
�CRL� A Toolset for Analysing Algebraic

Speci�cations

Stefan Blom�� Wan Fokkink�� Jan Friso Groote�� Izak van Langevelde�� Bert
Lisser�� and Jaco van de Pol�

� CWI� Department of Software Engineering� PO Box ������ ���� GB Amsterdam�
The Netherlands� fsccblom�wan�izak�bertl�vdpolg�cwi�nl

� Eindhoven University of Technology� Department of Computing Science� PO Box
��	� �
�� MB Eindhoven� The Netherlands� jfg�win�tue�nl

� Introduction

�CRL ���� is a language for specifying and verifying distributed systems in an
algebraic fashion� It targets the speci�cation of system behaviour in a process	
algebraic style and of data elements in the form of abstract data types� The
�CRL toolset �
�� �see http���www�cwi�nl��mcrl� supports the analysis and
manipulation of �CRL speci�cations� A �CRL speci�cation can be automatically
transformed into a linear process operator �LPO�� All other tools in the �CRL
toolset use LPOs as their starting point� The simulator allows the interactive
simulation of an LPO� There are a number of tools that allow optimisations on
the level of LPOs� The instantiator generates a labelled transition system �LTS�
from an LPO �under the condition that it is �nite	state�� and the resulting LTS
can be visualised� analysed and minimised�

An overview of the �CRL toolset is presented in Figure �� This picture is
divided into three layers �CRL speci�cations� LPOs and LTSs� The rectangular
boxes denote di�erent ways to represent instances of the corresponding layer �for
example� LPOs can be represented in a binary or a textual form�� A solid arrow
denotes a transformation from one instance to another that is supported by the
�CRL toolset� keywords are provided to these arrows to give some information
on which kinds of transformations are involved� Finally� the oval boxes represent
several ways to analyse systems� and dashed arrows show how the di�erent rep	
resentations of LPOs and LTSs can be analysed� The box named BCG and its
three outgoing dashed arrows actually belong to the CADP toolset �see Section
��� The next three sections are devoted to explaining Figure � in more detail�

The �CRL toolset was successfully used to analyse a wide range of protocols
and distributed algorithms� Recently it was used to support the optimised re	
design of the Transactions Capabilities Procedures in the SS No� � protocol stack
for telephone exchanges ���
�� to detect a number of mistakes in a real	life proto	
col over the CAN bus for lifting trucks ����� to analyse a leader election protocol
from the Home Audio�Video interoperability �HAVi� architecture �
��� and to
perform scenario	based veri�cations of the coordination language SPLICE ����

minimisation
confluence reduction

minimisation

constelm
sumelm
parelm

structelm
rewr

instantiator with confluence reduction
instantiator

lineariser pretty printer

text

binary

BCG SVC

model checking visualisationsimulation

LTS

LPO

�CRL

Fig� �� The main components of the �CRL toolset

� �CRL Speci�cations

The �CRL language is based on the process algebra ACP� It allows one to specify
system behaviour in an algebraic style using atomic actions� alternative and
sequential composition� parallelism and communication� encapsulation� hiding�
renaming and recursive declarations� Furthermore� �CRL supports equationally
speci�ed abstract data types� In order to intertwine processes and data� atomic
actions and recursion variables carry data parameters� Moreover� an if	then	
else construct enables that data elements in�uence the course of a process� and
alternative quanti�cation chooses from a possibly in�nite data domain�

� Linear Process Operators

When investigating systems speci�ed in �CRL� our current standard approach is
to transform the �CRL speci�cation under scrutiny to a relatively simple format
without parallelism or communication� called an LPO� In essence this is a vector
of data parameters together with a list of condition� action and e�ect triples�
describing when an action may happen and what is its e�ect on the vector of
data parameters� It is stored in a binary format or as a plain text �le� From an
LPO one can generate an LTS� in which the states are parameter vectors and
the edges are labelled with parametrised actions�

In ���� it is described how a large class of �CRL processes can be transformed
automatically to a bisimilar LPO� The resulting LPO and its data structures are
stored as ATerms� The ATerm library ��� stores terms in a very compact way by
minimal memory requirements� employing maximal sharing� and using a tailor	

made garbage collector� Moreover� the ATerm library uses a �le format that is
even more compact than the memory format�

The �CRL toolset comprises �ve tools �constelm� sumelm� parelm� structelm
and rewr� that target the automated simpli�cation of LPOs while preserving
bisimilarity ���� These tools do not require the generation of the LTS belong	
ing to an LPO� thus circumventing the ominous state explosion problem� The
simpli�cation tools are remarkably successful at simplifying the LPOs belonging
to a number of existing protocols� In some cases these simpli�cations lead to a
substantial reduction of the size of the corresponding LTS�

Elimination of constant parameters� A parameter of an LPO can be re	
placed by a constant value� if it can be statically determined that this pa	
rameter remains constant throughout any run of the process�

Elimination of sum variables� The choice of a sum ranging over some data
type may be restricted by a side condition to a single concrete value� In that
case the sum variable can be replaced by this single value�

Elimination of inert parameters� A parameter of an LPO that has no �di	
rect or indirect� in�uence on the parameters of actions or on conditions does
not in�uence the LPO�s behaviour and can be removed� Whereas the two re	
duction techniques mentioned above only simplify the description of an LPO�
elimination of inert parameters may lead to substantial reduction of the LTS
underlying an LPO� If the inert parameter ranges over an in�nite domain�
the number of states can even reduce from in�nite to �nite by this operation�
This typically happens after hiding part of the system�s behaviour�

Elimination of data structures� Sometimes� the operations above cannot be
applied to single parameters� but they can be applied to parts of the data
structures that these variables range over� For this to take place� such data
structures must be partitioned into their constituents�

Rewriting data terms� The data terms occurring in an LPO can be rewritten
using the equations of the data types� If a condition is rewritten to false� then
the corresponding condition� action and e�ect triple in the LPO is removed�

Con�uence is widely recognised as an important feature of the behaviour
of distributed communicating systems� Roughly� a � 	transition from a state in
an LTS� representing an internal computation that is externally invisible� is
con�uent if it commutes with any other transition starting in this same state�
In ���� it was shown that con�uence can be used in process veri�cation� In ����
several notions of con�uence were studied on their practical applicability� and it
was shown that on the level of LPOs con�uence can be expressed by means of
logical formulas� In ��� it is shown that the presence of con�uence within an LPO
can be exploited at a low cost at the level of the instantiator� i�e�� during the
generation of the associated LTS� A prototype of this generation algorithm was
implemented� and experience learns that this exploitation of con�uence within an
LPO may lead to the generation of an LTS that is several orders of magnitudes
smaller compared to the standard instantiator� The detection of con�uence in an
LPO is performed using the automated reasoning techniques that are surveyed
in Section ��

�

� Labelled Transition Systems

The SVC format ���� o�ers an extremely compact �le format for storing LTSs�
This format is open in its speci�cation and implementation� and allows states
to be labelled by ATerms� A prototype visualisation tool has been developed
for the SVC format� dubbed Drishti� A reduction algorithm based on con�u	
ence and minimisation algorithms modulo equivalences such as bisimulation and
branching bisimulation have been implemented� collapsing equivalent states�

Alternatively� LTSs belonging to �CRL speci�cations can be visualised and
analysed using the C�sar�Ald�ebaran Development Package �CADP� ���� This
toolset originally targets the analysis of LOTOS speci�cations� C�sar gener	
ates the LTS belonging to a LOTOS speci�cation� and supports simulation�
Ald�ebaran performs equivalence checking and minimisation of LTSs modulo a
range of process equivalences� XTL o�ers facilities for model checking formulas
in temporal logics� The CADP toolset comprises the BCG format� which sup	
ports compact storage of LTSs� SVC �les can be translated to BCG format and
vice versa� given a CADP license �as the BCG format is not open source��

In ���� a reduction algorithm for LTSs is presented� based on priorisation
of con�uent � 	transitions� First the maximal class of con�uent � 	transitions is
determined� and next outgoing con�uent � 	transitions from a state are given
priority over all other outgoing transitions from this same state� For LTSs that
do not contain an in�nite sequence of � 	transitions� this reduction preserves
branching bisimulation� An implementation of this algorithm is included in the
�CRL toolset� In some cases it reduces the size of an LTS by an exponential
factor� Furthermore� the worst	case time complexity of the reduction algorithm
from ���� compares favourably with minimisation modulo branching or weak
bisimulation equivalence� Hence� the algorithm from ���� can serve as a useful
preprocessing step to these minimisation algorithms�

� Symbolic Reasoning about In�nite�State Systems

For very large �nite	state systems� a symbolic analysis on the level of LPOs may
result in the generation of much smaller LTSs� For systems with an inherently
in�nite number of states the use of theorem proving techniques is indispensable�

The original motivation behind the LPO format was that several proper	
ties of a system can be uniformly expressed by �rst	order formulae� E�ective
proof methods for LPOs have been developed� incorporating the use of invari	
ants ��� and state mappings ����� Also the con�uence property of an LPO can
be expressed as a large �rst	order formula ������ Using these techniques� large
distributed systems were veri�ed in a precise and logical way� often with the help
of interactive theorem provers� See ��� for an overview of such case studies�

Since the con�uence properties and the correctness criteria associated with
state mappings for industrial	scale case studies tend to be rather �at but very
large� we are developing a specialised theorem prover based on an extension of
BDDs with equality ��
�� A prototype tool has been implemented ����� which was

�

used to detect con�uence in a leader election protocol and in a Splice speci�cation
from ���� �This information on con�uence was exploited using the method of ����
see Section ��� This tool can also check invariants and the correctness criteria
associated with a state mapping between a speci�cation and its implementation�

References

�� Th� Arts and I�A� van Langevelde� How �CRL supported a smart redesign of a
real�world protocol� In Proc� FMICS���� pp� 	��	� �����

�� Th� Arts and I�A� van Langevelde� Correct performance of transaction capabilities�
In Proc� ICACSD������ IEEE� ����� To appear�

	� M�A� Bezem and J�F� Groote� Invariants in process algebra with data� In Proc� �th

Conference on Concurrency Theory� LNCS �	
� pp� �����
� Springer� �����
�� S�C�C� Blom� Partial � �con�uence for e�cient state space generation� Technical

Report� CWI� �����
�� M�G�J� van den Brand� H� de Jong� P� Klint� and P�A� Olivier� E�cient annotated

terms� Software 	 Practice and Experience� 	��	��������� �����

� P�F�G� Dechering and I�A� van Langevelde� The veri�cation of coordination� In

Proc� COORDINATION������ LNCS ���
� pp� 		��	��� Springer� �����
�� J��C� Fernandez� H� Garavel� A� Kerbrat� L� Mounier� R� Mateescu� and M� Sighire�

anu� CADP a protocol validation and veri�cation toolbox� In Proc�
th Confer�

ence on Computer�Aided Veri�cation� LNCS ����� pp� �	����� Springer� ���
�
�� J�F� Groote and B� Lisser� Computer assisted manipulation of algebraic process

speci�cations� Technical Report� CWI� �����
�� J�F� Groote� F� Monin� and J�C� van de Pol� Checking veri�cations of protocols

and distributed systems by computer� In Proc� �th Conference on Concurrency

Theory� LNCS ��

� pp�
��
��� Springer� �����
��� J�F� Groote� J� Pang� and A�G� Wouters� A balancing act� analysing a protocol for

lifting trucks in �CRL� Technical Report� CWI� ����� Submitted for publication�
��� J�F� Groote and J�C� van de Pol� State space reduction using partial � �con�uence�

In Proc� MFCS������ LNCS ���	� pp� 	�		�	� Springer� �����
��� J�F� Groote and J�C� van de Pol� Equational binary decision diagrams� In Proc�

LPAR������ LNAI ����� pp� �
����� Springer� �����
�	� J�F� Groote and A� Ponse� The syntax and semantics of �CRL� In Proc� ACP���

Workshops in Computing� pp� �

�� Springer� �����
��� J�F� Groote� A� Ponse� and Y�S� Usenko� Linearization of parallel pCRL� Journal

of Logic and Algebraic Programming� To appear�
��� J�F� Groote and M�P�A� Sellink� Con�uence for process veri�cation� Theoretical

Computer Science� �������������� ���
�
�
� J�F� Groote and J� Springintveld� Focus points and convergent process operators�

a proof strategy for protocol veri�cation� In Proc� ARTS���� �����
��� I�A� van Langevelde� A compact �le format for labeled transition systems� Technical

Report SEN R����� CWI� �����
��� R� Milner� Communication and Concurrency� Prentice Hall� �����
��� J�C� van de Pol� A prover for the �CRL toolset with applications version ��

Technical Report� CWI� �����
��� Y�S� Usenko� A comparison of Spin and the �CRL toolset on HAVi leader election

protocol� Technical Report SEN R����� CWI� �����
��� A�G� Wouters� Manual for the �CRL toolset �version ������ Technical Report� CWI�

�����

�

