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Abstract 
We show that the superposition of two independent Markov point processes with respect 
t-O the same neighbourhood relation exhibits no second order interactions. and no third 
order ones if the point processes are identically distributed. In the limit, the indepen­
dent superposition of standardised Markov point processes converges weakly to a Poisson 
process. 

1 Introduction 

{Stoyan, Kendall and Mecke, 1995) list the following three fundamental operations that 
can be performed on point patterns: 

• thinning; 

• clustering; 

• superposition. 

These operations allow the construction of new, more complex models from simpler ones, 
and as such are very useful in the modelling of spatial patterns. 

A thinning operator returns a subset of the input pattern according to some determin­
istic or stochastic rule. As a simple example, each point may be retained independently 
with some fixed probability. More generally, the retention probability could depend on 
the location to take into account spatial inhomogeneity, or even on the rest of the pattern 
in case of dependent thinning. 

A cluster process is a useful model for many natural phenomena of an aggregated 
or evolutionary nature. Here, the input pattern is interpreted as a collection of parent 
points, each giving rise to a cluster of daughter points centred around the parent. The 
output process is the ensemble of daughters. Note that although the terminology is 
biological, cluster processes arise in many contexts. For instance the well-known Neyman­
Scott process was first proposed to model galaxies in space (Neyman and Scott, 1958). 
More precisely, under this model, the stars are scattered independently around a Poisson 
'parent' process according to a given probability distribution. 

Finally, the superposition operator takes two point processes and forms their union. 
For more information, see (Stoyan, Kendall and Mecke, 1995) or (Daley and i'ere~Jones, 
1988). 
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The simplest model for a random point configuration is a homogeneous Poisson process 
formalising complete spatial randomness. If such a process is independently thinned, the 
result is another Poisson process, possibly inhomogeneous if the retention probability 
depends on the location. The superposition of two independent Poisson processes is also 
a Poisson process, and, as we saw above, independent clustering with respect to a Poisson 
parent process yields a Neyman-Scott process. 

In this paper, we shall take the class of Ripley-Kelly Markov point processes (Ripley 
and Kelly, 1977) as our building blocks. The latter are generalisations of the Poisson 
model allowing for local dependence between the points, and are widely used in practice 
(Van Lieshout, 2000). The effect of independent clustering on the Markov property 
was investigated by (Baddeley, Van Lieshout and MrJller, 1996). Since an independent 
thinning can be seen as a cluster process in which each parent has at most a single 
daughter, their results are valid for the thinning operator as well. It was found that even a 
Neyman-Scott process with uniformly bounded clusters is not (in general) a Markov point 
process. However, if the parent process is Markov and the associated clusters are uniformly 
bounded and almost surely non-empty, then the resulting cluster process satisfies a weaker. 
connected component Markov property (Baddeley and MrJller, 1989). For independent 
thinning, not even the connected component Markov property is preserved. For details, 
see (Baddeley, Van Lieshout and MrJller, 1996). 

Recently, (Chin and Baddeley, 1999) showed that the class of connected component 
Markov point processes is closed under independent superposition, hence a fortiori su­
perposition of two Ripley-Kelly Markov point processes yields a connected component 
Markov point process. Here, we investigate in how far the Ripley-Kelly Markov property 
is preserved. 

The plan of this paper is as follows. In section 2, some key results from the theory 
of Markov point processes are reviewed. In section 3, the interaction functions of the 
superposition of two independent Markov point processes are computed. The results are 
used to show that the Hammersley-Clifford factorisation is preserved up to second order, 
and that if the processes are identically distributed, the third order interaction structure 
is preserved as well. Section 4 considers the asymptotical behaviour, and section 5 is 
devoted to discussion and conclusions. 

2 Set-up and notation 

Throughout this paper, we will consider a finite point process X on a compact subset 
A of d-dimensional Euclidean space with non-trivial interior, so that the d-volume µ(A) 
is strictly positive and finite. The realisations of X are finite subsets x = { x 1, ..• , Xn} 

(n = 0, 1, ... ) of A called configurations; the class of all configurations will be denoted by 
c. 

