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The basic theory of linear ~ystcms o"·er the quaternions is 
developed. 

K~\·K·ords: Symmetric systemi .. Quaternions. Sem1·s1mple alge· 
bras. 

1. Introduction 

In [5] and [2] the concept of symmetric linear 
systems was introduced and the fundamental role 
of the structure algebra was established. We recall 
those concepts here for the benefit of the reader. 
Let <S be a class of linear systems where the 
dimensions of the state and input spaces are fixed 
and the (A. B) satisfy some set of relations. The 
archetypical example is 

A. B. H real matrices} 

which arises in a variety of contexts and specifi­
cally in the modeling of twin-lift helicopters [6]. 

The structure algebra of the class (i is defined 
to be the algebra 
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R(CS)={(S. T): forall(A.B)eu 

SA -AS.SB=BT}. 

The importance of the structure algebra stems 
from the observation that because of commutati­
tively relations the state space and input space 
become R( <I )-modules and the maps A and B are 
module homomorphisms. Thus if the structure of 
R( (l: )-modules is known it is possible to reduce the 
structure of the maps A and B. 

In the case that the algebra RCu) is semisimple. 
a great deal is known [2]. However in [2] it was 
shown that the symmetric systems with real semi­
simple structure algebra R ( li ) could always be 
written as the direct sum of ordinary real system,. 
ordinary e-0mplex systems and ·ordinary· quater­
nionic systems. Unfortunate!;.; there is not a well 
established theory of linear systems over the 
quaternions. The goal of this paper is to estahfoh 
a minimal amount of material so that the theor) of 
real. semisimple symmetric systems is some"hat 
complete. 

2. Linear algebra Oler the quaternions 

2.1. In the following we let H den0te the real 
division algebra of quaternions. Recall that a typi­
cal quaternion h has the form 

h =a+ hi+ cj + dk 

where I. i. j. k form a basis for H as an R-vectm 
space. Multiplication in H is determined hy the 
formulas 

i~=j"=k~= -1. ij=k. jk=i. ki=J. 

Also recall that H can be represented a' the set 
of matrices of the form 

a b c d 
-b a d -c 
-c -d a b 
-d c -b a 

0167-6911/83/S3.00' l983. Elsevier Science Publi>hen B.V. tNorth·Hollandl l51 



Volume 3. Number 3 SYSTEMS & CONTROL LETTERS 

Typically the matrix above represents the quatern­
ion a+ bi+ cj + dk. 

Thinking of i. j. k as imaginaries we define a 
bar conjugation on H by 

h - Re( h) + Im( h ) .... h + Re( h) - Im( h): 

in terms of the matrix representation above the 
bar conjugate is just the matrix transpo;e. So we 
immediately find that 

h1h2= h2h,. 

We also note that. if H is thought of as R' with 
the I. i, j. k basis. the standard norm is just 

We extend this to ,,btain a standard norm on H". 
defined by 

l1hli = ( h·h l" z. 
where he H" is th.,ught of as a column \'CCtor and 
the asterisk denote; t.11..ing bar conjugate transpose 
(the multiplication is just matrix multiplication). 

There is an<'ther nNion of conjugation on H 
defined by 

h" = o" 1ha 

where " e H is nonzer•» 1'ote that there are com­
mutation formulas 

h,h2 = hih~: 
- h~· lhl 

-hi·h,. 12.1.l) 

We also define a C<'nJug3tion on H" in the same 
spirit by 

where " e H is nonzeni. h e H' and the multipli­
cations are performed c0mponent b~ component. 

2.2. By an H-\·ectc>r space we just mean a righr 
module o,·er H. 

Example 2.2.1. H 1s ns.:lf an H-\'ector space in a 
natural way. Sc.ilar multiplication is just multipli­
cation on the right. \f,1r.eover. there is an isomor­
phism H - Hom\H. Hi determined by sending h 
to multiplicatic'n l;i~ h ,,n the left. 
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Example 2.2.2. The map H ® H ..... H defined b~ 

x®a->lix 

is a right H-modulc structure on H. h is isomor­
phic to the module structure on H in Example 
2.2. J via the bar conjugation map. 

