	

system�ids�X��tn�

� system�ids�Y��tn�

� system�info�X��tn� �	 system�info�Y��tn�

� t 	 system�info�Y��tn�

wipe�system�trigger�tn��X�Y��bool 	

system�ids�X��tn�

� NOT system�ids�Y��tn�

detect�decorrelation�sn��X�Y��bool 	

sensor�ids�X��sn� � sensor�ids�Y��sn�

� joined�X��sn� �	 joined�Y��sn�

! $� Mapping of inputs to state transitions

!!!

Input�table�ie��
State�State��bool 	

CASES ie OF

new�sn�s� � new�sensor�track�sn�s��

update�sn�s�� update�sensor�track�sn�s��

wipe�sn� � wipe�sensor�track�sn�

ENDCASES

��

! � � Mapping of state changes to triggers

!!

Output�table�oe��
State�State��bool 	

CASES oe OF

new�tn�t� � new�system�trigger�tn�t��

update�tn�t�� update�system�trigger�tn�t��

wipe�tn� � wipe�system�trigger�tn��

warn�sn� � detect�decorrelation�sn�

ENDCASES

!!!!!!!!!!!!!!!!!!

! D� ENVIRONMENT !

!!!!!!!!!!!!!!!!!!

! ��� Preconditions

!!!!!!!!!!!!!!!!!!!

Precondition�ie��X��bool 	

CASES ie OF

new�sn�s� � �NOT sensor�ids�X��sn��

� �EXISTS tn� NOT system�ids�X��tn���

update�sn�s� � sensor�ids�X��sn�

� �EXISTS tn� NOT system�ids�X��tn���

wipe�sn� � sensor�ids�X��sn�

ENDCASES

!!!!!!!!!!!!

! ANALYSIS !

!!!!!!!!!!!!

! Check� Checking preconditions of function model

!!!

e�� LEMMA system�ids�X��tn� � correlates�s�system�info�X��tn�� 	�

EXISTS Y� correlate�to�system�track�sn�s��X�Y�

e�� LEMMA no�correlation�s�X� � �EXISTS tn� NOT system�ids�X��tn��

	� EXISTS Y� new�system�track�sn�s��X�Y�

e�� LEMMA �EXISTS tn� NOT system�ids�X��tn��	�

EXISTS Y� new�sensor�track�sn�s��X�Y�

e�� LEMMA sensor�ids�X��sn� � �EXISTS tn� NOT system�ids�X��tn��

	� EXISTS Y� update�sensor�track�sn�s��X�Y�

�

e�� LEMMA sensor�ids�X��sn�

	� EXISTS Y� wipe�sensor�track�sn��X�Y�

! Generate verification proof obligations

!!!

IMPORTING machine
IEvents�OEvents�State�

Input�table�Output�table�

initial�Invariant�Precondition

! Check� constraint� and constraint� hold

!!!

constraint�� LEMMA

sensor�ids�X��sn� � tn 	 joined�X��sn� 	� system�ids�X��tn�

constraint�� LEMMA

sensor�ids�X��sn� 	� exists�� tn� tn 	 joined�X��sn�

! Check� constraint� is an invariant

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

constraint��X��bool 	 FORALL tn�

system�ids�X��tn� 	�

EXISTS sn� sensor�ids�X��sn� � tn 	 joined�X��sn�

l�� LEMMA constraint��X� � new�system�track�sn�s��X�Y�

� �NOT sensor�ids�X��sn�� 	� constraint��Y�

l�� LEMMA constraint��X� � correlate�to�system�track�sn�s��X�Y�

� �NOT sensor�ids�X��sn�� 	� constraint��Y�

l�� LEMMA constraint��filter�X��

l�� LEMMA constraint��X� � new�sensor�track�sn�s��X�Y�

� �NOT sensor�ids�X��sn�� 	� constraint��Y�

l�� LEMMA constraint��X� � update�sensor�track�sn�s��X�Y�

	� constraint��Y�

l�� LEMMA constraint��X� � wipe�sensor�track�sn��X�Y�

	� constraint��Y�

constraint�� LEMMA Reachable�X� 	� constraint��X�

! Check� updating doesn%t lead to decorrelation

�

!!!