In order to define a probability distribution for X, we specify its density p : C -+ [O, oo ). 
Thus, the probability that X contains exactly n points is 

e-µ(A) 1 1 
--1- ... p({x1, ... ,xn})dx1 ... dxn 

n. A A 

and given there are n points, the joint probability density of the locations is 
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To introduce interaction between the points, let ...., be a reflexive, symmetric relation 
on A. For instance, in the fixed range relation two points a, b E A are related if and only if 
the distance between them does not exceed some R > 0. The point process X is Markov 
with respect to "' if its density p( ·) is hereditary, that is p(x) > 0 implies p(y) > 0 for all 
y ~ x, and satisfies the Markov property that for any configuration x such that p(x) > 0 
and any a E A \ x the likelihood ratio 

>.(a Ix)= p(xp~x~a}) (1) 

depends only on a and on {x; Ex: a"' x;}, the set of neighbours of a. The function .A(· I ·) 
is called the Papangelou conditional intensity; it can be interpreted as the conditional 
probability of finding a point at a given that the configuration elsewhere equals x \ {a}· 

The Hammersley-Clifford theorem (Ripley and Kelly, 1977) provides a convenient 
factorisation of p( ·) into local interaction functions. Recall that a clique is a configuration 
c for which all its members are neighbours, i.e. c "' d for all c, d E c. By convention, the 
empty set and singletons are cliques. Now, p(·) defines a Markov point process if and only 
if it can be written as 

p(x) = II <P(yJ (2) 
y<;;x 

where <P(y) = 1 unless y is a clique. Thus, the Hammersley-Clifford factorisation in effect 
breaks up a high-dimensional joint probability density into manageable clique interaction 
functions <P( ·) that are easier to interpret and have a lower dimension. 

The interested reader is referred to (Ripley and Kelly, 1977) or (Van Lieshout, 2000) 
for more details on Markov point processes. 

3 Superposition 

Let X 1 and X2 be independent Markov point processes with respect to some neighbour­
hood relation "' on A, and write Pi(·) for the density of Xi. Then the superposition 
x. = X1 U X 2 has density 

Ps (x) = e-µ(A) L Pi (x1) P2(x2) 

e-µ(A) x~2 [ug1 cf>1(u) vg2 <fa2(v)] (3) 

for x E C. Here <Pi(·) denote the interaction functions of X;, i E {1, 2}, and the sum ranges 
over all ordered partitions of x in two components x1 and x2. By theorem 3 in (Chin 
and Baddeley, 199g), the superposition density p8 (·) factorises into a product over terms 
associated with each rv-connected component (cf. (Baddeley and Mpller, 1989)). Here 
we will show that in general p5 (-) fails to satisfy the Hammersley-Clifford factorisation 
of Eq.(2), but that the pair-interaction function reduces to 1 for non-cliques, as does the 
third order interaction function if X 1 and X2 are identically distributed. 

Counterexample 1 Let"' be a reflexive, symmetric neighbourhood relation on A. Sup­
pose X 1 and X 2 are independent, identically distributed Strauss processes (Strauss, 197 5) 
with density 

p(x) = 0!1's(x) 
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where 'YE (0, 1} is a repulsion parameter, and s(x) denotes thP number of neighbour pairs 
in x. Assume A is sufficiently large to allow for a configuration x = {a, b, c, d} such that 
a,..,, b,..., c,..., dare the only related points (see figure 1). Then the Papangelou conditional 
intensity .A,(· I·) of the superposition X, = X1 UX2 satisfies 

(d I { b }) = 214 + 1212 + 2 .J. 212 + 41 + 2 = .A (d I {a c}) 
As a, , c 2')'2 + 41 + 2 -r 4 s , ' 

hence X, is not Markovian with respect to the given relation. 

Figure 1: Neighbourhood graph on x ={a, b, c, d}. 

Surprisingly, one has to consider sets of four points in the above counterexample; 
the pair and triple 'interactions' do respect the neighbourhood relation. To make this 
statement more precise, define 'interaction functions' recursively as follows. 

Definition 1 Let X 1 and X 2 be independent Markov point processes with respect to a 
reflexive, symmetric relation ,..., on A, and let X, be the superposition of X1 and X 2 . 

Recursively define 
ef>s(0) = Ps (0) 

and 
ef>,(x) = p,(x) 

Tix;=ycx <Ps(Y) 
(4) 

for non-empty configurations x EC (setting 0/0 = 0 if x is a "'-clique and 1 otherwise). 

Lemma 1 Let X 1 and X 2 be independent Markov point processes with respect to a reflex­
ive, symmetric relation,..., on A. Then the densityp,(·) of the superpositionX, = X 1UX2 

is hereditary, and</>,(-) is well-defined. 

Proof: Suppose p,(x) is strictly positive for some configuration x. By Eq. (3), a partition 
x1 U x2 = x exists for which P1(x1) > 0 and P2(x2) > 0. Since X 1 and X 2 are Markov 
point processes, p;(x; n y), i E {1, 2}, is strictly positive for every configuration y ~ x. 
Therefore 
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for all y ~ x, hence p,(-) is hereditary. 
To show that <i>s( ·) is well-defined, suppose Dx;cycx ip,(y) = 0. Vlithout loss of gener­

ality, let y be a proper subset of x such that <i>s(Y) = 0 and that is smallest in the sense 
that no subconfiguration y f. z C y has a vanishing interaction function <l>.(z) = 0. By 
Eq.(4), Ps(Y) = 0. Finally, asp,(-) is hereditary, p.(x) = 0, and <Ps(x) is well-defined. D 

We are now ready to state the main theorem. 

