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Abstract. Let S be the set of scalings {n−1 : n = 1, 2, 3, . . .} and let Lz = zZ2, z ∈ S, be the
corresponding set of scaled lattices in R2. In this paper averaging operators are defined for plaquette
functions on Lz to plaquette functions on Lz′ for all z′, z ∈ S, z′ = dz, d ∈ {2, 3, 4, . . .}, and their
coherence is proved. This generalizes the averaging operators introduced by Balaban and Federbush.
There are such coherent families of averaging operators for any dimension D = 1, 2, 3, . . . and
not only for D = 2. Finally there are uniqueness theorems saying that in a sense, besides a form of
straightforward averaging, the weights used are the only ones that give coherent families of averaging
operators.
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1. Introduction

Consider a family of lattices in 2-space,

Lz = zZ2 ⊂ R2 = {(za, zb) ∈ R2 : a, b ∈ Z}, z ∈ S.

The set S is the set of length scales that is being discussed; for instance, the set
S = {2−r : r = 1, 2, 3, . . .} as in [1–3, 5–8], or S = {n−1 : n ∈ N}, where N is
the set of natural numbers N = {1, 2, 3, . . .}. These are the only two sets of length
scales that will be used in this paper. Other sets of scalings can be used, such as Q+
the set of rational numbers greater than zero or S = {∏p∈T pap : ap ∈ Z} for T a
finite or infinite set of prime numbers.

Introduce a partial ordering on S by z ≺ z′ iff z′ = dz, d ∈ {2, 3, 4, . . .}.
A partial ordering on a set S is (downwards) directed if for all z1, z2 ∈ S there is a
z ∈ S such that z ≺ z1, z ≺ z2. All the partially ordered sets mentioned so far are
directed.

A plaquette of Lz is a cell of Lz, that is a minimal square with corner points
in Lz, that is, a square with with corner points {(az, bz), (az, (b + 1)z),
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((a + 1)z, bz), ((a + 1)z, (b + 1)z)} for some (a, b) ∈ Z2. Let P(Lz) denote
the set of plaquettes of Lz. A plaquette function is a function f : P(Lz) → R,
or C, or any other field of characteristic zero for that matter. Let R(Lz) be the ring
(vector space) of plaquette functions on Lz.

An averaging operator (also called coarsening operator) from scale z to scale
z′ = dz, d ∈ N, is a map αd : R(Lz) → R(Lz′), z′ = dz. One of the first conditions
one requires of a collection of averaging operators for a set of length scales is
coherence. That is, if z′′ = ez′, z′ = dz then one should have

αe ◦ αd = αed . (1.1)

In itself coherence is not all that difficult to achieve. For instance, one can take
straight averages or put the value of the averaged function on the larger plaquette
equal to the value of the smaller plaquette situated at its lower left-hand corner, as
illustrated in the two figures below for the case d = 4.

Here the large plaquette, bordered by heavy lines, is the union of 16 small
plaquettes, and with obvious, though ad hoc notation

f large plaquette = 1

16

( ∑
i,j=1,2,3,4

f
small plaquette
ij

)
,

respectively,

f large plaquette = f
small plaquette
1,1 .

The coherent ‘lower left-hand corner scheme’ appears utterly daft; at least at the
moment – in mathematics and mathematical physics one never knows what solu-
tions to a given problem may one day turn out to be important.

There is also something quite counterintuitive about the straightforward aver-
aging scheme. Intuitively the value of the plaquette function at a large plaquette is
something like a field strength located at the center of that large plaquette. Thus it
seems counterintuitive that it is made up of the field strengths of the smaller pla-
quettes without regard of how far the centers of these small plaquettes are removed
from the center of the large plaquette; one would like to have some tapering off.
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Far from unrelated to this intuitive reasoning is the following. Once one has
a coherent scheme of averaging operators one has a (directed) inverse system
(projective system) of vector spaces and vector space morphisms

αd : R(Lz) → R(Lz′); z, z′ ∈ S, z′ = dz. (1.2)

See, e.g., [4], Chapter VIII. Then one can take the projective limit, which could be
suggestively denoted with R(L0). An element of this projective limit is a family of
functions {f z ∈ R(Lz) : z ∈ S} such that αd(f

z) = f z′
for all z, z′ ∈ S, z′ = dz.

What one would like is some sort of decent relation between these projective limit
elements and continuously differentiable functions on R2 so as to get some good
relation between a coherent system of lattice models, indexed by a set of scales
S, and a field theory. This does not happen for straightforward averaging but it
does happen for Balaban–Federbush averaging in the sense that the continuously
differentiable functions on R2 inject into the correponding projective limit. See [7]
and the references quoted there.

For a picture of Balaban–Federbush averaging one positions the lattices in-
volved differently, namely in such a way that the centers of the large plaquettes
coincide with the centers of appropriate small plaquettes. In [1–3, 5–8] the only
averaging operators that occur are α2 and its iterates, and the picture for α2 is

Here the large plaquette is bordered by heavy lines and the nine small plaquettes
which affect the value of the averaged function on the large plaquette are bordered
by thin lines. The numbers in the small plaquettes are their relative weights. They
add up to 16 and so, using again obvious, but ad hoc and not very useful, notation,
the formula is

f large plaquette = 2−4(f small
1,1 + 2f small

1,2 + f small
1,3 + 2f small

2,1 + 4f small
2,2 +

+ 2f small
2,3 + f small

3,1 + 2f small
3,2 + f small

3,3 ).

This particular rule is heuristically appealing in that the corner four small pla-
quettes influence precisely four large plaquettes, the four noncorner small edge
plaquettes affect two large plaquettes and finally the center small plaquette only
affects one large plaquette, suggesting that the relative weights should be exactly
as they are in that in aggregate each small plaquette has exactly the same amount
of total influence in the averaging process. This fails however for the iterates of the
α2 such as α2 ◦ α2.
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It is also tempting to think that the right kind of averaging for scale changes that
are powers of 2, or more generally any natural number larger than 1, would be: ‘To
obtain the averaged value of f large at a given plaquette take a weighted sum of all
the values of f small at those small plaquettes which intersect the large plaquette’.
This fails for the iterate α2 ◦ α2.

The right picture would appear to be as follows. Take a large plaquette P . Let P̃
be the plaquette with the same center and sides parallel to those of P and of twice
their length. Then the value of the averaged function at P is a weighted sum of all
small plaquettes completely contained in P̃ . This is illustrated for the scale factors
2, 3, and 4 in the pictures below.
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Here the small plaquettes are bordered with normal thickness lines; the large
plaquette P is bordered with heavy lines, and the plaquette P̃ that determines which
small plaquettes influence the averaged value on the large plaquette is bordered by
half heavy lines.

The relative weights are also indicated. For the scale factor d there are precisely
(2d − 1)2 small plaquettes which affect a large plaquette (as is easily checked).
The relative weights in the pictures above add up to 16 = 24, 81 = 34, and
44 respectively. So the true weights are respectively 2−4, 3−4, and 4−4 times the
numbers indicated.

From these examples it is not difficult to guess what might be the general rule
for any scale factor. And, as it happens, that obvious guess works to give a coherent
system of averaging operators. Precise formulas will be given below in section 2.
Moreover this scheme works not only in dimension D = 2, the plane case just
discussed, but in any dimension D = 1, 2, 3, 4, . . . .

2. The Averaging Formula

Consider a scale z ∈ S and the corresponding lattice Lz. It is convenient to displace
the coordinate system by ( 1

2z,
1
2z). Then the plaquettes of Lz can be labelled by

their centers wich have coordinates of the form (az, bz), a, b ∈ Z, see the figure
below. Moreover the plaquettes of Lz′ , z′ = dz, d ∈ N, have their centers at the
points (adz, bdz), a, b ∈ Z.
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Let f be a plaquette function on Lz and denote its value on the plaquette with
center (az, bz) by faz,bz. Let z′ = dz. Then the BF-average αdf is the plaquette
function on Lz′ whose value at the plaquette (adz, bdz) of Lz′ is given by

(αdf )adz,bdz = d−4
∑

|i|,|j |�d−1

(d − |i|)(d − |j |)f(da+i)z,(db+j)z. (2.1)

Note that∑
|i|,|j |�d−1

(d − |i|)(d − |j |) = d4,

so that the weights in (2.1) add up to 1.

3. Proof of Coherence

The coherence theorem to be proved is now the following.

THEOREM 3.1. Let S be the set of scales S = {2−r : r = 0, 1, 2, 3, . . .} or S =
{n−1 : n ∈ N}, and let the averaging operators αd : R(Lz) → R(Ldz) be given
by (2.1). Then

αe ◦ αd = αed (3.2)

for all d, e ∈ N.

Remark 3.3. In case of the set of scales S = {2−r : r = 0, 1, 2, 3, . . .} there is
a different way of looking at Theorem 3.1. Given any set of averaging operators

αz
2: R(Lz) → R(L2z), z, 2z ∈ S,

define αz
2r : R(Lz) → R(L2rz) as the composite α2r−1z

2 ◦ α2r−2z
2 ◦ · · · ◦ αz

2. Then
coherence is automatic (and one can even have the various α2 depend explicitly on
z) because composition is associative. It is in this sense that the projective limits
occurring in [7] are to be understood. The content of Theorem 3.1 in this case is
that if α2 is given by (2.1) for d = 2, then its iterates are explicitly given by (2.1)
for all d = 2r . This is also the content of the main result of [9].

Proof of Theorem 3.1. By definition,

(αedf )edaz,edbz = (ed)−4
∑

|i|,|j |�ed−1

(ed − |i|)(ed − |j |)f(eda+i)z,(edb+j)z. (3.4)

On the other hand,

(αe(αdf ))edaz,edbz

= e−4
∑

|r |,|s|�e−1

(e − |r|)(e − |s|)(αdf )(eda+rd)z,(edb+sd)z

= e−4d−4
∑

|r |,|s|�e−1

∑
|t |,|u|�d−1

(e − |r|)(e − |s|)

× (d − |t|)(d − |u|)f(eda+rd+t )z,(edb+sd+u)z. (3.5)



THEOREMS FOR AVERAGING PROCESSES IN STATISTICAL MECHANICS 111

So (3.4) will be equal to (3.5), proving (3.2) for all f , if and only if for all |i|, |j | �
ed − 1 we have∑

(e − |r|)(e − |s|)(d − |t|)(d − |u|) = (ed − |i|)(ed − |j |), (3.6)

where the sum on the left in (3.6) is over all solutions of the system of equalities
and inequalities

rd + t = i, |r| � e − 1, |t| � d − 1, (3.7)

sd + u = j, |s| � e − 1, |u| � d − 1. (3.8)

The first step is to study the solutions of a system like (3.7).

LEMMA 3.9. Let i, e, d be given with i � ed − 1 and consider the system of
inequalities and an equality (3.7). Then, depending on i, there are one or two
solutions, as follows:

(i) If |i| > d(e − 1) there is one solution, viz r = e − 1, t = i − d(e − 1) if
i > 0, and r = −(e − 1), t = i + (e − 1)d if i < 0.

(ii) If i is divisible by d, i = kd, then there is precisely one solution, viz r = k,
t = 0.

(iii) If |i| < d(e − 1) and i is not divisible by d, then there are precisely two
solutions, described as follows. Write i = qd + p, p ∈ {1, . . . , d − 1}. This
can be done in a unique way. Then the two solutions are

r = q, t = p,

r = q + 1, t = p − d.

The proof is routine.

LEMMA 3.10. For all i, |i| � ed − 1,∑
solutions of (3.7)

(e − |r|)(d − |t|) = ed − |i|, (3.11)

where the sum on the left is, as indicated, over all pairs (r, t) of integers such that
(3.7) holds.

Proof. If i > d(e − 1), there is one solution, viz r = e − 1, t = i − d(e − 1),
and the left-hand side of (3.11) is equal to (e − (e − 1))(d − (i − (e − 1)d)) =
ed − i = ed − |i|.

If i < −d(e − 1), the only solution is r = −(e − 1), t = i + (e − 1)d, and
the left-hand side of (3.11) is equal to (e − |−(e − 1)|)(d − |i + (e − 1)d|) =
d − (−i − (e − 1)d) = ed + i = ed − |i|.

If i is divisible by d, i = kd, there is just one solution, viz r = k, t = 0 and the
left-hand side of (3.11) is equal to (e − |k|)d = ed − |kd| = ed − |i|.

Finally, if |i| < d(e − 1) and i is not divisible by d, there are precisely two
solutions, viz r = q, t = p and r = q + 1, t = p − d. Note that for the first
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solution t > 0, and for the second t < 0. Thus for q � 0, so that also i � 0, the
left-hand side of (3.11) is equal to

(e − q)(d − p) + (e − q − 1)p

= ed − qd − ep + qp + ep − qp − p

= ed − qd − p = ed − |i|.
And for q � −1, so that i � 0, it is equal to

(e + q)(d − p) + (e + q + 1)p = ed + qd + p = ed − |i|.
This proves Lemma 3.10. ✷

Proof of Theorem 3.1 (continued). Because Equations (3.7) and (3.8) are com-
pletely independent of each other, a solution of the combined system consists of
picking a solution of one and combining it with a solution of the other. Thus, for
given i, j , |i|, |j | � ed − 1, the sum on the left-hand side of (3.6) is equal to∑

Solutions of (3.7)

(e − |r|)(d − |t|)
∑

Solutions of (3.8)

(e − |s|)(d − |u|),

and this is equal to the right-hand side of (3.6) by Lemma 3.10. ✷

4. Averaging in Other Dimensions than 2

Now consider D-dimensional lattices Lz = zZD ⊂ RD and functions on the
D-dimensional cells of Lz. Here D is any natural number 1, 2, 3, . . . . Shift the
coordinate system by the vector

(2−1z, 2−1z, . . . , 2−1z)︸ ︷︷ ︸
D

.

Then the cells of Lz are conveniently labelled by their center points, which have
coordinates of the form (a1z, a2z, . . . , aDz), ai ∈ Z, and the cells of Lz′ , z′ =
dz, have center points with coordinates (da1z, da2z, . . . , daDz). The averaging
formula is now

(αdf )da1z,...,daDz

= d−2D
∑

|i1|,...,|iD |�d−1

(d − |i1|) · · · (d − |iD|)f(da1+i1)z,...,(daD+iD)z. (4.1)

The proof that this is coherent is virtually identical with the proof given above for
the case D = 2. The relevant identity to be proved is∑

(e − |r1|)(d − |t1|) · · · (e − |rD|)(d − |tD|)
= (ed − |i1|) · · · (ed − |iD|) (4.2)
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for all |i1|, . . . , |iD| � ed − 1, where the left-hand sum is over all solutions of the
system of equations and inequalities

i1 = r1d + t1, |r1| � e − 1, |t1| � d − 1,
· · ·
iD = rDd + tD, |rD| � e − 1, |tD| � d − 1.

(4.3)

Now, because the D equation systems making up (4.3) are independent, a solution
consists of picking a solution for each of the separate equation systems. So, for
given i1, . . . , iD , |i1|, . . . , |iD| � ed − 1, the left-hand side of (4.2) is equal to

D∏
j=1

∑
Solutions of the
j-th equation

of (4.3)

(e − |rj |)(d − |tj |).

By Lemma 3.10 this is equal to the right-hand side of (4.2).

5. A Uniqueness Theorem

One can consider averaging schemes like (4.1) in general with weights possibly
different from the

d−2D(d − |i1|) · · · (d − |iD|) (5.1)

of (3.2) and wonder for which weights this is coherent for the set of scales S =
{n−1 : n ∈ N} for D = 1 (and hence for all D). The following uniqueness theorem
says that, besides a straightforward averaging type scheme, the weights (5.1) are
the only ones that work for such schemes.

THEOREM 5.2. Consider averaging schemes

(αdf )da1z,...,daDz =
∑

|i1|,...,|iD |�d−1

wd
i1
wd

i2
· · ·wd

iD
f(da1+i1)z,...,(daD+iD)z, (5.3)

where wd
i = wd

−i and suppose that these are coherent for D = 1 (and hence for all
D). Suppose, moreover, that w2

1 �= 0 (so that α2 is nontrivial) and that the weights
are �= 0 and add up to 1, as they should. Then there are two possibilities:

(i) the weights wd
i are equal to those of (5.1); i.e.,

wd
i = d−2(d − |i|). (5.4)

(ii) the weights wd
i are as follows:

wd
i =

{
0 if d − i is even,
d−1 if d − i is odd.

(5.5)



114 HUGO H. TORRIANI AND MICHIEL HAZEWINKEL

Remark 5.6. The second solution is a kind of straightforward averaging.

Proof. First consider the case d = 2, d = 3. Then coherence says that

α2 ◦ α3 = α3 ◦ α2 = α6, (5.7)

and this implies certain identities between w2
1 = x and w3

1 = y1, w3
2 = y2.

Specifically, consider the coefficients of the f6a+1 in α6f . On the one hand, we
have to look at all solutions of

1 = 2r + s, |r| < 3, |s| < 2,

which are r = 0, s = 1; r = 1, s = −1 and give the coefficient

(1 − 2y1 − 2y2)x + y1x,

and, on the other hand, at solutions of

1 = 3t + u, |t| < 2, |u| < 3,

which are t = 0, u = 1 and t = 1, u = −2 and give the coefficient

(1 − 2x)y1 + xy2.

Thus coherence implies that

x − y1x − 2y2x = y1 − 2xy1 + xy2. (5.8)

Similarly, looking at the coefficients of the f6a+i in α6f for i = 2, 3, 4, one finds
the equations

y1(1 − 2x) = (1 − 2x)y2 + xy1, (5.9)

y1x + y2x = x(1 − 2y1 − 2y2), (5.10)

y2(1 − 2x) = xy1. (5.11)

Substitute (5.11) in (5.9) to get y1(1 − 2x) = 2xy1, so that x = 1/4, or y1 = 0.
In the latter case, by (5.9), y2 = 0 or x = 1/2. But if y1 = y2 = 0, then also x = 0
by (5.6), which is not the case by hypothesis. Thus there are just two possibilities
for x, viz:

(a) x = 1/4. Then y1 = 2y2 by (5.11). Also y1 + y2 = 1/3 by (5.10). In this
case we have

x = 1
4 , y1 = 2

9 , y2 = 1
9 ,

in agreement with (5.4) for d = 2 and d = 3.
(b) x = 1/2. Then y1 = 0, and by (5.10) y2 = 1/3, as is the case of (5.5) for

d = 2 and d = 3. Now let d be any odd natural number and for convenience write

zi = wd
i , i = 0, 1, 2, . . . , d − 1.



THEOREMS FOR AVERAGING PROCESSES IN STATISTICAL MECHANICS 115

Consider

α2 ◦ αd = αd ◦ α2 = α2d

and look at the coefficients of the f2da+i in α2df for i = 0, 1, . . . , d − 1. First look
at i’s of the form i = 2d−(2k+1) for k = 1, 2, . . . , 2−1(d−3). The only solution
of

2d − 2k − 1 = rd + s, |r| < 2, |s| < d

is r = 1, s = d − (2k + 1), which gives the coefficient xzd−2k−1. On the other
hand, the solutions of

2d − 2k − 1 = 2t + u, |t| < d, |u| < 2

are t = p − k, u = −1 and t = p − k − 1, u = 1, which yield the coefficient
zd−kx + zd−k−1x. Thus we find the equations

zd−3 = zd−1 + zd−2,

zd−5 = zd−2 + zd−3,

· · ·
z2 = z2−1(d+3) + z2−1(d+1).

(5.12)

Now look at i’s of the form i = 2d − 2k, k = 1, 2, . . . , 2−1(d − 1). There is just
one solution of

2d − 2k = dr + s, |r| < 2, |s| < d,

viz r = 1, s = d − 2k, which gives the term xzd−2k. There is also just one solution
of

2d − 2k = 2t + u, |t| < d, |u| < 2,

viz t = p − k, u = 0, which yields a term zp−k(1 − 2x). Thus,

zd−1(1 − 2x) = xzd−2,

zd−2(1 − 2x) = xzd−4,

· · ·
zp−2−1(p−1)(1 − 2x) = xz1.

(5.13)

Finally, for i = 1 one finds the equation

(1 − 2x)z1 + xzd−1 = (1 − 2z1 − · · · − 2zd−1)x + z1x. (5.14)

Now suppose that x = 1/4. Then (5.13) and (5.12) combine to give

zd−k = kzd−1.

Substitute this last equality in (5.14) to find zd−1 = d−2, so that in this case we
have the solution (5.4). In the second case, when x = 1/2, Equations (5.13) say
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that z1 = z3 = · · · = zd−2 = 0, and then (5.12) gives z2 = z4 = · · · = zd−1.
Substitute these relations in (5.14) and find z2k = d−1, k = 1, 2, . . . , 2−1(d − 1).
Thus, in this case (5.5) applies.

It remains to show that if x = 1/2 the only solution for the weights is as speci-
fied by (5.5) also for the w2d

i . This can be done by a straightforward calculation of
α2 ◦ αd = α2d or by proving that the averaging scheme given by (5.5) is coherent,
which is also fairly direct. For example, consider the case that e is even and d is
odd in the relation αe ◦ αd = αed . We have to look at the solutions of

i = dr + s, |r| < e, |s| < d. (5.15)

If i is even, then we must have either (r is even and s even) or (r is odd and s is odd).
Each solution (r, s) contributes a summand we

rw
d
s . If r is even, we

r = 0 because e

is even, and if s is odd, wd
s = 0, because d is odd. Thus we get a coefficient zero

in this case which fits with wed
even = 0 (because ed is even).

If i is odd, then we must have either (r is even and s is odd) or (r is odd and s is
even). If i is such that |i| < d(e − 1) and not divisible by d there are two solutions
of (5.15), and for precisely one of them r is odd and the corresponding s is even.
In this case one gets a contribution we

rw
d
s = e−1d−1 because e− r is odd and d − s

is odd; the other solution gives a contribution zero because for that one r is even.
If |i| > (e − 1)d, r is either e − 1 or 1 − e which are both odd. As s is even, the
single solution in this case also gives a contribution we

rw
d
s = e−1d−1. Finally, if i

is divisible by d, i = kd, then k must be odd and therefore the single solution gives
the contribution we

kw
d
0 = e−1d−1.

The other three cases are handled similarly. ✷

6. Second Uniqueness Theorem

There are more general uniqueness theorems than Theorem 5.2. Basically it is not
needed to assume factorization of weights like in the previous section.

THEOREM 6.1. Let the averaging operators αd in dimension D = 2 be given
by

(αdf )daz,dbz =
∑

|i|,|j |�d−1

wd
i,j f(da+i)z,(db+j)z.

Suppose they are coherent, and assume that the weights wi,j satisfy the symmetry
conditions wi,j = w−i,j = wi,−j = wj,i and the genericity conditions w2

0,0, w
2
0,1,

w2
1,1 �= 0. Then

wd
i,j = d−4(d − |i|)(d − |j |),

which are the weights used before.
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CONJECTURE 6.2. There is no real doubt that the same theorem holds in dimen-
sions > 2, and that the same proof will work (though it will become notationally
a bit more complicated). That is, assume that the coherent averaging operators in
dimension D are given by

(αdf )da1z,da2z,...,daDz =
∑

|i1|,...,|iD |�d−1

wd
i1,i2,...,iD

f(da1+i1)z,...,(daD+iD)z.

Assume the symmetry conditions

wd
iσ(1),...,iσ (D)

= wd
i1,...,iD

for all permutations of {1, 2, . . . ,D}, and

wd
i1,...,iD

= wd
|i1|,...,|iD |.

Then,

wd
i1,...,iD

= d−2D(d − |i1|) · · · (d − |iD|).
Proof of Theorem 6.1. As in the case of Theorem 5.2, first consider α2(α3f ) =

α3(α2f ) and calculate the coefficients of f(6a,6b)+(i,j) in the two indicated ways.
First take (i, j) = (0, 4). This means we have to look at all solutions of

0 = 2r + s, 4 = 2t + u, |r|, |t| < 3, |s|, |u| < 2 (6.3)

on the one hand, and at those of

0 = 3a + b, 4 = 3c + d, |a|, |c| < 2, |b|, |d| < 3 (6.4)

on the other. The only solution of (6.3) is r = 0, s = 0, t = 2, u = 0, which gives
the term

w3
0,2w

2
0,0,

and the only solution of (6.4) is a = 0, b = 0, c = 1, d = 1, which gives the term

w2
0,1w

3
0,1.

Thus,

w3
0,2w

2
0,0 = w2

0,1w
3
0,1. (6.5)

Now look at (i, j) = (0, 2). This time the equations are

0 = 2r + s, 2 = 2t + u, |r|, |t| < 3, |s|, |u| < 2,
0 = 3a + b, 2 = 3c + d, |a|, |c| < 2, |b|, |d| < 3.

(6.6)

The first one has the unique solution r = 0, s = 0, t = 1, u = 0, and the second
one has two solutions: a = 0, b = 0, c = 1, d = −1 and a = 0, b = 0, c = 0,
d = 2. Hence

w3
0,1w

2
0,0 = w2

0,1w
3
0,1 + w2

0,0w
3
0,2. (6.7)
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Combining this with (6.5) and using w2
0,0 �= 0 one finds

w3
0,1 = 2w3

0,2. (6.8)

Now consider (i, j) = (0, 1). This gives

w3
0,1w

2
0,1 + w3

0,0w
2
0,1 = w2

0,1w
3
0,2 + w2

0,0w
3
0,1,

and combining this with (6.5), (6.8), and using w2
0,1 �= 0, there results

w3
0,0 = 3w3

0,2. (6.9)

Now look at (i, j) = (3, 3) to find (using w2
1,1 �= 0)

w3
1,1 + 2w3

1,2 + w3
2,2 = w3

0,0. (6.10)

Now, also

1 = w3
0,0 + 4w3

0,1 + 4w3
0,2 + 4w3

1,1 + 8w3
1,2 + 4w3

2,2.

Combining this with (6.10), (6.8), (6.9) there results

w3
0,2 = 1

27 , w3
0,1 = 2

27 , w3
0,0 = 1

9 , (6.11)

and from (6.5),

w2
0,0 = 2w2

0,1. (6.12)

Next look at (i, j) = (4, 4) and (i, j) = (4, 5). This gives

w3
2,2w

2
0,0 = w2

1,1w
3
1,1, w3

2,2w
2
0,1 = w2

1,1w
3
1,2. (6.13)

Using (6.12), these relations give w2
1,1w

3
1,1 = w3

2,2w
2
0,0 = 2w3

2,2w
2
0,1 = 2w2

1,1w
3
1,2,

whence

w3
1,1 = 2w3

1,2. (6.14)

Next look at (i, j) = (3, 5) to find

w3
1,2 + w3

2,2 = w3
0,2, (6.15)

and combine this with (6.14), (6.11), (6.10), to find the remaining values of the
w3

i,j , viz

w3
1,1 = 4

81 , w3
1,2 = 2

81 , w3
2,2 = 1

81 . (6.16)

Now put this in (6.13) and use w2
0,0 + 4w2

0,1 + 4w2
1,1 = 1. This gives

w2
1,1 = 1

16 , w2
0,1 = 1

8 , w2
0,0 = 1

4 . (6.17)

Thus the wd
i,j for d = 2, and d = 3 have the right values.
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By the coherence assumption and Theorem 3.1, it now suffices to prove that the
w

p

i,j have the stated values for p an odd prime. Actually the following arguments
work for any odd natural number > 1 and similar arguments can be given for even
numbers.

Consider the coefficients of the f(2pa,2pb)+(i,j) in α2pf = α2(αpf ) = αp(α2f )

calculated in the two ways indicated.
First consider pairs (i, j) of the form (2p − 2k, 2p − 2l − 1), k = 1, 2, . . . ,

(p − 1)/2, l = 0, 1, . . . , (p − 1)/2. This gives wp

p−k,p−lw
2
0,1 + w

p

p−k,p−l−1w
2
0,1 =

w2
1,1w

p

p−2k,p−2l−1, so that

2wp

p−k,p−l + 2wp

p−k,p−l−1 = w
p

p−2k,p−2l−1. (6.18)

Here, for economy of notation, wp

i,j = 0 if i > p − 1 or j > p − 1. Taking l = 0,
k = 1 in (6.18) we see that

w
p

p−2,p−1 = 2wp

p−1,p−1. (6.19)