update�no�decorrelation� LEMMA

update�sensor�track�sn�s��X�Y� 	�

NOT decorrelates�s�system�info�Y��joined�Y��sn���

! Check� simultaneous input and output events

!!!

oe��oe�� VAR OEvents

OE� VAR setof
OEvents

tn��tn�� VAR System�track

t��t�� VAR System�track�state

sn�� VAR Sensor�track

May�cause�ie�OE��bool 	 EXISTS X�Y�

Precondition�ie��X�

� Input�table�ie��X�Y�

� forall oe� OE�oe� 	� Output�table�oe��X�Y�

May�appear�together�OE��bool 	

EXISTS ie� May�cause�ie�OE�

CONVERSION singleton
OEvents

L�� LEMMA NOT May�cause�new�sn�s�� wipe�tn��

L�� LEMMA NOT May�cause�wipe�sn�� new�tn�t��

L�� LEMMA NOT May�cause�wipe�sn�� update�tn�t��

L�� LEMMA NOT May�cause�wipe�sn�� warn�sn���

L�� LEMMA NOT May�appear�together� �� new�tn��t���update�tn��t�� ���

END spec�

B�� Second re�nement

spec�

 Sensor�track� System�track�

Source� TYPE��

Margin��Margin�� posreal

� THEORY

BEGIN

ASSUMING

Margins� ASSUMPTION Margin� � Margin�

ENDASSUMING

Identification� TYPE 	 �friend� hostile� pending�

Kinetic� TYPE 	
� px�py�pz� real �

�

Sensor�track�state� TYPE 	

� source� Source�

identification� Identification�

kinetics� Kinetic

�

System�track�state� TYPE 	

� identification� Identification�

kinetics� Kinetic

�

s� VAR Sensor�track�state

t� VAR System�track�state

initiate�s��System�track�state 	

�� identification �	 identification�s�� kinetics�	kinetics�s� ��

mean�s�t�� Kinetic 	

LET k� 	 kinetics�s�� k� 	 kinetics�t� IN

�� px �	 �px�k�� � px�k��� � ��

py �	 �py�k�� � py�k��� � ��

pz �	 �pz�k�� � pz�k��� � �

��

update�s�t��System�track�state 	

�� identification �	 identification�s�� kinetics�	mean�s�t� ��

distance�s�t��real 	

LET k� 	 kinetics�s�� k� 	 kinetics�t� IN

�px�k���px�k��� � �px�k���px�k���

��py�k���py�k��� � �py�k���py�k���

��pz�k���pz�k��� � �pz�k���pz�k���

conflicting�s�t��bool 	

LET id� 	 identification�s�� id� 	 identification�t� IN

TABLE

id�� id� �
pending� friend �hostile�

!��������������������������������������

�pending � FALSE � FALSE � FALSE ��

�friend � FALSE � FALSE � TRUE ��

�hostile � FALSE � TRUE � FALSE ��

ENDTABLE!������������������������������

correlates�s�t��bool 	

distance�s�t� �	 Margin� � Margin�

� NOT conflicting�s�t�

decorrelates�s�t��bool 	

�

distance�s�t� �	 Margin� � Margin�

OR conflicting�s�t�

IMPORTING spec�

Sensor�track�Sensor�track�state�

System�track�System�track�state�

correlates�decorrelates�initiate�update

END spec�

�

Appendix C

Proof status reports

Proof summary for theory machine

Invariant�holds�����������������������������������proved � complete

Theory totals� � formulas� � attempted� � succeeded�

Grand Totals� � proofs� � attempted� � succeeded�

Proof summary for theory spec�

new�next��proved � complete

wipe�next���proved � complete

update�next���������������������������������������proved � complete

IMPORTING��TCC������������������������������������proved � complete

IMPORTING��TCC������������������������������������proved � complete

Theory totals� � formulas� � attempted� � succeeded�

Grand Totals� � proofs� � attempted� � succeeded�

�

Proof summary for theory spec�

correlate�to�system�track�TCC���������������������proved � complete