Example 2.2.3. H" is an H-vector space in virtue of 
being a direct sum of H-,·ector spaces. We C•'n­
tinue to think of vectors in H" as column ,·ecll"•rs 
and find tha1 a linear map A : H •• ..... H " i~ just an 
m x n matrix of quaternions acting on the left ,,f 
vectors according to the usual matrix muhipli.:a­
tion rules. 

Now. since H is a division algebra. an, right 
H-module is a direct sum of copies of H in an 
essentially unique way. So Example 2.2.3 gi,e> a 
good picture of a linear algebra over H. 

Let us also note that H" has a natural ch,>ice ,,f 
H-bimodule structure extending the H-,·e.:tc>r ,pace 
structure of 2.2.3. Consequent!,. gi,en an i••>mM­
phism of H-\'ector spaces 

A: J.1-.H" 

"'e can extend the H-ve.:1or space ~tru.:ture on .\/ 
to an H-bimodule s1ructure mal.ing A an i"imor· 
phism of H-bimodules. lJnfortunatel~ thh 'tru•­
ture is in general dependent in a nontri' ial ''-l~ 

upon the map A. This obsen·ation e.sentiall' ex­
plains our choosing to focus attention on mo<lule 
rather than bimodulc structures: There are nN 
enough linear maps of H-modules. In pani.:ular 
we have: 

Proposition 2.2.4. A matrix A : H" - H" presnre.1 
rhe t·anonit·a/ bi module srrucrures if and on(1 !fit has 
real emries. 

A somewhat stronger result can be pro,ed as an 
easy corollary of 2.2.4. It will be useful later. 

Corolla') 2.l.S. Ler A : H" - H ". The <w111111< ul 
H-reaor space srrucrure 011 H" exrend' ro an H-ht· 
module structure ><·hi<'h IS preserL·ed hi A 1/ and 011(1 

if A is conju,qare ro a real matrix. 

3. Quaternionic linear S) stems 

3.1. In \\hat fc>lk,,.s, a system will he a time-in­
variant lin.:ar ordinai;. differential e1.jua11on on 
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H-vector spaces 

x =Ax+ Bu. x E iJL u E ill. ( 3.1. l} 

Typically we take for granted isomorphisms 

9'1-H", IDl-H"'. 

allowing us to think of A and B as matrices of 
quaternions. We also use the notation (A. B) as a 
shorthand designation for ( 3.1.1 ). 

Now the elementary theory of linear O.D.E.'s 
over H is essentially the same as that of real or 
complex O.D.E.'s. In particular. we find that there 
is a well defined matrix exponential 

OC n 

etA = l: i.,A". 
n-0 n. 

Moreover. the ;ystem (3.1.1) has a unique solution. 
denoted x(x0 • u. 1 ), which satisfies the initial con­
dition x(x0 , u. 1) = x 0 and which is given b~ 

x( x 0 . u. I)= e''x0 + j'eu-nABu( s) ds. 
0 

Now. the formula just above enables one to 

prove the following very important theorem. 

lbeorem 1. Let ~fl <.B den:>te the set of states 'Kh1ch 
can be reached by the system (A. B) from the origw 
in finite rime. Then 

.. ·here ~ denores the image of B. 

Then. with the usual definition of controllabil­
ity in mind one can quickly prove: 

Theorem 2. The space of marrix pairs 

(A. B)E Mat.,.(H) x Mat.,..(H). 

... ·uh (A. B) conrra/lable. is open and dense. 

Just as easily. one can use Theorem I to pro' e 
that controllability is preserved by the action of 
the feedback groups. that is: 

Theorem 3. Change of basis in either s1a1e or mpur 

space presen:es conrro/labiliry. 

Theorem 4. Conrrollabili1y is presen·ed by stare 
space feedbadc .. 