Now consider pairs of the form (i, j) = (2p − 2k, 2p − 2l), k, l = 1, 2, . . . ,
(p − 1)/2, to find

w
p

p−2k,p−2l = 4wp

p−k,p−l , (6.20)

and in particular,

w
p

p−2,p−2 = 4wp

p−1,p−1. (6.21)

Finally, consider pairs of the form (i, j) = (2p − 2k − 1, 2p − 2l − 1), k, l =
0, 1, . . . , (p − 1)/2, to find

w
p

p−k,p−l + w
p

p−k,p−l−1 + w
p

p−k−1,p−l + w
p

p−k−1,p−l−1

= w
p

p−2k−1,p−2l−1. (6.22)

With induction, starting from (6.19) and (6.21), and using (6.18), (6.20), (6.22), as
the case may be, it follows that

w
p

p−i,p−j = ijw
p

p−1,p−1, i, j = 1, 2, . . . , p − 1. (6.23)

Further,∑
i,j

w
p

i,j = p4, (6.24)

which combined with (6.23) gives

w
p

p−1,p−1 = p−4. (6.25)

This shows that the weights wp

i,j have the required values and finishes the proof of
Theorem 6.1. ✷
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Remark 6.26. It is natural to take for the ‘weights’ elements of the same field in
which the plaquette functions take their values. For instance in the case of complex
valued plaquette functions the weights in the statement of Theorem 6.2 can be
complex numbers.

However, in that case, it might in some settings be natural to take another nor-
malizing condition than that the weights sum to 1, viz, that they form a complex
vector of norm 1, i.e. (

∑
i,j ‖wd

i,j‖2)1/2 = 1. For this normalization there are other
solutions. They are all as follows. For each prime number p there is a complex
number ζp of norm 1. For each natural number d = 2, 3, . . . write it as a product
of prime numbers, d = p

a1
1 · · ·par

r . Then,

wd
i,j = d−4

(
ζ a1
p1

· · · ζ ar
pr

)
(d − |i|)(d − |j |).

7. Third Uniqueness Theorem

Now let us consider again lattices Lz = zZ2 ⊂ R2 = {(za, zb) ∈ R2 : a, b ∈ Z},
z ∈ S, where S is a set of length scales and, as in the first part of the introduction,
consider averaging operators which are of the form:

‘Value of the averaged plaquette function on a large plaquette is a weighted
sum of the values of the plaquette function being averaged on the small plaquettes
contained in that large plaquette’.

Label plaquettes by the coordinates of their lower left-hand corner. Then the
general formula is

(αdf )daz,dbz =
∑

0�i,j�d−1

wd
i,j f(da+i)z,(db+j)z. (7.1)

Here the wd
i,j , 0 � i, j � d − 1, are a set of nonnegative numbers that add up to

one.
As before, when one is working with a set of scales of the form S = {2−r : r =

0, 1, 2, . . .}, or, more generally, S = {d−r : r = 0, 1, 2, . . .}, d any fixed natural
number � 2, one can choose α2, resp. αd , arbitrarily and define the αds as the s-fold
iterates of αd . There results a quite simple formula for these iterates. Indeed,

(αdsf )dsaz,dsbz =
∑

0�i,j�ds−1

wds

i,j f(dsa+i)z,(dsb+j)z, (7.2)

wds

i,j = wd
i1,j1

wd
i2,j2

· · ·wd
is ,js

, (7.3)

with

i = i1d
s−1 + i2d

s−2 + · · · + is−1d + is , 0 � i1, i2, . . . , is � d − 1

and

j = j1d
s−1 + j2d

s−2 + · · · + js−1d + js, 0 � j1, j2, . . . , js � d − 1
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being the d-adic expansions of i and j , i.e. the unique ways of writing i and j in
the forms indicated.

Now, let us return to the case of the full set of scales S = {n−1 : n = 1, 2, . . .}.
There are a number of fairly obvious coherent sets of averaging processes. For
instance, the straightforward averaging scheme

wd
i,j = d−2, i, j = 0, 1, . . . , d − 1; (7.4)

the four corner schemes

wd
0,0 = 1, all other weights zero;

wd
0,d−1 = 0, all other weights zero;

wd
d−1,0 = 1, all other weights zero;

wd
d−1,d−1 = 1, all other weights zero;

the diagonal scheme

wd
i,i = d−1, i = 0, 1, . . . , d − 1, all other weights zero;

and the antidiagonal scheme

wd
i,d−1−i = d−1, i = 0, 1, . . . , d − 1, all other weights zero.

For the case of only odd scale length changes, i.e. S = {(2n + 1)−1 : n = 0, 1,
2, . . .}, there is in addition the central scheme

wd
d−1

2 , d−1
2

= 1, all other weights zero,

which also has a coherent analogue in the case of Balaban–Federbush type averag-
ing.

All of these, except (7.4), are degenerate in some sense, and by the theorem
below, under very mild genericity (= nondegeneracy) conditions, straightforward
averaging according to (7.4) is the only coherent family of averaging operators.

THEOREM 7.5. Consider averaging processes of the type (7.1), with the set of
length scales S = {n−1 : n = 1, 2, . . .} and weights wd

i,j , i, j = 0, 1, . . . , d − 1
that sum to 1. Assume, moreover, that in case the scale changes by a factor of 2 the
four weights are nonzero, i.e. w2

0,0 �= 0, w2
0,1 �= 0, w2

1,0 �= 0 and w2
1,1 �= 0. Then

w2
i,j = d−2, 0 � i, j � d − 1.

Proof. For coherence we need again, of course, αe(αd(f )) = αed(f ) for all
natural numbers d and e. Put in (7.1). This works out as the condition that the
weights must satisfy

we
r,tw

d
s,u = wed

i,j for all 0 � i, j � ed − 1, (7.6)

where r, s, t, u are uniquely determined by

rd + s = i, 0 � r � e − 1, 0 � s � d − 1,
td + u = j, 0 � t � e − 1, 0 � u � d − 1.

(7.7)
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Note that the system of equalities and inequalities (7.7) always has precisely one
solution. This simplifies things considerably. As in the proofs of the two previous
uniqueness theorems, first consider e = 3, d = 2 and use the condition α3 ◦ α2 =
α2 ◦ α3. Take for instance (i, j) = (2, 3). Then, on the one hand, we must look at
the equations

2r + s = 2, 0 � r � 2, 0 � s � 1,
2t + u = 3, 0 � t � 2, 0 � u � 1,

with unique solution r = 1, s = 0, t = 1, u = 1, which gives the term w3
1,1w

2
0,1;

and, on the other, at the equations

3k + l = 2, 0 � k � 1, 0 � l � 2,
3m + n = 3, 0 � m � 1, 0 � n � 2,

with unique solution k = 0, l = 2, m = 1, n = 0, which gives the term w2
0,1w

3
2,0.

These two terms must be equal, and so, using the genericity assumption that w2
0,1 �=

0, one finds

w3
1,1 = w3

2,0. (7.8)

Similarly, using the pairs of indices (0, 2), (0, 3), (2, 0), (2, 2), (2, 5), (3, 3), (5, 2),
one finds seven more equalities among the w3

i,j . Together with (7.8), these suffice
to prove all the w3

i,j , 0 � i, j � 2 equal, so they must all be equal to 1/9. Using
a few other (i, j) pairs, e.g., (0, 1), (1, 1), (1, 3), this in turn gives w2

0,0 = w2
0,1 =

w2
1,0 = w2

1,1 = 1/4.
Now let d be any natural number � 4 and consider αd ◦ α2 = α2 ◦ αd . First

look at pairs of indices of the form (i, j) = (2x, 2y), 0 � 2x, 2y � d − 1. The
equations and inequalities to be considered at are

2r + s = i, 2t + u = j, 0 � r, t � d − 1, 0 � s, u � 1.

The solution is r = x, t = y, s = 0, u = 0, which gives the term wd
x,yw

2
0,0. On the

other hand, we must look at

i = dk + l, j = dm + n, 0 � k,m � 1, 0 � l, n � d − 1,

with the unique solution k = m = 0, l = 2x, n = 2y, which gives the term
w2

0,0w
d
2x,2y. (One uses 0 � 2x, 2y � d − 1.) So, equality of these two terms gives

wd
x,y = wd

2x,2y for 0 � 2x, 2y � d − 1. (7.9)

Similarly, looking at pairs of indices of the form (2x, 2y + 1), (2x + 1, 2y),
(2x + 1, 2y + 1), in the appropriate ranges, one finds

wd
x,y = wd

2x,2y+1 for 0 � 2x, 2y + 1 � d − 1,
wd

x,y = wd
2x+1,2y for 0 � 2x + 1, 2y � d − 1,

wd
x,y = wd

2x+1,2y+1 for 0 � 2x + 1, 2y + 1 � d − 1.
(7.10)
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With induction on (i, j) the four equations suffice to prove that all the wd
i,j , 0 �

i, j � d − 1, are equal, and complete the proof of Theorem 7.5. ✷
Remark 7.11. Note that no symmetry conditions are needed for Theorem 7.5.

Remarks 7.12. There are quite likely many more uniqueness results on coherent
averaging schemes that can be proved. For instance one can wonder about coherent
BF-type averaging schemes of the type

(αdf )daz,dbz =
∑

|i|,|j |�kd−1

wd
i,j f(da+i)z,(db+j)z

for a given natural number k possibly greater than 1, so that the value of the
averaged function on a large plaquette is influenced by a greater range of small pla-
quettes (than in the BF case). There are probably close connections between rates
of falling off in such schemes and good relations between differentiable functions
and elements of the projective limit corresponding to an averaging scheme.
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