
New developments around the µCRL tool set

Stefan Blom a Jan Friso Groote b,a Izak van Langevelde a

Bert Lisser a Jaco van de Pol a,I

a Centrum voor Wiskunde en Informatica, Dept. of Software Engineering
Amsterdam, The Netherlands

b Eindhoven University of Technology, Computer Science Group
Eindhoven, The Netherlands

Abstract

Some recent developments in the µCRL tool set are presented. New analysis tech
niques are a symbolic model checker, and a visualizer for huge state spaces. Also
various transformations are presented. At symbolic level, theorem proving, data
flow analysis, and confluence checking are used to obtain considerable state space
reductions. At the concrete level, distributed implementations of state space gen
eration and minimization are recent. We mention the successful application of the
tools to the verification of large data-intensive distributed systems.

1 Introduction

The µCRL specification language [12] is used to specify data-intensive proto
cols and distributed systems. System behavior is described in process algebra,
using non-determinism, sequential and parallel composition, synchronous com
munication, hiding and recursion. Data structures are modeled using abstract
data types. The data is linked to the processes by means of parameterized
actions and recursion, conditionals, and a choice operator.

The µCRL tool set 2 [3] can be used to generate the state space as a la
beled transition system (LTS) of a µCRL system specification. In order to
combat the state space explosion at the symbolic level, an intermediate for
mat of linear process is introduced (Figure 1). This is a symbolic and concise
description of the state space. Emphasizing new developments, we will review
some transformation and analysis capabilities on linear processes (Section 2)
and LTSs (Section 3). Some applications are mentioned in Section 4.

1 Email: Jaco.van.de.Pol©cwi.nl
2 URL: http: I /www. cwi. nl;-mcrl

Preprint submitted to Elsevier Preprint 14 May 2003

Optimization

Minimization

µCRL

Li ncari zat inn

\dl-f11rmcdnc''
tyre checking

simulati1111
invariants

Linear process - - - - - - control flo\\ analy'i'

Generation

State Space ------·

i.;1lnrlucncc

S\ 111bnl1c· mndcl chcckine

,.i,uali1a1inn

~imulati11n

mmlcl d1cd.ing

l'Lllll\ab1cc chcckine

Fig. 1. Models, transformations, and analysis techniques in the µCRL tool set

2 Symbolic Manipulation and Analysis

The symbolic analysis and transformations are applied to linear processes.
Linearization can be applied to any µCRL specification, although only a sub
set has been implemented. A linear process is a concise, symbolic description
of a possibly infinite transition system. It consists of a vector of state param
eters, and a number of summands. Each summand specifies a set of labeled
transitions by means of a condition, an atomic action and a state update.
A simulator is available that allows the user to step through the states, by
choosing one of the enabled actions.

Data flow analysis. Various simplifications of linear processes have been
implemented [9], e.g. the identification and substitution of constant param
eters, and the elimination of unused parameters. These have proved to be
widely applicable, and combining them results in an effective state space re
duction. Recently, a tool has been developed to identify typical control flow
parameters in a linear process, and to construct their control flow graph.
These graphs can be visualized and animated via the simulator. The control
flow is also the basis of a live-variable analysis. The state space is reduced by
resetting temporarily unused parameters to a dummy value. Future develop
ments will use control flows for automated invariant generation and confluence
marking.

Invariants and Confluence. Owing to the linear process format, proposi
tions like "<P is an invariant" can be expressed in terms of universally quantified
data formulas. An automated theorem prover, based on extending BDDs with
equations and interpreted functions, has been developed to solve such formu
las. Invariants are useful for verifying desired properties, but they can also be
used in combination with transformations, for instance to identify more con
stant state parameters, or to prove that certain summands are never enabled.

2

The theorem prover is also used to detect confluent summands [5], possibly
using separately proven invariants. Confluent summands can be given prior
ity, giving rise to enormous state space reductions in many cases, similar to
partial-order reduction. This prioritization can be approximated at symbolic
level, or applied during state space generation, using an on-the-fly algorithm
for strongly connected components, to avoid problems with T-loops.

Symbolic Model Checking. Recently, a prototype symbolic model checker
has been built [13]. It can be used to check first-order modal µ-calculus
properties on infinite state spaces, represented by linear processes. The model
checking problem is reduced to boolean equation systems with parameterized
recursion operators [10]. These are solved using the aforementioned extension
of BDDs. In this approach, it is for instance possible to express and prove
that an infinite-state merger process transforms increasing input streams to
an increasing output stream.

3 Explicit State Space Minimization and Analysis

Within the µCRL toolset a library for "on-the-fly" state space exploration
has been implemented. Using this library, we have implemented both single
threaded and distributed state space generation tools. This exploration library
has also been used to implement the Open/Cresar interface. Thus, we can use
all Open/Cresar based tools from the CADP toolset 3 [7]. The confluence-based
partial-order reduction will soon be moved from the single-threaded state space
generation tool to this exploration library, allowing both the Open/Cresar
tools and distributed state space generation tools to benefit from partial order
reduction.

State Space Minimization. Model checking requires a significant amount of
memory. As distributed generation can easily generate state spaces which do
not fit on a single machine, it is essential to first reduce large LTSs modulo an
equivalence which preserves the desired properties. To allow the reduction of
very big state spaces, distributed strong and branching bisimulation reduction
tools have been written for the µCRL tool set [4]. As usual, the reduction
tools are based on partition refinement. The refinement strategy is quite
unusual though: instead of refining a single block of the current partition in
each iteration, all blocks are refined in parallel. In theory this leads to bad
performance, but in practice the single-threaded versions of the tools are quite
competitive with the bcg_min tool in the CADP toolset. The parallelism is
of course also a major advantage for distributed implementations. Another
unusual feature is that the distributed branching bisimulation reduction works
on LTSs which contain T-cycles. The framework used by the tools also allows

3 URL: http://www.inrialpes.fr/vasy/cadp/

3

reduction modulo safety equivalence. Another direction for future work is the
implementation of a distributed model checking tool in the style of XTL [7].

State Space Analysis. The LTS is generated in a format recognized by
the CADP tool set. This makes the following analysis techniques available at
the state space level: equivalence checking, explicit state model checking and
visualization. Usually, visualization of state spaces is limited to small systems
(< lK nodes). However, by using modern visualization techniques, such as
clustering, very large graphs of >lM nodes can be visualized as cone trees [8].
The resulting drawings can be analyzed for symmetries, and individual parts
can be inspected by zooming in. Also, various properties of the state vector of a
distributed system can be translated to highlighted regions in the visualization.

4 Applications

Since its conception, the development of the µCRL tool set has been inspired
and stimulated by its application in industrial case studies. Conversely, these
industrial applications have benefitted from the analytical strength offered by
the tools, which more than once revealed fatal bugs in the systems under
scrutiny.

An optimization of Transaction Capabilities Procedures [2], lent itself well
for verification through µCRL. The dimensions of the state spaces generated
were relatively small, involving no more than a few thousand transitions. The
success of this case study resulted in several more case studies in the telecom
munication industry [1].

A distributed lift system [11], presented more of a challenge for the tool
set, in that it was only possible to analyse systems of up to 5 lifts (or 6 on a
cluster of 8 machines). Despite of this restriction, the analysis through µCRL
revealed bugs that lead to possibly dangerous situations.

The Splice coordination architecture [6] was a killer for the tool set. The ar
chitecture involves a number of applications which have access to a distributed
data space, but the systems for which the state space could be generated were
limited to those consisting of 2 relatively simple applications; anything more
complex hit the limit of several millions of transitions. Recent experiments
show that confluence reduction is very effective on such architectures.

A cache coherence protocol for Java [14] crashed into the same limits.
However, this verification greatly benefits from the young development of dis
tributed tools for µCRL which opened new horizons by generating explicit
state spaces of more than 800 million transitions.

The control system of the Dutch railroad trajectory Woerden-Harmelen is
waiting to be verified. At the moment, its complexity grossly surpasses the
limits of the µCRL tool set. As these limits are pushed further and further, it
is realistic to expect that one day this case study can be successfully tackled.

4

References

[1] T. Arts, C. Benac Earle, and J. Derrick. Verifying Erlang code: A resource
locker case-study. In L.-H. Eriksson and P.A. Linsday, editors, Proc. of FME'02,
LNCS 2391, pages 184-203. Springer, 2002.

[2] T. Arts and I.A. van Langevelde. Correct performance of transaction
capabilities. In Proc. of ICACSD'Ol, pages 35-42. IEEE, 2001.

[3] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. van Langevelde, B. Lisser, and
J.C. van de Pol. µCRL: A toolset for analysing algebraic specifications. In
G. Berry etal, editor, Proc. CAV'Ol, LNCS 2102, pages 250-254. Springer, 2001.

[4] S.C.C. Blom and S.M. Orzan. A distributed algorithm for strong bisimulation
reduction of state spaces. In L. Brim and 0. Grumberg, editors, Electronic
Notes in Theoretical Computer Science, volume 68. Elsevier, 2002.

[5] S.C.C. Blom and J.C. van de Pol. State space reduction by proving confluence.
In E. Brinksma and K.G. Larsen, editors, Proceedings of CA V'02, volume LNCS
2404, pages 596-609. Springer, 2002.

[6] P.F.G. Dechering and I.A. van Langevelde. The verification of coordination.
In A. Porto and Roman G.-C., editors, Proc. of COORDINATION'OO, LNCS
1906, pages 335-340. Springer, 2000.

[7] H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001. European
Assoc. for Software Science and Technology (EASST) Newsletter, 4:13-24, 2002.

[8] J.F. Groote and F.J.J. van Ham. Large state space visualization. In Proceedings
of TACAS'03, volume LNCS 2619, pages 585-590. Springer, 2003.

[9] J.F. Groote and B. Lisser. Computer assisted manipulation of algebraic process
specifications. In M. Leuschel and U. Ultes-Nitsche, editors, Proc. of VCL'02,
Technical Report DSSE-TR-2002-5, University of Southampton, 2002.

[10] J.F. Groote and R. Mateescu. Verification of temporal properties of processes
in a setting with data. In A.M. Haeberer, editor, Proc. of AMAST'98, LNCS
1548, pages 74-90. Springer, 1998.

[11] J.F. Groote, J. Pang, and A. Wouters. Analysis of a distributed system for
lifting trucks. J. of Logic and Algebraic Programming, 55(1-2):21-56, 2003.

[12] J.F. Groote and M.A. Reniers. Algebraic process verification. In J.A. Bergstra,
A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra, chapter 17.
Elsevier, 2001.

[13] J.F. Groote and T.A.C. Willemse. A checker for modal formulas for processes
with data. Technical report, Eindhoven Univ. of Technology, Dept. of CS, 2002.

[14] J. Pang, W.J. Fokkink, R. Hofman, and R. Veldema. Model checking a cache
coherence protocol for a Java DSM implementation. In Proc. of IPDPS,
FMPPTA. IEEE, 2003.

5

