
Electronic Notes in Theoretical Computer Science 68 No. 3 (2002)
URL: http://wvw.elsevier.nl/locate/entcs/volume68.html 18pages

Distribution of a simple shared dataspace
architecture 1

Simona Orzan Jaco van de Pol

CW!, P.O.Box 94079, NL-1090 GB Amsterdam, The Netherlands
simona<Dcwi.nl vdpol<Dcwi.nl

Abstract

We study a simple software architecture, in which components are coordinated by
writing into and reading from a global set. This simple architecture is inspired by the
industrial software architecture Splice. We present two results. First, a distributed
implementation of the architecture is given and proved correct formally. In the
implementation, local sets are maintained and data items are exchanged between
these local sets. Next we show that the architecture is sufficiently expressive in
principle. In particular, every global specification of a system's behaviour can be
divided into components, which coordinate by read and write primitives on a global
set only. We heavily rely on recent concepts and proof methods from process algebra.

1 Introduction

The complexity of designing distributed systems is generally managed by in­
troducing a software architecture, defining how components are coordinated.
By fixing the architecture, two separate tasks can be distinguished. First, the
architecture must be implemented on a distributed network. Second, com­
ponents must be designed that together implement the requirements of the
system under design, using the coordination primitives provided by the ar­
chitecture. The architecture and its implementation are likely to be reused
for other systems in a similar application domain. The choice of architecture
is a delicate issue. From the application programmer's point of view a rich
set of coordination primitives, and the guarantee of system-wide consistency
are preferable. At the same time, this demands much overhead from the dis­
tributed implementation, and may lead to bad performance, or even to an
unrealizable architecture.

1 Partially supported by PROGRESS, the embedded systems research program of the
Dutch Organisation for Scientific Research NWO, the Dutch Ministry of Economic Affairs
and the Technology Foundation STW, grant CES.5009.

@2002 Published by Elsevier Science B. V.

0RZAN AND VAN DE POL

Inspired by the industrial architecture Splice (see below), we study the
consequences of choosing an extremely weak and simple coordination model:
communication via a global set. The coordination primitives between com­
ponents are restricted to writing and reading. We imagine that the applica­
tion components reside at certain physical locations, abstractly represented by
natural numbers. Coordination primitive write(i, v) represents that the com­
ponent at location i adds value v to the global set; if v is present already this
action has no effect. The other primitive, read(i, v) denotes a non-destructive,
blocking read of a particular value (or template) v by a component at location
i. That is, it waits until it actually finds v in the global set, and then proceeds.
Note that test for absence and deletion of items is not possible.

From the separate tasks we mentioned before, two natural questions on
architectures arise, which are addressed in this paper. The first question is
whether the architecture itself has an efficient distributed implementation.
This is addressed in section 3. We define a distributed implementation of
the architecture, in which every component has its own local set. Data items
are exchanged between these local sets asynchronously. We prove that the
implementation based on local sets is behaviourally equivalent to the specifica­
tion based on a conceptual global set. The fact that the difference cannot be
noticed is mainly due to the careful selection of the weak coordination primi­
tives. This result is essentially the same as in [5,7,8], albeit in a slightly more
general setting. However, the proof is much simpler due to the application of
powerful process algebraic proof principles.

The second question is whether the architecture is sufficiently expressive
to allow the distributed implementation of any system specification. This is
investigated in section 4 from a functional point of view - i.e. without taking
into account issues like performance or fault tolerance. We show that every
specification of functional behaviour has a distributed implementation, i.e. one
where different types of actions are performed at different physical locations.
In particular, the components only use the weak coordination primitives read
and write on a global set. As far as we know, this main result is not compa­
rable to existing results on expressiveness of coordination models.

As an example, consider the very simple logging system, with its be­
havioural specification input.log, indicating that some input action precedes
some log action. This system probably uses two physical devices (e.g. a mon­
itor and an actuator) with their own controllers, so input and log happen at
different locations. A distributed implementation with our primitives could
be: input.write(l1 ,d) II read(l2 ,d).log. Here l1 and l2 are the locations of
the components, and d is some data value. With 11 we denote parallel com­
position. Assuming that the system starts with the empty data space, the
second process is initially blocked, so the only execution of this little program
should be input.write(li, d).read(l2 , d).log. If we hide the communication ac­
tions read and write, we indeed get the desired system behaviour input.log.
We remark that the system button1 + button2 , in which non-deterministically

2

0RZAN AND VAN DE POL

either button1 or button2 is pressed, also has a distributed implementation,
but this is much harder. In particular, our solution will use an unbounded
number of internal communications.

1.1 Relationship with Splice

The choice of architecture in this paper is influenced by Splice [6] (Subscription
Paradigm for the Logical Interconnection of Concurrent Engines). Splice is
a data-oriented software architecture for complex control systems, developed
and used at the company Hollandse Signaalapparaten bv (currently Thales
Nederland). Components are considered as publishers of, and subscribers to
data. Each component is accompanied by an agent, which stores data items
locally, and forwards these to agents of subscribed components. The advantage
of the Splice architecture is that the components are loosely coupled, thus
increasing the amount of fault tolerance [6]. The data is present at several
locations, making replication of components relatively easy.

Recent research papers propose to view Splice conceptually as a shared
data space, i.e. a set of data common to all components [5,12]. Viewing the
data as a global data space has the advantage that all programs perceive the
same data at any moment. In addition, viewing it as a set (instead of a
multi-set) opens the way to transparent replication of components [12]. See
section 5.1 for further related work.

1.2 A Process-algebraic Approach

A common theme has been to embed the coordination primitives in a host
language and give semantics to the resulting coordination language. As an
alternative, we adopt a process algebraic point of view. In this view everything
is a process, or more precisely: the behaviour of every system can be modeled
as process. A system can be modeled as a process at various abstraction levels.
Typically, two descriptions are distinguished: Spee and Impl. The process
Spee specifies the global behaviour of the system, whereas the process Impl
describes its implementation, typically as the parallel composition of certain
communicating processes. The typical process algebraic correctness statement
is then: Spee= r 1 (Impl), i.e. the specification is behaviourally equivalent to
the implementation, after abstraction of internal communications in I.

In our case, the components of the application are processes. Also the ar­
chitecture itself will be a process; we will define our architecture as the process
GSRW (global set with read and write) in section 2.1. Our first problem is to
find a distributed implementation of GSRW, called DSRW (Distributed sets
with read and write) together with a proof that GSRW = r1(DSRW). The sec­
ond problem requires for any specification of a system's global behaviour B,
a number of components Pi (satisfying certain syntactic criteria on locations)
such that B = r1(GSRWllP1ll · · · llPn)·

We have chosen the process algebraic approach for a number of reasons.

3

0RZAN AND VAN DE POL

First, it clarifies the concepts. By choosing a formalism, rather vague claims
on realizability and expressiveness are turned into clear theorems. Process
algebra provides the means to focus on the essential interfaces, by distinguish­
ing external and internal actions, and by encapsulation of data in processes.
The next advantage is that our approach yields rigorous formal proofs, apt for
mechanic verification. The full proofs are available in technical reports (23,24].
The third advantage is that we can use powerful proof principles developed
for process algebra. Finally, by using a standard process algebra existing tools
([4]) can be used for simulation and model checking. This has been demon­
strated in [20,25].

2 Preliminaries: Process Algebra with Data

For good introductions to process algebra see [1,14]. We will present and
prove our ideas using the formalism µCRL [18], which is a combination of the
standard process algebra ACP [2] with abstract data types.

2.1 GSRW in the syntax ofµ CRL

Processes are built from atomic actions (e.g. input, log) by certain connec­
tives. In particular, µCRL inherited the typical process algebra connectives
from ACP. For any processes p and q, p + q denotes non-deterministic choice
between p and q, p · q denotes their sequential composition, and p 11 q denotes
the parallel composition (defined in terms of interleaving and synchronous
communication). The operators encapsulation (8H) and hiding (Tr) will be
explained later. Two special processes are o (deadlock, the unit of +) and r
(internal action).

Besides processes, a µCRL specification contains abstract data types. A
signature of multiple sorts and functions can be declared, and axiomatized by
equations. We will tacitly assume the following standard sorts with the usual
operations: Bool (booleans), Nat (natural numbers, to represent locations),
D (to represent data values, intentionally left unspecified) and Set (finite sets
over D).For A: Set and v: D, A+v denotes AU{v}. It is routine to specify
these types algebraically.

The following connectives connect processes with abstract data types.
First, atomic actions can be parameterized with data elements, as in read(v).
Then, 2=d:Dp(d) denotes alternative (possibly infinite) choice over data do­
main D. Finally, if bis a term of data domain Bool and p and q are processes,
then the conditional (p <J b 1> q) is the process "p if b, else q".

We now formally define GSRW. To this end we introduce the parameterized
atomic actions Read(i : Nat, v : D) and Write(i : Nat, v : D), where i
denotes the location (or: service access point) and v the datum. Given these
basic actions, the architecture GSRW is now defined by the following recursive
specification, parameterized with the current set A of values of sort D:

4

0RZAN AND VAN DE POL

GSRW(A: Set)= L L Write(i, v).GSRW(A + v)
i:Nat v:D

+ L L:Read(i,v).GSRW(A) <l v EA l>O
i:Nat v:D

Thus, GSRW maintains the global set A. At any moment this process allows
that either an element is written, or a value can be read, provided it is actually
present in A. In this way, the blocking character of read is captured.

Application processes can read and write by synchronizing with the Read
and Write of GSRW. To this end we introduce the actions read(i: Nat, v: D)
and write (i : Nat, v : D). These actions should synchronize (cf. function
calls or method invocations), so we define the communication function as
follows: Read I read= Rand Write I write= W. As usually in µCRL, the
unsynchronized actions are encapsulated by the 8{Read,read,Write,write} construct
(in order to enforce communication), and the internal communications are
hidden using the T{R,W} construct (in order to abstract from internal detail).
The semantics of the previous example from the introduction is now captured
formally by the following µCRL-expression:

T{R,W}(O{Read,Write,read,write}(GSRW(0) 11 input.write(li, d) 11 read(h, d).log))

And indeed, it is a trivial exercise to prove that this is behaviourally equivalent
to the specification input.log.a (termination is not preserved).