new�system�track�TCC������������������������������proved � complete

new�system�track�TCC������������������������������proved � complete

filter�TCC��proved � complete

filter�TCC��proved � complete

wipe�sensor�track�TCC�����������������������������proved � complete

update�sensor�track�TCC���������������������������proved � complete

e���proved � complete

e���proved � complete

e���proved � complete

e���proved � complete

e���proved � complete

IMPORTING��TCC������������������������������������proved � complete

IMPORTING��TCC������������������������������������proved � complete

constraint��proved � complete

constraint��proved � complete

l���proved � complete

l���proved � complete

l���proved � complete

l���proved � complete

l���proved � complete

l���proved � complete

constraint��proved � complete

update�no�decorrelation�TCC�����������������������proved � complete

update�no�decorrelation���������������������������proved � complete

L���proved � complete

L���proved � complete

L���proved � complete

L���proved � complete

L���proved � complete

Theory totals� � formulas� � attempted� � succeeded�

Grand Totals� � proofs� � attempted� � succeeded�

Proof summary for theory spec�

IMPORTING��TCC������������������������������������proved � complete

IMPORTING��TCC������������������������������������proved � complete

IMPORTING��TCC������������������������������������proved � complete

Theory totals� � formulas� � attempted� � succeeded�

Grand Totals� � proofs� � attempted� � succeeded�

Appendix D

Complete PVS proofs

D�� General machine

Proof scripts for theory machine�

machine�Invariant�holds� proved � complete

��� �USE �init�� �EXPAND �Reachable�� �GRIND��

D�� Top speci�cation

Proof scripts for theory spec��

spec��new�next� proved � complete

���

�SKOSIMP��

�USE �corex��

�EXPAND �Precondition��

�SKOSIMP��

�INST � ��� sensor�ids �	 add�sn���sensor�ids�X�����

system�ids �	 add�tn���system�ids�X�����

joined �	 add��sn���tn����joined�X�����

system�info �	 system�info�X��� WITH
tn���	 t�� ����

�SPLIT�

�����

�EXPAND �Invariant��

�FLATTEN�

�SPLIT�

����� �EXPAND �constraint��� �SKOSIMP�� �GRIND��

����

�GRIND �IF�MATCH NIL�

����� �GRIND�� ���� �GRIND�� ���� �GRIND�� ���� �GRIND�� ���� �GRIND��

���� �INST� ��� �GRIND����

���� �GRIND �IF�MATCH NIL� ����� �GRIND�� ���� �GRIND������

���� �GRIND����

�

spec��wipe�next� proved � complete

���

�SKOSIMP��

�INST � �LET del 	 �tn � system�ids�X����tn�

� FORALL sn� joined�X����sn�tn� 	� sn	sn��� IN

�� sensor�ids �	 remove�sn���sensor�ids�X�����

system�ids �	 �tn � system�ids�X����tn� � NOT del�tn���

joined �	 ��sn�tn� �

joined�X����sn�tn� � sn�	sn�� � NOT del�tn���

system�info �	 system�info�X��� ����

�SPLIT�

�����

�GRIND �IF�MATCH NIL�

����� �GRIND�� ���� �GRIND�� ���� �GRIND�� ���� �GRIND�� ���� �GRIND��

���� �GRIND�� ��"� �GRIND�� ��#� �GRIND����

���� �GRIND����

spec��update�next� proved � complete

���

�SKOSIMP��

�USE �wipe�next��

�GROUND�

�����

�SKOSIMP��

�USE �new�next� ��X� �Y�����

�GROUND�

�����

�SKOSIMP��

�INST � �Y����

�ASSERT�

�EXPAND �Precondition��

�FLATTEN�

�HIDE �� �� �� �"�

�LEMMA �cordecor��

�GRIND�

�APPLY�EXTENSIONALITY �HIDE� T�

�GRIND��

���� �GRIND����

���� �EXPAND �Precondition�� �FLATTEN� �PROPAX����

spec��IMPORTING��TCC�� proved � complete

���

�INST � ��� sensor�ids �	 emptyset�

system�ids �	 emptyset�

joined �	 emptyset�

system�info �	 LAMBDA tn � epsilon� t � TRUE

����

�GRIND��

�

spec��IMPORTING��TCC�� proved � complete

���

�INDUCT �i��

����� �USE �new�next�� �GRIND�� ���� �USE �update�next�� �GRIND��

���� �USE �wipe�next�� �GRIND����

D�� First re�nement

Proof scripts for theory spec��

spec��correlate�to�system�track�TCC�� proved � complete

��� �SUBTYPE�TCC��

spec��new�system�track�TCC�� proved � complete

��� �SUBTYPE�TCC��

spec��new�system�track�TCC�� proved � complete

��� �SUBTYPE�TCC��

spec��filter�TCC�� proved � complete

��� �SUBTYPE�TCC��

spec��filter�TCC�� proved � complete

��� �SUBTYPE�TCC��

spec��wipe�sensor�track�TCC�� proved � complete

��� �SUBTYPE�TCC��

spec��update�sensor�track�TCC�� proved � complete

��� �SUBTYPE�TCC��

spec��e�� proved � complete

���

�SKOSIMP��

�INST � �X�� WITH

sensor�ids �	 add�sn���sensor�ids�X�����

joined �	 joined�X��� WITH
sn���	tn���

system�info �	 system�info�X���

WITH
tn���	update�s���system�info�X����tn���� ��

����� �GRIND�� ���� �GRIND����

spec��e�� proved � complete

���

�SKOSIMP��

�INST � ���

sensor�ids �	 add�sn���sensor�ids�X�����

system�ids �	 add�tn���system�ids�X�����

joined �	 joined�X��� WITH
sn���	tn���

system�info �	 system�info�X��� WITH
tn�� �	 initiate�s��� ����

�

����� �GRIND�� ���� �GRIND�� ���� �GRIND����

spec��e�� proved � complete

���

�SKOSIMP��

�CASE �EXISTS tn� system�ids�X����tn�

� correlates�s���system�info�X����tn����

����� �HIDE �� �SKOSIMP�� �USE �e��� �PROP� �SKOSIMP� �INST � �Y���� �GRIND��

����

�USE �e���

�SPLIT ���

����� �SKOSIMP� �INST � �Y���� �EXPAND �new�sensor�track�� �GROUND��

���� �HIDE � �� �GRIND�� ���� �GRIND������

spec��e�� proved � complete

���

�SKOSIMP��

�CASE �decorrelates�s���system�info�X����joined�X����sn�������

�����

�USE �e���

�SPLIT ���

�����

�SKOSIMP�

�INST � �filter�Y�����

�EXPAND �update�sensor�track��

�ASSERT�

�INST � �Y����

�ASSERT��

���� �INST � �tn�������

����

�INST � �X�� WITH

system�info�	system�info�X��� WITH

�joined�X����sn�����	update�s���system�info�X����joined�X����sn�������

�GRIND��

���� �PROPAX����

spec��e�� proved � complete

���

�SKOSIMP��

�INST � �filter�X�� WITH
 sensor�ids �	 remove�sn���sensor�ids�X�����

joined �	 restrict�joined�X�������

����� �GRIND�� ���� �GRIND����

spec��IMPORTING��TCC�� proved � complete

���

�INST � ��� sensor�ids �	 emptyset�

system�ids �	 emptyset�

joined �	 LAMBDA �sn��emptyset
Sensor�track���

epsilon� �tn��emptyset
System�track�� � TRUE�

��

system�info �	 LAMBDA �tn��emptyset
System�track���

epsilon� �tn��emptyset
System�track�state�� � TRUE

����

����� �GRIND�� ���� �GRIND�� ���� �GRIND����

spec��IMPORTING��TCC�� proved � complete

���

�INDUCT �i��

����� �USE �e��� �GRIND�� ���� �USE �e��� �GRIND�� ���� �USE �e��� �GRIND����

spec��constraint�� proved � complete

��� �GRIND��

spec��constraint�� proved � complete

��� �GRIND��

spec��l�� proved � complete

���

�EXPAND �new�system�track��

�SKOSIMP��

�REPLACE �� � �HIDE� T�

�EXPAND �constraint���

�SKOSIMP��

�EXPAND �add��

�SPLIT�

����� �GRIND�� ���� �GRIND����

spec��l�� proved � complete

���

�SKOSIMP��

�EXPAND �correlate�to�system�track��

�SKOSIMP��

�EXPAND �constraint���

�SKOSIMP��

�INST �� �tn����

�PROP�

����� �SKOSIMP�� �INST� �� �GRIND�� ���� �GRIND����

spec��l�� proved � complete

��� �GRIND��

spec��l�� proved � complete

��� �SKOSIMP�� �EXPAND �new�sensor�track�� �USE �l��� �USE �l��� �PROP��

spec��l�� proved � complete

���

�SKOSIMP��

�EXPAND �update�sensor�track��

�FLATTEN�

��

�SPLIT ���

����� �SKOSIMP�� �USE �l��� �GROUND��

���� �FLATTEN� �REPLACE �� � �HIDE� T� �EXPAND �constraint��� �PROPAX����

spec��l�� proved � complete

���

�SKOSIMP��

�EXPAND �wipe�sensor�track��

�USE �l�� �IF�MATCH ALL�

����� �GROUND�� ���� �GRIND�� ���� �GRIND����

spec��constraint�� proved � complete

���

�RULE�INDUCT �Reachable��

�SKOSIMP��

�SPLIT�

����� �GRIND��

����

�CASE �NOT FORALL �y� State�� �i� IEvents��

NOT �constraint��y� � Precondition�i��y� � Input�table�i��y�x������

�����

�HIDE ���

�INDUCT �i��

�����

�SKOSIMP��

�LEMMA �l���

�INST �� �y��� �x��� �new��var��� �new��var����

�GRIND��

����

�LEMMA �l���

�SKOSIMP��

�INST �� �y��� �x��� �update��var��� �update��var����

�GRIND��

����

�SKOSIMP��

�LEMMA �l���

�INST �� �y��� �x��� �wipe��var����

�GRIND����

���� �SKOSIMP�� �INST�� �PROP������

spec��update�no�decorrelation�TCC�� proved � complete

��� �SUBTYPE�TCC��

spec��update�no�decorrelation� proved � complete

���

�GRIND �IF�MATCH NIL�

����� �USE �corin�� �USE �cordecor�� �PROP��

���� �USE �cordecor�� �USE �decorup�� �PROP�� ���� �USE �decorup�� �PROP����

��

spec��L�� proved � complete

��� �GRIND��

spec��L�� proved � complete

��� �GRIND��

spec��L�� proved � complete

��� �GRIND��

spec��L�� proved � complete

��� �GRIND��

spec��L�� proved � complete

���

�EXPAND �May�appear�together��

�EXPAND �May�cause��

�SKOSIMP��

�INST�CP �� �new�tn����t������

�INST �� �update�tn����t������

�GRIND��

D�� Second re�nement

Proof scripts for theory spec��

spec��IMPORTING��TCC�� proved � complete

��� �USE �Margins�� �USE �lt�times�lt�pos�� ��y� �Margin���� �GRIND��

spec��IMPORTING��TCC�� proved � complete

��� �GRIND��

spec��IMPORTING��TCC�� proved � complete

��� �GRIND��

��

Appendix E

Further reading

We give a brief overview� where the interested reader can �nd related literature�

� On similar applications� �Hal�� DS��� MPN����

� On requirements engineering� �LK��� Wie�� SS��� Zav���

� On formal methods� �HB��� Rus��� Rus��� CW��

� On PVS� �SSJ��� ORSH���

� Other formalisms� �Spi��� SBC��� Jon��� BBP��� MP��� Lam��� GP��� BB��� Lyn���
OSRSC���

� ORKEST publications� �PHJ��� PHJ���

��

Bibliography

�BB��� T� Bolognesi and E� Brinksma� Introduction to the ISO speci�cation language
LOTOS� Computer Networks and ISDN Systems� ��������� �����

�BBP��� B� Banieqbal� H� Barringer� and A� Pnueli� editors� Temporal Logic in Speci��
cation� volume ��� of LNCS� Springer� �����

�CW�� E�M� Clarke and J�M� Wing� Formal methods� State of the art and future
directions� ACM Computing Surveys� ����������� ����

�DS��� B� Dutertre and V� Stavridou� Formal requirements analysis of an avionics
control system� IEEE Trans� on SE� ������������� �����

�GP��� J�F� Groote and A� Ponse� The syntax and semantics of �CRL� In A� Ponse�
C� Verhoef� and S�F�M� van Vlijmen� editors� Algebra of Communicating Pro�
cesses� Utrecht ���
� Workshops in Computing� pages ���� Springer� �����

�Hal�� A� Hall� Using formal methods to develop an ATC information system� IEEE
Software� ��������� ����

�HB��� M�G� Hinchey and J�P� Bowen� editors� Applications of Formal Methods� Pren�
tice Hall� �����

�HL�� M�P�E� Heimdahl and N�G� Leveson� Completeness and consistency in hierar�
chical state�based requirements� IEEE Trans� on SE� ������������ ����

�HU��� J�E� Hopcroft and J�D� Ullman� Introduction to Automata Theory� Languages�
and Computation� Addison�Wesley� N� Reading� MA� �����

�Jon��� C�B� Jones� Systematic Software Development using VDM� Prentice Hall� �nd
edition� �����

�Lam��� L� Lamport� The temporal logic of actions� ACM Transactions on Programming
Languages and Systems� ������������� �����

�LK��� P� Loucopoulos and V� Karakostas� Systems Requirements Engineering�
McGraw�Hill Book Company Europe� London� �����

�Lyn��� N�A� Lynch� I�O automata� A model for discrete event systems� In Proc� of
��nd Conf� on Inf� Sciences and Systems� pages ������ Princeton� NJ� USA�
�����

�Mea��� G�H� Mealy� A method for synthesizing sequential circuits� Bell System Tech�
nical Journal� ���������������� �����

��

�MP��� Z� Manna and A� Pnueli� The Temporal Logic of Reactive and Concurrent
Systems � Speci�cation� Springer� �����

�MPN���� T�L� McCluskey� J�M� Porteous� Y� Naik� C�N� Taylor� and S� Jones� A require�
ments capture method and its use in an air tra�c control application� Software
� Practice and Experience� ������������ �����

�ORSH��� S� Owre� J�M� Rushby� N� Shankar� and F� Von Henke� Formal Veri�cation
of Fault�Tolerant Architectures� Prolegomena to the Design of PVS� IEEE
Trans� on SE� �������������� �����

�OSRSC��� S� Owre� N� Shankar� J�M� Rushby� and D�W�J� Stringer�Calvert� PVS Language
Reference� Computer Science Laboratory� SRI International� Menlo Park� CA�
September �����

�PHJ��� J�C� van de Pol� J�J�M� Hooman� and E� de Jong� Formal requirements speci��
cation for command and control systems� In Proc� of the Conf� on Engineering
of Computer Based Systems� pages ������ Jerusalem� ����� IEEE�

�PHJ��� J�C� van de Pol� J�J�M� Hooman� and E� de Jong� Modular formal speci�cation
of data and behaviour� In To appear in proc� of IFM��� �York	� �����

�Ram��� N� Ramsey� Literate programming simpli�ed� IEEE Software� �������������
�����

�Rus��� J� Rushby� Formal methods and the certi�cation of critical systems� Technical
Report SRI�CSL������ SRI International� Menlo Park� CA� �����

�Rus��� J�M� Rushby� Formal methods and their role in the certi�cation of critical
systems� Technical Report CSL������� CSL� �����

�SBC��� S� Stepney� R� Barden� and D� Cooper� editors� Object Orientation in Z� Work�
shops in Computing� Springer� �����

�Spi��� J�M� Spivey� The Z Notation� A Reference Manual� Prentice Hall� �nd edition�
�����

�SS��� I� Sommerville and P� Sawyer� Requirements Engineering� Wiley� Chichester�
�����

�SSJ��� S� Owre� S� Rajan� J�M� Rushby� N� Shankar� and M�K� Srivas� PVS� Combining
speci�cation� proof checking� and model checking� In R� Alur and T�A� Hen�
zinger� editors� Proceedings of the Eighth International Conference on Computer
Aided Veri�cation CAV� volume ���� of Lecture Notes in Computer Science�
pages �������� Springer Verlag� ����

�Wie�� R�J� Wieringa� Requirements Engineering� Frameworks for Understanding�
John Wiley� Chichester� ����

�Zav��� P� Zave� Classi�cation of research e�orts in requirements engineering� ACM
Computing Surveys� �������������� �����

�

