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ABSTRACT 

This paper presents a parameter estimation method for 
the Candy model based on Monte Carlo approximation of 
the likelihood function. In order to produce such an ap­
proximation a Mettopolis-Hastings style algorithm [3) for 
simulating the Candy model [I 0, 11) is introduced. 

1. SET-UP AND NOTATION 

In the last decade in image processing, a few researchers 
moved away from pixel-based methods to more high-level 
image analysis based on point process models. In this spirit, 
Stoica, Descombes and 2'.erubia [11} introduced a marked 
point process model for line segments, dubbed Candy, as 
prior distribution for the image analysis problem of extract­
ing linear networlcs such as roads or rivers from images ob­
tained by aerial and high resolution satellite photography. 

More fonnally, represent a line segment as a point in 
some. compact subset K C JR2 of strictly positive volume 
0 < v(K) < oo with an attached mark taking values in 
[lmin, lmax) x [0, 11') for some 0 < lmin < lmax < oo. 
Each marked point (k, l, 8) can be interpreted as a line seg­
ment with midpoint k, length l, and orientation 9: When 
applying the model to road extraction, it is natural to in­
clude mar.ks for characteristics such as width and color as 
well. A configuration of line segments is a finite set of 
marked points. The probabilistic model is defined by its 
density p with respect to a unit rate Poisson process on 
K with independently and uniformly distributed marlcs as 
follows. At s = {s1, ... ,s,..} with Si = (ki,li,8;) E 
K X [lmin,lmax) X [O,.ir),i = 1, •.. ,n, 

p(s) = a Il~- exp (!i..=!.u...] i-1 lm~ 

X ._."1(s) ..,,n.(s) n4(s) n.,(a) nr(s) 
1/ 1B 'Yd 'Yo 'Yr 

(1) 
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where 'YJ>'"fs,'Yd > 0 and '"(0 ,'"fr E (0, 1), are the model 
parameters. Stoica et al. recommend 'YJ < 'Ys < 'Yd• in or­
der to favor configurations containing more connected seg­
ments than free ones. The sufficient statistics n1(s), n8 (s). 
nd(s), no(s), n,.(s) respectively represent the number of 
'free' segments, the number of segments with a single one 
of its endpoints near another segment endpoint, the number 
of segments with both ex1rem.ities connected, the number 
of pairs of segments crossing at too sharp angles, and the 
number of pairs that are disoriented. Thus, there are penal­
ties attached to each free and singly connected segment, as 
well as to each sharp crossing and to every disagreement in 
orientation. For more details on the model and its applica­
tions to network extraction see [11), and [9} where the au­
thors prove existence and Ruelle stability of p and establish 
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various Markov properties. · 

2. METROPOLIS-HASTINGS ALGORITHMS 

The Candy model (1) is too complicated to sample from 
directly. Hence, we apply Markov chain Monte Carlo tech­
niques [6] to construct a Matkov chain which has the Candy 
model 11' as its equilibrium distribution. Here we use the 
Metropolis-Hastings sampler, a fiexible proposal-acceptance 
technique that is well adapted to point processes (3, 7). In 
its generic form, the transition proposals are uniformly.dis­
tributed births and deaths. The acceptance probabilities are 
based on the likelihood ratio of the new state compared to 
the old one. Due to the results in [2]. the algorithm con­
vetges in total variation to 11' for 11'-almost all fuitial configu­
rations provided. The theorem applies equally to any other 
pair of strictly positive birth and death kernels. 

In order to improve mixing, we incorporate transitions 
that are tailor~made for the Candy model. Thus, we include 
a birth kernel that tends to add a segment in order to pro­
longate the current networlc. The idea is that when adding a 
segment, preference should be given to positions that 'fit' 
the current configuration. More specifically, a new seg-



ment might be positioned in such a way that it is connected 
to an endpoint of a segment in the configuration. see [9]. 
For computational convenience, we only connect to seg­
ment endpoints that are sufficiently far from the boundary 
ofK. 

Another option is to include transition types other than 
births and deaths. For instance in [2} change transitions that 
do not alter the number of segments are described. There are 
many valid choices for the proposal kernel. For instance, 
we may shift a segment center a bit, modify the orientation 
and/or the length, or even discard a segment altogether and 
generate a new one randomly. For more details see [9]. 

..... - - -
Model parameters 
'YI= 0.0002 
'Ya= 0.05 
'Yd= 12.2 
'Yo= 0.08 
'Yr= 0.08 

Sufficient statistics 
n1 =4 
n. =34 
nd =63 
n 0 =12 
nr =9 

F'Jg. 1. Realization (top) of the Candy model given by the 
parameters in the middle table. The observed values of the 
sufficient statistics are listed below. 

In Figure I we present a sample of the Candy model, its 
parameters and the observed values of the sufficient statis­
tics. We carried out 2 x 107 iterations. The sufficient statis­
tics were taken every 103 iterations. The point space is 
K = [O, 256] x (0, 256) while marks take values in [30, 40] x 
[O, 7r).The weights of the different transition kernels were 
fixed empirically. The Candy model is very complex, hence 
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it is difficult to assess convergence. However, we may ana­
lyze the evolution of the cumulative means of the sufficient 
statistics during the simulation. These are plotted in Fig­
ure 2. 

f_~ ~. ~.:J 
E j 

n. = 28.63 

.: J 
nd = 64.07 

no= 8.82 

l::: = .~ J 
iir = 7.82 

F'ag. 2. Evolution of the empirical moments of the sufficient 
statistics during the simulation of the Candy modeL The 
cumulative means n 1 , n.., iid, ii0 , n,. (from top to bottom) 
are plotted as a function of the number of iterations. 

3. MAXIMUM LIKELIHOOD F.sTIMATION 

The Candy model (l)is a five-parameter exponential family 

Pw(s) = a(w) exp [t(s? w] h(s) 

with canonical sufficient statistic 

t(s) = (n1(s), n.,(s), nd(s), no(s), nr(s)f, 



parameter vector 

w = (log-y,,log-y.,log7d,log70,log-yr)T, 

and h(s) = IT:=i exp [';!~:;.u J. Using the importance 

sampling ideas outlined in [ 4, 5] the ralio of normalizing 
constants can be expressed as 

o.(Wo)/a.(w) = E..,0 exp [t(S)T (w - wo)] 

and the log likelihood ratio with respect to some reference 
value w0 can be written as 

l(w) =log Pw(s) 
Pwo(s) 

= t(s)T(w - w0 ) - logE..,0 exp [t(S)T(w - wo)]. 
(2) 

The score equations Vl(w) = t(s )-EwT(S) and F'JSher 
information matrix J(w) = -\72 l(w) = Var..,t(S) are eas­
ily derived. so that under the maximum likelihood estima­
tor w, the expected values of the sufficient statistics must 
be equal to the observed values. Now, since the covari­
ance matrix of t(S} is positive definite, (2) is concave in 
w. Therefore, provided the score equations have a solution 
w in Rx R~ , a unique maximum likelihood estimator exists 
and equals w. Otherwise, a maximum may be found on the 
boundary of the parameter space. 

Numerically, the expectation in (2) can be approximated 
[4, 5J by its Monte Carlo counterpart 

1 n - Lexp [t(S.:)T(w-WG)] 
n i=I 

based on a single sample 81, ... , Sn from Pwo. 
Considering the true UDk:nown MLE w, due to [2. The­

orem 7) the Monte Carlo maximum likelihood estimator is 
consistent and satisfies the central limit theorem : 

,/(n) (wn -w) ~ N(O,l(w)-1 I:J(w)-1) 

where E is the asymptotic covariance matrix of the normal­
ized Monte Carlo sc<ire ,/( n) V' ln ( w) and I (w) denotes the 
F':asber information matrix at the maximum likelihood esti-
mator. 

However, the method described above relies on a refer­
ence value w0 that is not too far from the maximum likeli­
hood estimator. Here we used the iterative gradient method [ 1). 

{ 
l.,(w1c + p(w.1:)\7l.,(w.1:)) = 

= maxpERl.,(w.1: + pV'ln(wk)) (3) 
WA:+i =WA: + p(w.1:)Vl,.(w,.) 

to find a reasonable value. Here p(w.1:) is the optimal step, 
which is computed using a one-dimensional minimization 
of the likelihood function. 

We implemented the procedure for the data of Figure I. 
Starting with sone mbitrary initial values (see Figure 3, first 
column) we ran (3) for 1000 steps to obtain the vector Wo 
listed in the second column of Figure 3. Based on a sample 
of size n = 2x107 from p..,0 , we calculated the Monte Carlo 
approximation ln (w ), cross sections of which are shown in 
Figure 5. The maximum of l,.(w) is located at wn as listed 
in Figure 3 (third column). 

In Figure 4 we show the asymptotic standard deviation 
of the true MLE, and the Monte Carlo Standard Error (MCSE) 
which approximates the difference between the unknown 
MLE and its Monte Carlo approximation. We notice that 
by increasing n, we can make the MCSE negligible. 

Initial parame- Iterative Monte Carlo 
ters method MLE 
w} = -9.5 wt= -8.37 wj = -8.32 
w! = -4.0 w. = -2.74 w~ = -2.73 
w~ = 1.5 w~ = 2.46 w~ = 2.47 
w~ = -3.5 w~ = -2.13 w~ = -2.11 
w~ = -3.5 w~ = -2.42 w: = -2.42 

Fig. 3. Estimation of the parameters for the data of Figure 1. 

Asymptotic standard MCSE 
deviation of MLE 

0.51 0.002 
0.23 0.003 
0.17 0.001 
0.30 0.002 
0.31 0.005 

F"1g. 4. Estimation errors. 

4. CONCLUSION AND FUTURE WORK 

In practice, the main challenges in working with point pro­
cesses are the following: to build appropriate moves, to find 
the optimal way of combining them into a simulation algo­
rithm. and to carry out statistical inference. Here, we have 
built a Metropolis-Hastings sampler, that combines uniform 
birth mid death proposals that guarantee the convergence of 
the Markov chain to the target equilibrium distribution (1) 
with transitions designed to exploit specific characteristics 
of the model, in our case connectivity properties. 

The main application of the Candy model is that of thin 
networlc extraction. This was the topic of [10, 11], where 
results were obtained using fixed pareameters as well as ap­
proximations to the Metropolis-Hastings proposal kernels 
and acceptance probabilities. The results here, and in [9], 
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remove the need for approximate sampling, and may be a 
starting point for unsupenrised network extraction. 
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Wd E [1,5] 

W0 E (-4.5, -0.5) 

Wr E (-4.5, -0.5] 

Fig. 5. Monte Carlo approximation of the log likelihood 
function. The X axis represents the variation of a single 
component The Y axis represents the values of the Monte 
Carlo log likelihood with all other components of w0 fixed. 