2.2 Proof Methods from Process Algebra

We noted already that the typical process algebraic notion of refinement is
given by the equation r 1(Impl) =Spee. As equivalence relation between pro­
cesses we use branching bisimulation (16], which is slightly finer than weak
bisimulation. Note that our results also apply to weak bisimulation. In [18]
branching bisimulation on µCRL processes is axiomatized algebraically. Re­
cent papers developed more practical proof methods that will be used here.
These methods are related to a particular process format, called linear process
equation.

2.2.1 Linear Process Equations and Invariants
In (17] it is demonstrated that a large class of µCRL specifications can be
transformed to linear process equations (LPE). Process terms have an implicit
notion of state. The point of the LPE format is that the state is encoded
explicitly in a data vector. An LPE is essentially a list of condition-action­
effect triples. Given an index i from a finite index set J, action ai with data
parameter fi(d, ei) is enabled in stated, if bi(d, ei) holds. This action leads to
the next state 9i(d, ei)· Here ei is a local variable, used to encode arbitrary

5

0RZAN AND VAN DE POL

input. Formally, an LPE is a recursive specification of the following form:

Impl(d: D) = L L ai(fi(d, ei)).Impl(gi(d, ei)) <l bi(d, ei) 1> 8
iEJ e1:E1

The advantage of this format is that properties and proof methods can be
uniformly expressed, in terms of the state d and the constituents fj, 9J and
bj.

We assume a special action T, denoting hidden steps. An LPE is conver­
gent, if it doesn't admit infinite sequences of T-steps. The principle CL-RSP
(Recursive Specification Principle for Convergent LPEs) [3,18] states that a
convergent LPE has a unique solution. A predicate I(d) is an invariant if and
only if it is preserved by all transitions, formally iff the following conjunction
holds:

In [19,18] the focus and cones method is described for proving equality
between implementation and specifications, which we recall in the next section.
This method is only applicable in case of convergent LPEs. If T-loops exist, we
need a fairness assumption on executions in order to ensure that eventually an
exit from the T-loop is chosen. To this end, a fairness rule will be introduced
in section 2.2.3.

2.2.2 State mappings, Cones and Focus Points
The summands of I mpl above can be split into internal T steps and external
steps, J = Int l±J Ext, where Int = { i E J I ai = T }. Besides the implementa­
tion, we assume a given specification:

Spec(d' : D') = L L ai(!I(d', ei)).Spec(g:(d', ei)) <l b~(d', ei) 1> 8

Note that the specification must not contain T-steps. We also assume that
the implementation is convergent. Then every state has internal steps to
a focus point, i.e. one in which no further T-steps are possible. The fo­
cus points can be easily characterized by the focus condition: FC(d) =
Mielnt•3(ei : Ei)· bi(d, ei)·

An implementation and a specification in the format above can be proved
behaviourally equivalent by providing a state mapping h : D -+ D', and
proving that the matching criteria MCh(d) hold, where MCh(d) is defined as
the conjunction of the following:

(i) for each i E Int, 'v'(ei : Ei)· bi(d, ei) -+ h(d) = h(gi(d, ei))
i.e. internal steps don't change the related state.

(ii) for each i E Ext, 'v'(ei : Ei). bi(d, ei) -+ bHh(d), ei)
i.e. the specification can mimic all external steps of the implementation
(soundness).

6

0RZAN AND VAN DE POL

(iii) for each i E Ext, V(ei: Ei)· b~(h(d), ei) A FC(d) -+ bi(d, ei)
i.e. each external step of the specification can be mimicked in the related
focus points of the implementation (completeness).

(iv) for each i E Ext, V(ei : Ei). bi(d, ei) -+ fi(d, ei) = JI(h(d), ei)
i.e. the data labels on the external transitions coincide.

(v) for each i E Ext, V(ei: Ei)· bi(d, ei) -+ h(gi(d, ei)) = gHh(d), ei)
i.e. the next states after a visible transition are related.

Theorem 2.1 (from [19}} For specification and convergent implementation
in the format above, and given a state mapping h and an invariant I such
that J(d) holds and V(d: D). J(d) -+ MCh(d), we have

Spec(d) <l FC(d) t> r.Spec(d) Impl(h(d)) <l FC(d) t> r.lmpl(h(d))

The essence of this proof method is that given a state mapping h, and
invariant J, the correctness proof boils down to a check of a number of simple
criteria.

2.2.3 Fair abstraction
The focus and cones method only works for convergent LPEs. But we will
encounter r-loops of arbitrary length. In order to eliminate these loops, we
need a fairness principle, which states that eventually an exit of the loop
is chosen. For this we will use Koomen's Fair abstraction rule (KFARn for
n > 1) [1]. Assume we have a v-loop with exits, of the following form:

X1 = v.X2 + s1

X2 = v.X3 + s2

Then after abstraction from v we would get a non-convergent LPE. However,
according to KFARn we are sure that after some time one of the exits Si is
taken, so we get:

3 Distributed Implementation

In this section a distributed implementation of GSRW is defined and a cor­
rectness proof is given. We first introduce the data type List, representing a
list of local data spaces. It has constructors€ (empty list) and :: (cons). The
elements of the lists are sets of values. The lists are specified in such a way
that they "grow on demand". We write Li for the i-th element of L (counting

7

0RZAN AND VAN DE POL

from 0). If i exceeds the length of L, then Li is taken to be the empty set.
With L[i : +v) we denote the list Lo, ... , Li-1, Li+ v, Li+1 , .•. , Ln. When
necessary, L[i : +v) extends L with empty sets to have length at least i, and
adds v to Li.

(A:: L)o =A

(A:: L)i+i = Li

E[O: +v] = [{v}]

E [(i + 1) : +v] = 0 : : E [i : +v]

(A:: L)[O: +v] = (A+v) :: L

(A:: L)[(i + 1): +v] =A:: (L[i: +v])

In the distributed version DSRW, each component i will write to its private
set Ki and reads from its private set Li. Elements of Ki are sent to all the Li
separately. Hence DSRW has as parameters the lists K and L and is defined
as follows:

DSRW(K, L : List) =
L L Write(i, v).DSRW(K[i: +v), L)
i:Nat v:D

+ L L Read(i, v).DSRW(K, L) <l v E Li t> c)
i:Nat v:D

+ L L Send(i, v,j).DSRW(K, L[j: +v]) <l v E Ki \Lit> o
v:D i,j:Nat

According to DSRW, written elements are not immediately available. Data
items might even arrive in a different order in different processes. Nevertheless,
we have the following correctness theorem:

Theorem 3.1 GSRW(0) = T{Send}(DSRW(E,E)).

Proof. We view GSRW as a specification and T{Send} (DSRW) as its imple­
mentation; the latter equals DSRW with Send(i, v, j) replace by T. By the
focus and cones method, it suffices to give a state mapping and an invari­
ant, and check the matching criteria. As state mapping we define h(K, L) =
(LJ KULJ L). We need the invariant Inv= Vi.Li~ LJ K, which can be checked
easily. The focus condition FC(K, L) is -,:J(i,j, v). v E Ki \Li. Assuming the
invariant, this can be simplified to Vj.Li = LJ K (i.e. all written values have
arrived and are ready to be read). Convergence of the implementation follows
easily: in T{Send}(DSRW) the number Li Lj #(Ki \Li) decreases with each
T-step. Now the matching criteria are (skipping the trivial ones):

(1) v E Ki \ Li -t LJ K U LJ L = LJ K U LJ L [i : +v]

(2) v E Li -t v E LJ KU LJ L

(3) (v E LJKULJL) /\ (Vj.Li = LJK) -t (v E Li)

(4) (LJKULJL) +v = LJK[i: +v] ULJL

8

0RZAN AND VAN DE POL

These can be proved by simple set-theoretic calculations. Initially, we have
Jnv(E,E) and FC(c,E), whence the result follows by Theorem 2.1. D

In fact this means that GSRW and T{Send}(DSRW) are indistinguishable.
This is a generalization of [7,5], because the application processes may use
non-deterministic choice, recursion, or even use synchronous communication.
Our proof is a standard application of the focus and cones method [19].

4 Expressiveness

In this section we will investigate the expressiveness of GSRW, from a system
engineering point of view: given the requirements specification of a system
under design, can a distributed implementation on GSRW be constructed?
We assume that the requirements specification is given by a description of the
global behaviour, and a localization function. The behavioural specification is
a process Spee. The alphabet of a process is the set of action labels that occur
in it. Let A be the alphabet of Spee. We also assume some set L of locations,
describing for instance physical devices. A localization function is a function
>.:A-+ L.

A component X is consistent with the localization function if there exists
a fixed location .e, such that the alphabet of X contains only the actions read,
write and external actions a with .:\(a) =I!. For instance, if .:\(scan) =F .:\(log),
the implementation can have a component with alphabet {read, write, scan}
and another with {read, write, log}. This notion can be seen as a syntactic
criterion to enforce correct distribution and to enforce that processes can only
communicate via the coordination primitives.

A distributed implementation of Spee,.:\ on GSRW consists of an initial
database A 0 , together with a number of components X 1, ... , Xn that are
consistent with .:\, and behave like Spee, i.e.

Spee= T{R,w}8{read,Read,write,Write}(GSRW(Ao) II X1 II · · · II Xn)·

The matter of distributing functionalities of a requirements specification
over more communicating components was also studied in [21] for LOTOS
expressions; the synchronization is solved there with message passing, while
GSRW coordinates the components using persistent data.

Example 4.1 We describe a possible implementation on GSRW of a very sim­
ple buffer specification. For this, we consider the datasort Queue, representing
a queue of natural numbers (data must be sent out in the same order in which
it was scanned). It has the constant em, representing the empty queue, and the
operations: push: N atxQueue---+Queue, which adds an element to a queue;
pop:Queue---+Queue, which extracts the top element of the (not empty) pa­
rameter queue; top:Queue---+ Nat, which returns the top element of the given
queue; and notempty:Queue---+ Bool, which adds an element to a queue. The

9

0RZAN AND VAN DE POL

buffer interacts with the world through the actions IN, which inputs a natu­
ral number to the buffer and 0 UT, which outputs a natural number from the
buffer. Then the µCRL specification of the buffer is:

BufSpec (Q: Queue) = 'Ed:Nat(IN(d). BufSpec (push(d,Q))

+OUT(top(d)). BufSpec (pop(Q)) <l notempty(Q) 1> o)
(1)

In order to build an implementation of BufSpec on GSRW, we use a global set
that memorizes values of sort Nat x Nat, representing pairs (sequence number,
data item). We instantiate the architecture to GSRW(A : Set(Nat x Nat))
and we choose a localization function).:).(JN)= li, .A(OUT) = l2• A possible
distributed implementation on GSRW of the buffer is :

Buflmpl =Bin (0) II Bout (0) II GSRW (0) (2)

where
Bin (n: Nat)= L IN(d).write(li, (n,d)).Bin (n + 1)

d:Nat

Boot (n: Nat)= L read(l2, (n,d)).OUT(d).Boot (n + 1)
d:Nat

(2) is indeed an implementation of (1), since it can be proved that BufSpec(em)
is branching bisimilar to T{R,w}8{Read,Write,read,write} Buflmpl.

4.1 The translation scheme

In the sequel we will show how to construct Xi and A0 for any requirements
specification. That is, we describe a translation scheme from an LPE Spee(d)
together with a localization function L to a set of processes X1, • • · , Xn and
some initial database Ao satisfying the above criteria. The localization cri­
terion will be solved by mapping each action label to a different component.
This results in the maximally distributed, most fine-grained implementation of
the given specification, from which an implementation with less parallel com­
ponents can always be obtained by bundling several components Xi. Then we
will prove that this translation scheme is correct.

We assume that a requirements specification is given in LPE format (see
section 2):

Spee (d: D) = L L ai(fi(d, ei)).Spec (gi(d, ei)) <l bi(d, ei) 1> o (3)
iEI e1:E1

Each summand of EiEI defines a set of transitions from state d to state g;. (d, ei)
and it is enabled for all ei for which the guard bi(d, ei) is true. Moreover, we
assume a localization function). : { ai I i E I} --+ L for a set of locations L.

10

0RZAN AND VAN DE POL

Let n =III. The distributed implementation will haven components, each
responsible for one action ai. They communicate via GSRW, using a global
set of pairs (timestamp, data) of the sort Nat x D. The timestamp represents
the moment when the pair was added to the database or, in other words, the
number of visible + invisible steps executed until the time of insertion. The
data is one of the global states of the system.

Components are triggered in turns, by the timestamp, in a circular infinite
pass: component i will be activated at all moments t = k · n + i (Vk). When
activated, it will choose to execute its action or not to execute it. In both
cases, it will increase the "global time" and pass the turn to its next sister.
This cycle is needed to ensure that the nondeterminism that may exist in the
global specification Spee(d) is preserved in the distributed implementation.
At any time, all possible actions must have a chance to execute.

In a formal definition, the component Xi, responsible of action ai is:

Xi(m) = l:d:D read(,\(ai), (m,d)).

(Lei:Ei (ai(fi(d, ei)).write(.X(ai), (m + 1, 9i(d, ei)))

<J bi(d, ei) t> c5) (4)

+ write(.X(ai), (m + l,d)))

. Xi(m+n)

and the initial state of the implementation is

(5)

The parameter m of Xi is the moment when Xi expects to be activated next.
As mentioned before, m is always of the form k · n + i. At moment m,
read(£, (m, d)) from Xi synchronizes with Read(£, (m, d)) from GSRW(A), for
some d. This activates Xi. After "acting", Xi will set its parameter to the
next active moment (k + 1) · n + i, i.e. m + n. In its life, Xi passes only
through the following local states: 0 -ready to read, 1 -activated; make a
choice (execute action or pass the turn), 2 -action performed; pass the turn.

We will prove that this distributed implementation on GSRW of a LPE is
almost equivalent to the specification. That is: if we abstract from the actions
dealing with the global set (R, W), then we get the specification Spee(d) with
an extra initialization step:

Theorem 4.2 For every requirements specification expressible as a LPE
Spee(d), the components Xi resulted by applying the translation scheme satisfy:

T.Spec(d) = T.T{R,w}O{Read,Write,read,write}(lliXi(i) II GSRW({(O, d)})).

11

0RZAN AND VAN DE POL

4.2 Correctness proof

This subsection is devoted to proving that the translation defined above is
correct. That is, to prove theorem 4.2. First of all, to be able to compare the
two processes appearing in the theorem, we need to bring the implementation
(5) to a linearized form (the specification Spec(d) already is, by assumption).
We do this in 4.2.1. Further, having both specification and implementation
in linearized form, we can use the focus points method [19,18] to prove their
equivalence. But not immediately, since this method requires that the imple­
mentation should be convergent (without infinite r-loops) and this is not the
case for ours - infinite r-loops occur when abstracting from Rand W. There­
fore, in 4.2.2, we will consider an intermediate specification Y, in which we
abstract only from R's and the second W (the one generated by the communi­
cation between write(m + 1, d) and Write from GSRW, see 4), while keeping
the other write(m + 1, 9i(d, ei)) as a visible action - but renamed to an action
without arguments v. In Y we also eliminate the database A. Now we can
prove, using the focus points method, that the linearized implementation is
branching bisimilar to Y. Afterwards we abstract from the remaining visible
action v and prove by fair abstraction (4.2.3) that T.T{v}Y = r.Spec.

4.2.1 Linearization of implementation
In the linearized version of a process, we view everything globally. The state
of the system will be described by the parameters A, m E N'1, l E {O, 1, 2}n
and d E Dn. A is the set of pairs, the database appearing as parameter of
process GSRW. m is the vector of "moments", an element mi (the parameter
of process Xi) is the moment when Xi will be activated next. l is the vector
of local states (li is the current local state of component i). Finally, dis the
vector of data items; di is the data that component i knows of, currently.
Although in principle there is only one global view on data, components may
have temporary different views. That's why we need d as parameter, instead
of just d.

In the initial state, A = { (0, d)} (we are at moment 0 and the current data
is the global specification's parameter d); l = 0 (all the components are in the
"start" local state O); m = (0, 1, · · · , n-1) (component i waits to be activated
at moment i and first component to be activated is 0, triggered by (0, d), the
only pair from the database A); d = 0 (in the initial state the values in this
vector don't matter, since they will be used only after being initialized by a
reading action).

Due to the fact that all components Xi from (5) are independent, the
linearized version is just the sum of their separate interactions with GS RW (A).
After renaming one of the write actions to v and hiding the read action and

12

0RZAN AND VAN DE POL

the other write, we get the following linearized implementation:

Impl (A, l, m, d) = I:~,:-01 (

Ly T. Impl(A, l[li := 1], m, d[di := y])

<l li = 0 I\ (mi, y) E A t> o
+v. Impl(AU {(mi+ 1, d)}, l[li :=OJ, m[mi :=mi+ n], d)

<J li = 1 I> 0

+ Lei:Ei(ai(fi(d,ei)). Impl(A,l[li = 2],m,d[~ := gi(d,ei)])

<Jli = 1J\bi(d,ei)1>0)

+r. Impl(AU {(mi+ 1, di)}, l[li := O], m[mi :=mi+ n], d)

<J li = 2 I> 8)

The formula

T{R,W}O{Read,Write,read,write}(lliXi(i) llGSRW({(O, d)}))

(6)

= T{v}Impl({ (0, d)}, 0, (0, 1, · · · , n - 1), 0) (7)

summarizes what has happened in the linearization step.

4.2.2 Pre-abstraction
We define the intermediate specification Y as follows:

v. Y((i + 1) mod n, d) <J i = c 1> o
+ Le;:E;(ai(fi(d,ei)). Y((i + 1) mod n,gi(d,ei)) (8)

<Ji= c I\ bi(d, ei) 1> 8))

The parameter c is a natural number from the set {O, · · · , n - 1} and points
to the active component Xc(mc). c's values in the successive calls of Y
(Y(O, _), Y(l, _), Y(2, _), · · · , Y(n - 1, _), Y(O, _), Y(l, _), · · ·) reflect the order
in which components become active. The other parameter, d, is the global
state of the system.

We aim to show, by using an appropriate state mapping, that this inter­
mediate specification is equivalent to the linearized implementation, i.e. that

r.lmpl({(O, d)}, 0, (0, 1, · · · , n - 1), 0) = r.Y(O, d). (9)

The state mapping must relate equivalent states of I mpl and Y. To ensure
this, the focus points method ([19,18], see section 2.2.2) requires that certain
matching criteria should be satisfied, which are easy (but tedious) to prove,
using invariants on Impl's states. For the complete proof of (9), including a

13

0RZAN AND VAN DE POL

list of the invariants, we refer the reader to (23]. Here we will only show some
of the invariants and briefly discuss the state mapping.

One of the invariants is that for any "moment" t there is at most one
data item d such that (t, d) E A. When this item exists, we will denote it
by data(A, t). Another important invariant is that for any state (A, l, m, d)
there is exactly one x E {O · · · n - 1} for which (m:i:, _) EA (where_ denotes
any data instance). The state mapping h : States(I mpl) --t States(Y) can
be now defined as follows:

h((A, l, m,d)) = {
(x, data(A, m:z:)) if l:i: E {O, 1} and (m:i:, _) EA

((x + 1) mod n, d:i:) if lx = 2 and (mx, _) EA

The idea of this mapping is that it extracts from a global state (A, l, m, d)
the essential information that characterize it, namely the index of the active
component and the data that this component gets as input.

If we hide v in both lmpl and Y, (9) becomes

r.r{v}lmpl({(0, d)}, 0, (0, 1, · · · , n - 1), 0) - r.T{v}Y(O, d). (10)

4.2.s Abstraction
By instantiating the definition (8) for c E {O · · · n - 1} and using the obser­
vation that there are no summands for which i =j:. c, we obtain:

Y(O, d) = v.Y(l, d) + L ao(fo(d, eo)). Y(l, go(d, eo)) <l bo(d, eo) C> o
eo:Eo

Y(l, d) = v.Y(2, d) + L a1(f1(d, ei)). Y(2, 91(d, ei)) <l bi(d, ei) C> o
e1:E1

Y(n-1,d)=v.Y(O,d) + L an-1Un-1(d,en-1)). Y(0,9n-1(d,en-1))

<lbn-1(d, en-1) [> 0

It is easy to see that Y(O, d) · · · Y(n - 1, d) form a { v} - cluster, with exits

KFARn (1] (Koomen's Fair Abstraction Rule) states that in a fair execution,
one of the exits will eventually be taken. In our case, this means that we can
write, for all k E {O · · · n - l}:

r.T{v}Y(k, d) =
T. :E~~01 :Ee,:E, ai(fi(d, ei)).T{v} Y((i + 1) mod n, 9i(d, ei)) (11)

<l bi(d, ei) C> o

14

0RZAN AND VAN DE POL

The right-hand side of this formula does not depend on k, which allows us to
say that T.T{v}Y(O, d) = T.T{v}Y(l, d) = · · · = T.T{v}Y(n -1, d). Consequently,
we can replace in (11) k with 0 and
ai (Ji(d, ei)) .T{v} Y((i + 1) mod n, 9i(d, ei)) with ai (fi(d, ei)).T{v} Y(O, 9i(d, ei))
and obtain:

n-1

T.T{v}Y(O,d) = T. L L ai(fi(d,ei)).T{v} Y(O,gi(d,ei)) <l bi(d,ei) [> 8
i=O ei:Ei

Comparing with (3), we see that T.T{v}Y(O, d) and T.Spec(d) are solutions of
the same equation, thus, by RSP, they are equal. This equality, together with
the linearization (7) and the equivalence to the intermediate specification (10),
proves the theorem 4.2.

5 Conclusion

We have studied the architecture GSRW, based on write and blocking, non­
destructive read primitives on a global set. By viewing the architecture as a
separate component defined by process algebra, we obtained a nice separation
between the tasks of application programming on the architecture, and the
distributed implementation of the architecture itself.

GSRW provides a conceptual global view to application programmers, mak­
ing the development and analysis of applications easier. Our first result shows
that maintaining the global view doesn't lead to any overhead in the dis­
tributed implementation, like locking protocols. For this, the limited set of
coordination primitives is essential. Due to these restrictions, application pro­
cesses just cannot observe that their local set is not (yet) up-to-date. Our
second result supports this architecture, by indicating that despite these re­
strictions, the architecture is sufficiently expressive from a functional point of
view.

Non-functional requirements, like performance and fault tolerance might
lead to stronger coordination primitives, such as destructive or non-blocking
read, as in Linda [11]. However, these don't come for free. Either, we have to
give up the global view, as shown in [7,8], or complicated protocols are needed
in order to guarantee global consistency, as the two-phase-commit protocol
in JavaSpacestm [15]. The former compromises ease of application program
construction and analysis, the latter might comprise performance on a different
level.

Future work could be directed to investigating other distribution schemes,
based on different criteria. We could look for "efficient" implementations - for
instance, schemes that would minimize the number of communication steps
(i.e., interactions with the database). To this end, it might be necessary to add
new primitives to the current GSRW model or to consider weaker equivalences
between specification and implementation.

15

0RZAN AND VAN DE POL

5.1 Related Work

In [13] a more detailed description of Splice is given, at the level of agents
communicating on an Ethernet network. However, an abstract specification
of this fragment is not given. Instead the model is validated by verifying that
a number of scenarios satisfy certain desired temporal logic properties.

The distributed implementation that we give is at the same level of ab­
straction as in [5, 7,8]. This is sufficient to show that for read/write primitives
a global set is equivalent to a number of local sets. In [7,8] operational se­
mantics corresponding to these views are given, and it is proved that for each
program these views yield behaviourally equivalent semantics. Several other
variants were considered, based on e.g. multi-sets and stronger coordination
primitives. A semantics of JavaSpaces along the same lines is defined in [10].
In [5] denotational semantics are given for distributed and local versions, and
it is proved and formally checked by a proof checker, that both semantics yield
the same write-traces and end up in the same data space.

Although our realizability result resembles this work, the setting is quite
different. As we have the architecture as a separate component, we can
prove that the global architecture and its distributed implementation are be­
haviourally equivalent. Therefore our result is language independent and im­
mediately applies to the case where components may use recursion and internal
choice. This combination has not been considered in [5, 7,8]. The proof we give
is simpler in our view, as it mainly consists of checking some simple matching
criteria, which are generated by a standard application of the cones-and-foci
method [19,18].

In [5] an imperative language is used with as primitive read(x, q); P, which
is blocked until some value v satisfying query q exists which is then bound in
p to x. We obtain the same effect by the process E:i:(read(x).P <I q(x) C> o).
Instead of the action of writing or reading, these authors regard the arrival
in the database observable, which we have hidden by a T{Send} in DSRW.
It is interesting future research to see how their semantics can be formally
connected with ours.

Our expressiveness result should be contrasted with the result of [9], where
it is shown that additional primitives, like the test-for-absence, are needed to
get Turing completeness. There, components are restricted to finite state
machines, and the computation power entirely comes from the coordination
primitives. We take a system's engineering view, by focusing on the question
whether the read and write primitives are sufficiently expressive for solving the
coordination between (probably infinite state) application programs. We also
focus on the real task of the components: implement the system's external
global behaviour.

Our construction has similarities with transformations in [21], where a
requirements specification is split in parallel parts communicating via message
passing, and [22], where an encoding of choice in the a-synchronous 7r-calculus

16

0RZAN AND VAN DE POL

is provided. Both papers introduce internal loops to resolve external choices,
similar to our translation. However, those papers are based on event-based
coordination, whereas our approach uses a persistent data approach. For this
reason, we had to use increasing sequence numbers, and couldn't find a finite
state solution.