Theorem 1 Let X 1 and X 2 be independent and identically distributed Markov point pro­
cesses with respect to a reflexive, symmetric relation "' on A, specified by their density 
p(·). Then, for configurations x E C containing at most three points, the superposition 
density p,(x) at x satisfies the Hammersley-Clifford factorisation, that is 

p,(x) = II <P.(y), 
y<;;x 

and <f> 5 (x) = 1 whenever x is not a rv-clique. 

Proof: Write p(x) = ITycx <f>(y) for the factorisation of p(·) over cliques. Substitution 
of Eq.(3) into Eq.(4) and the fact that <P.(0) > 0 yield 

cPs (0) = e-µ(A) </>(0)2 ; (5) 
q\({(}) = 2</>({0). (6) 

Furthermore, for ( =F 71 E A, 

1 
p,({(,71}) = 2 </>.(©) <P.({0) <ti,({71}) [1 + <l>({(,71})]. 

Clearly, either q\5 ({0) = 0 or <Ps({71}) = 0 impliesp5 ({(,71}) = 0, hence by Eqs.(4)-(6) 

{ l{(f71} ifr/>(O=Oorc/>(71)=0 () 
</>,({(, 71 }) = 1 + !(1>({(,TJ}) -1) else 7 

from which the required factorisation follows for doublets. 
In order to compute the third order interaction function <l>s(·), note that for distinct 

~, 71, (EA, 
Ps ( { (, 71, (}) = 2</>s(0) </>( { 0) </>( { 71}) </!( { (}) [ 

<P( { () 71}) <P( { (, (}) <I>( { 71,(}) </>( { (, 71, (}) + <P( { (, 71} + <P( { (' (}) +<I>( { 7), (}) ]. 

Assuming Dye{~.~.(} <Ps(Y) > 0, by Eqs.(4)-(7), 

<Ps( {(, 71, (}) 
1 + ~ <t>({(,7l})ql({(,(})1>({7/,(}) (<t>({(,71,(})- l) 

4 4>s (ff, 71}) <Ps ( { (, (}) 4>s ( { 7/, (}) 
1 (<t>({(,71}) -1) (<t>({(,(})-1) (4>({7/,(})-1) 

+ 8 <t>.({(,7)})<t>.({~,(})<,1>.({1J,(}) 
(8) 

If {(, 71,(} is not a clique, <P({~ 1 71,(}) = 1. Furthermore, at least one of <P({~,r1}), 
q'>({C(}), 1>({71,(}) takes the value 1. Hence Eq.(8) reduces to 1 as well. It remams to 
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consider the case 0 _1, ,.1 <11,(y) = 0. If a first order term equals zero, Ps({~, 17, (}) = 0. so YL ,.~., • 
a,i,( { ~' 11• (}) is the clique indicator function. If tlw first order terms are all strictly posit~ve, 
a second order term, say <j;i,({~,17}), must be zero. But then Q)({{,17}) = -1, contradict­
ing the fact that interaction functions are non-negative. In summary, the Hammersley­
Clifford factorisation holds for all configurations consisting of at most three points, which 
completes the proof. D 

If the components are not identically distributed, the Hammersley-Clifford factorisa­
tion does not hold for triples. A counterexample is obtained by considering the super­
position of two independent Strauss processes with different repulsion parameters. The 
example should be compared to counterexample l. 

Counterexample 2 Let,...., be a reflexive, symmetric neighbourhood relation on A. Con­
sider two independent Strauss processes (Strauss, 1975) X 1 and X 2 defined by their den-
sities 

p;(x) = an:(x;) i = 1, 2 

with repulsion parameters 11 # 12 E (O, 1). The exponent s(x;) denotes the number of 
neighbour pairs in x; (i = 1, 2). Suppose A is sufficiently large to allow for a configuration 
{ {, T), (} for which {,...,, T} ,.,,, ( but { 7' (. Then 

p,({{,TJ,(}) = c/J,(0) (b1+1)2 +(1'2+1) 2)' 

which implies 

,i., ({{: i}) = 2 b1+1)2 + (1'2 + 1)2 

'I's "' 17'" h1+1'2+2) 2 

Hence c/l,({{,TJ,(}) # 1, unless 11 =12. 

4 Asymptotics 

In this section, let us consider the superposition of a large number of independent realisa­
tions X;, i = 1, 2, ... , of a Markov point process X with density p(x) = ITycx c/J(x). Write 
<PnO for the interaction function of u~=I X;, and assume that the first order interaction 
function of X is strictly positive. Then, by iterating Eqs.(5)-(7), one obtains 

<Pn({{}) n<P({E}); 
1 

cPn({~,17}) = 1+-(ct>({{,TJ})-1). 
n 

(9) 

(10) 

~herefore, as n t~nds to infinity, cPn({{,TJ}) tends to 1. Intuitively this means that each 
time a new Xn;1 is a.dded, .th~ intensity increases while the inter-point interactions grow 
we~er. Thus, if the mtens1ty is rescaled by a factor 1/n to stabilise the mean number of 
pomts, one would expect to loose all inter-point dependence in the limit. The remainder 
of the section is devoted to making this claim more precise. 

C~nsid~r a seq~en~e X(n) of point process obtaine<!_ as the superposition of n indepen-
dent, 1dent1cally d1stnbuted Markov point processes X X- 'th d ·t 

nl, · · . , nn WI ens1 y 

- &n (1 )n(x) 
Pn(x) = cjJ(r/J) ; p(x). 
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As before, n(x) denotes ~he number of points in the configuration x, and an is a normali­sation constant. Hence Xm has the same second and higher order interaction functions as X, but the first order interaction terms are standardised to avoid explosion (cf. Eq.(9)). Write N x,., ( B) for the random variable that counts the number of points of .Yni in the bounded Borel set B <;; A. Then the following properties hold. 

Lemma 2 The triangular array of point processes Xn; is asymptotically negligable, that 
is 

lim P (Nx' (B) > o) == 0 n-too nl 

for all bounded Borel sets B t;;; A. Furthermore, for every </>-continuity set B s;; A, 

Jim nP (Nx (B)?. 2) == O; n--too nl 

Proof: Write Ep(·) for the expectation with respect top(·), and n(X) for the cardinality of the random configuration X. Note that 

--1 _ __ _ -µ(A) [ 1 ( 1 )n(X)] °'n - Ep(·) c/>(0) n -+ e (n-+ oo) 

by the dominated convergence theorem. Hence 

P(N Xni (B) > 0) :::; P(Nx"' (A) > 0) == 1 - &n e-µ(Al -+ 0 

as n tends to infinity. Similarly, 

[ - (1 n(X)-1 ] nP(Nxn,(B)?. 2) = Ep(·l 4>~0) n) l{n(XnB)?. 2} -+0 

and 

as n-+ oo. 

[ - (l)n(X)-1 ] 
Ep(J 1>~0) n l{n(XnB)=l} 

-+ Ep(·) [ ~((;; l{n(X n B) = 1; n(X n A\ B) = o}] = JB 4>({0) d~ 
0 

Combining lemma 2 with the Ososkov-Franken-Grigelionis theorem 9.2.V in (Daley 
and Vere-Jones, 1988) yields the following limit theorem. 

Theorem 2 Let X be a Markov point process with respect to a reflexive, symmetric rela­tion,..., on A, specified by its density p(x). Let Xn;, i = 1, ... , n, be independent, identically . . . _ ( 1 )n(x) distributed Markov point processes with density Pn(x) ex 1i p(x). Then, as n -+ oo, 
the superposition ,y(n) = u~=l Xni converges weakly to a Poisson point process on A with 
intensity function q)( { 0), ~ E A. 
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5 Conclusion 

The independent superposition of Markov point processes in general is not a Markov 
point process with respect to the same neighbourhood relation "" (as shown in coun­
terexample 1). Indeed, higher order correlation is introduced. To see this, consider in­
dependent, identically distributed pairwise interaction processes X1 and X 2 with density 
p(x) = af3n(x) Tia,bEx 1(a, b) where f3 > 0 is an intensity parameter, r : A x A 4 [0, l] 
a Borel measurable interaction function with 1(a, b) = 1 whenever a -f b. Writing 
1.(~,TJ) = 1 + H1(~,TJ) -1), by Eq.(8) the superposition interaction function for a triple 
{x1,x2,x3 } is given by 

which is not necessarily identically 1. 
On the other hand, lower order inter-point interactions are not introduced. More 

specifically, suppose that a Markov density is of the form 

p(x) =a II <t.>({x}) II </>(y) 
xEx y<;;x;n(y)>ke'.:2 

then <Ps = 1 on C n {y E C : 2 :::; n(y) :'5 k}. 
Finally, asymptotic results were discussed, showing that in the limit all interpoint 

interactions disappear. 
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