3.2. The classical eigenvalue criteri<'n for the sta­
bility of a linear system over the real or complex 
numbers has no clear analogue in the quaternionic 
case. The reason for this is. in effect. that the 
classical theory takes liberal advantag( of the fact 
that linear endomorphisms of classical vector 
spaces preserve the canonical bimc,dule structure; 
available. 

One way to circumvent this difficult' is !<.> 

appeal to some real or complex repre>entation of a 
system whose stability is in question. This ap­

proach is considered in {2]. Of course. the control 
theorist is less interested in testing for stabilit\ 
than in stabilizing controllable systems using 
feedback. So we ought to pro,·e: 

Theorem 5. The orbi1 of any con1ro/lable system. 
under the action of the feedf>a<"J... group. contams a 
s10ble S.\'stem. 

In fact. we pro\e Theorem 5 as a corollary of 
somewhat stronger results in the next ;ect1on. 

4. Stabilization and im·ariants 

4.1. The key to stabilizing quaternic1ni<.: ,ystem, i> 
a quaternionic Heymann kmma. 

Lemma 4.1.1. Let (A. B) be a co111rol!uhle .ns1em 
at:er H. Then.for am f> in rhe image v( B. there i.1 a 
feedback matrix F such rhar 1he single-input sn1em 
( A + BF. b) is conrro/Jal:>le. 

The proof of 4.1.l is triviall> adapted from tl.e 
proof of the real Heymann lemma. So we refer the 
interested reader to [7]. Lemma 3.2. 

Given stabilizing feedback for a system (A -" 

BF. b) with b E i\ we can obtain stabilizing feed­
back for (A. B) by an ob,·ious lifting. So to pro'e 
Theorem 5 we need on!' concern our>ehe' with 
the feedback stabilization of single-input '~stem> 
We begin by exhibiting a canonical form for ..:on­
trollable single-input systems. 

Lemma 4.1.2. Git'en a conrro/lub/c s111gle-111pw .1r1-

1em (A. b) ot'er H. there rs a umque maTn.\ A' of 

the form 
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0 I 0 0 

0 0 

0 =A' 

0 0 
a, "'2 a. 

such tho1 for some P we hace 

p-'AP-A' and p- 1b-e •. 

Proof. Let (A, b} be controllable. By Theorem 
there is a unique n-tuple a 1 ..... a. such that 

0 = A"b-A"- 1ba1 - • • • - ba •. 

Now define a matrix P = [P1 • • • P.J b~ the for-
mulas 

P1 = A"- 1b-A"-:b4: · · · - ha •. 

P2 =A"-:b-A"--'b4_,··· -ba •. 

P._ 1 =Ab-ba.. P.-b. 

Then one easily checks that AP =PA' and that 
Pe. =b. But by Theorem I the P, are independent. 
so P is invertible: and. the proof is complete. 

Let us refer to the a, in the above as the 
characteristic indices of the system ( A. b) and 
observe that we have immediately an index assig­
nability theorem. 

Tileorem 6. The characreristic indices of a controlla­
ble single-input system can he altered m an arbitrary 
fashion by use of stare-space feedback. 

In particular Theorem 6 allows us to obtain real 
indices. So Theorem 5 follows from its real ver­
sion. 

4.2. Recall that in the real Heymann lemma the 
characteristic indi.:e; a, ..... a. of the system (A. b) 
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are such that 

is the characteristic polynomial of A. One cons.e­
quence of this is that the a, are independent of the 
choice of the vector b. so long as the system 
remains controllable. 

As it turns out. no such thing occurs in the 
quatemionic case. It is easy to see why: 

Suppose the single-input system (A. h) is con­
trollable. Suppose also that at least one character­
istic index of (A. b) is nonreal. say a,. Then. there 
are nonzero f3 e H such that 

a:,=- a~. (4.2.1) 

Now. of course. the system (A. b/3> ;, controllable. 
But. its characteristic indices are a~ ..... a~. To sc:e 
this just note that by (2.1.1) 

0 = A"b/3 -A"- 1b{3a~ - · · · - b/34~. 

So by (4.2.1). (A. b} and (A. b/3) ha,·e distinct 
characteristic indices. 
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