References

[1] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge University
Press, 1990.

[2] J .A. Bergstra and J .W. Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37(1):77-121, 1985.

[3] M.A. Bezem and J.F. Groote. Invariants in process algebra with data. In
B. Jonsson and J. Parrow, editors, Proceedings Concur'94, number 836 in LNCS,
pages 401-416, Uppsala, Sweden, 1994. Springer-Verlag.

[4] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. Langevelde, B. Lisser, and J.C.
van de Pol. µCRL: a toolset for analysing algebraic specifications. In Proc. of
CAV 2001, number 2102 in LNCS, pages 250-254, 2001.

[5] R. Bloo, J.J.M. Hooman, and E. de Jong. Semantical aspects of an architecture
for distributed embedded systems. In Proceedings of the 2000 ACM Symposium
on Applied Computing (SAC 2000), pages 149-155. ACM, 2000.

[6] M. Boasson. Control systems software. IEEE Transactions on Automatic
Control, 38(7):1094-1106, July 1993.

[7] M.M. Bonsangue, J.N. Kok, and G. Zavattaro. Comparing coordination
models based on shared distributed replicated data. In J. Carroll, H. Haddad,
D. Oppenheim, B. Bryant, and G.B. Lamont, editors, Proceedings of the 1999
ACM Symposium on Applied Computing (SAC '99), pages 146 - 155, San
Antonio, Texas, USA, February 1999. ACM press.

[8] M.M. Bonsangue, J.N. Kok, and G. Zavattaro. Comparing software
architectures for coordination languages. In P. Ciancarini and A. Wolf, editors,
Proceedings of the 3rd International Conference on Coordination Languages and
Models (Coordination 99), number 1594 in LNCS, pages 150-164. Springer­
Verlag, 1999.

[9] N. Busi, R. Gorrieri, and G. Zavattaro. On the Turing equivalence of Linda
coordination primitives. In Proceedings of Express '91, volume 7 of Electronic
Notes in Theoretical Computer Science. Elsevier, 1997.

[10] N. Busi, R. Gorrieri, and G. Zavattaro. Process calculi for coordination: From
Linda to JavaSpaces. In T. Rus, editor, 8th International Conference on
Algebraic Methodology and Software Technology, number 1816 in LNCS, Iowa,
USA, 2000. Springer-Verlag.

17

0RZAN AND VAN DE POL

[11] N. Carriere and D. Gelernter. Linda in context. Communications of the ACM,
32(4):444-458, April 1989.

[12] P.F.G. Dechering and E. de Jong. Transparent object replication: A formal
model. In Fifth Workshop on Object-oriented Real-Time Dependable Systems
(WORDS'99F), Monterey, California, USA, 2000. IEEE Computer Society.

[13] P.F.G. Dechering and I.A. van Langevelde. The verification of coordination.
In A. Porto and C. Roman, editors, Proceedings of the Fourth International
Conference on Coordination Models and Languages, number 1906 in LNCS,
Limassol, Cyprus, 2000. Springer-Verlag.

[14] W. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer
Science (EATCS). Springer-Verlag, 2000.

[15] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces principles, patterns, and
practice. Addison-Wesley, Reading, MA, USA, 1999.

[16] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in
bisimulation semantics. Journal of the ACM, 43(3):555-600, May 1996.

[17] J.F. Groote, A. Ponse, and Y.S. Usenko. Linearization in parallel pCRL.
Journal of Logic and Algebraic Programming, 48(1-2):39-72, June 2001.

[18] J.F. Groote and M.A. Reniers. Algebraic process verification. In J.A. Bergstra,
A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra, pages 1151-
1208. North-Holland, 2001.

[19] J.F. Groote and J.S. Springintveld. Focus points and convergent process
operators: a proof strategy for protocol verification. Journal of Logic and
Algebraic Programming, 49(1-2):31-60, 2001.

[20] J.M.M. Hooman and J.C. van de Pol. Formal verification of replication on
a distributed data space architecture. In Proceedings of SAG 2002 (Madrid},
pages 351-358. ACM, 2002.

[21] R. Langerak. Transformations and Semantics for LOTOS. PhD thesis,
Department of Computer Science, University of Twente, November 1992.

[22] U. Nestmann and B.C. Pierce. Decoding choice encodings. In U. Montanari
and V. Sassone, editors, Proc. of the 7th Int. Con/. on Concurrency Theory
(CONCUR 96}, number 1119 in LNCS, pages 179-194. Springer-Verlag, 1996.

[23] S.M. Orzan. Distributing requirements specifications on Basic Splice. Technical
Report SEN-ROlOl, CWI, Amsterdam, The Netherlands, 2001. http: I I db.
cwi.nl/rapporten/index.php.

[24] J.C. van de Pol. Expressiveness of Basic Splice. Technical Report SEN-R0033,
CWI, Amsterdam, The Netherlands, 2000. http: I /db. cwi. nl/rapporten/
index.php.

[25] J.C. van de Pol and M. Valero Espada. Formal specification of JavaSpaces™
architecture using µcrl. In F. Arbab and C. Talcott, editors, Proc. of
COORDINATION, number 2315 in LNCS, pages 274-290. Springer, 2002.

18

