
A Logical Analysis of 
Boolean Constraints 

Krzysztof R. Apt 

Contents 

1 Introduction 

2 Preliminaries 
2.1 Constraint Satisfaction Problems 
2.2 Boolean Constraints ..... . 
2.3 A Proof Theoretic Framework . . 

3 A Characterization of Arc Consistency 

4 The Proof System of Codognet and Diaz 

5 Enforcing Arc Consistency 

6 From Arc consistency to a Boolean Constraint Solver 

1 

2 

2 
2 
3 
4 

5 

9 

11 

13 



Abstract 

In Apt (1998) we provided a proof theoretic account of constraint programming. 
Here we show how it can be used to analyse Boolean constraints. More precisely, We 
show here how a Boolean constraint solver based on the look-ahead search strategy 
can be defined in a purely logical way. To this end we characterize arc consistency for 
Boolean constraints by proof theoretic means. As a byproduct we clarify the status 
of the proof rules introduced in Codognet & Diaz (1996) that form a basis of their 
Boolean constraint solver. These considerations lead to a simple Boolean constraint 
solver that generates all solutions to a given set of Boolean constraints. It performs 
well on various benchmarks. 

1 Introduction 

The research on constraint satisfaction problems led to an identification of several impor­
tant and useful techniques that can be put to practice to solve various combinatorial and 
optimization problems. 

These techniques include algorithms for various forms of local consistency, several pow­
erful search techniques and formalization of the problems under consideration by means 
of customized constraint primitives. For an overview of this area see Tsang (1993). 

The aim of this paper is to show how in case of Boolean constraints some of these 
techniques can be explained by purely logical means. To this end we use the proof theo­
retic approach to constraint programming introduced in Apt (1998) and customize it to 
Boolean constraints. Then we provide an axiomatic characterization of arc consistency for 
Boolean constraint satisfaction problems. Also, we compare this axiomatization with a 
similar one presented in Codognet & Diaz (1996) and used there as a basis for an efficient 
implementation of a Boolean constraint solver. 

This, when combined with a use of proof trees, allows us to explain in logical terms the 
look-ahead search strategy generalized to n-ary constraints. These ideas lead to a natural 
implementation of a Boolean constraint solver that performs well on various benchmarks. 

The use of local consistency methods to deal with Boolean constraints essentially goes 
back to Stallman & Sussman (1977). Some more recent articles can be found in Benhamou 
& Colmerauer (1993). The method discussed in this paper is known in the literature as 
unit propagation (see, e.g. Dalal (1992)). However, to our knowledge, no systematic study 
of it in purely logical terms has been provided. 

2 Preliminaries 

2.1 Constraint Satisfaction Problems 

Consider a finite sequence of variables X := x 1 , ... ,Xn where n ~ 0, with respective 
domains 'D := D1, .. . , Dn associated with them. So each variable Xi ranges over the 
domain Di. By a constraint C on X we mean a subset of D1 x ... x Dn. If C equals 
D 1 x ... x Dn then we say that C is solved. 

In the boundary case when n = 0 we admit two constraints, denoted by T and ..L, that 
denote respectively the true constraint (for example 0 = 0) and the false constraint (for 
example 0 = 1). 

2 



Now, by a constraint satit1Jfaction problem, CSP in short, we mean a finite sequence 
of variables X := x1, .. . , Xn with respective doma.ins V := D1, ... , Dn, together with a 
finite set C of con8tra.ints, each on a subsequence of X. We write such a CSP as (C ; 'D£}, 
where VE:= x1 E D1, ... ,xn E Dn a.nd call each construct of the form x ED a. domain 
espression. To simplify the notation from now on we omit Ut(~ "{ }" brackets when 
presenting specific sets of constraints C. 

Consider a CSP (C ; VE} with Vl := x1 E D1, ... , Xn E Dn. We say that an n-tuple 
(di, ... , dn) E D1 x ... x Dn is a solution to (C; V£} if for every constraint C EC on the 
variables Xi 1 , ••• , Xim we have 

(~"" .. ,~m) EC. 

We call a CSP solved if it is of the form (0 ; 'DE} where no domain in VE is empty, 
and faile.d if some of its domains is empty. Two CSP's with the same sequence of variables 
are called equivalent if they have the sa.me set of solutions. 

Finally, given a constraint con the variables x1, .. . , Xn with respective domains Di, ... , Dn, 
and a. sequence of domains JYi, .. . , ~ such that for i E [1..n] we have ~~Di, we say 
that d is the result of restricting c to the domains JYi, .. . , D'11 if t! = c n (JYi x ... x D1n)· 

2.2 Boolean Constraints 

In this paper we focus on Boolean constraint satisfaction problems. They deal with 
Boolean variables and c.onstraints on them defined by means of Boolean connectiVl.'!S and 
equality. Let us recall the definitions. 

By a Boolean variable we mean a variable which ra.nges over the domain which consists 
of two values: 0 denoting false and 1 denoting true. By a Boolean domain expression 
we mean an expression of the form x E D where D ~ {O, 1 }. In what follows we write 
the Boolean domain expression x E {1} as x = 1 and x E {O} as x = 0. By a Boolean 
expression we mean an expression built out of Boolean variables using three connectives: 
..., (negation), /\ (conjunction) and V (disjunction). 

Next, by a Boole.an constraint we mean a formula of the form s = t, where s, t are 
Boolean expressions. In presence of Boolean domain expressions each Boolean constraint 
uniquely determines a constraint on the sequence of its variables, so from now on we 
identify each Boolean constraint with the constraint determined by it. 

Finally, by a Boole.an constraint satisfaction problem, in short Boolean CSP, we mean a. 
CSP with Boolean domain expressions and a.ll constraints of which are Boolean constraints. 

Note that in our framework the Boolean constants, true and false, are absent. They 
can be easily modeled by using two predefined variables, say xr a.nd Xp, with the Boolean 
domain expressions xr = 1 and x F = 0. 

In the sequel x, y, z denote different Boolean variables. We call a Boolean constraint 
simple if it is iu one of the following form: 

• x = y; we call it the equality constraint, 

• -.x = y; we call it the NOT constraint, 

• x /\ y = z; we call it the AND constraint, 

• x V y = z; we call it the OR constraint. 

3 



By introducing auxiliary variables it is straightforward to transform each Boolean CSP 
into an equivalent one all constraints of which are simple. (More precisely, to prove such 
an equivalence result, the notion of equivalence between CSP's has to be extended to deal 
with CSP's with different sequences of variables. This was done in Apt (1998).) So we 
assume in the sequel that all Boolean constraints are simple. 

2.3 A Proof Theoretic Framework 

Next, we recall briefly the proof theoretic framework introduced in Apt (1998). In this 
paper two types of proof rules for CSP's were introduced: deterministic and splitting. 
Here we focus on the deterministic ones; the splitting rules will be introduced in Section 
6. 

The deterministic rules are of the form 

where </> and 'I/; are CSP's. We assume here that </> is not failed and its set of constraints 
is non-empty. Depending on the form of the conclusion 'I/; we distinguish two cases. 

• Domain reduction rules, or in short reduction rules. They are of the form 

(C; x1 E D1, .. . ,xn E Dn) 
{C'; X1 E DL ... ,Xn ED~) 

where for i E [1..n] we have D~ ~Di and where C' is the result of restricting each 
constraint in C to the corresponding subsequence of the domains DL .. . , D~. 

When all constraints in C' are solved, we call such a rule a solving rule. 

• Transformation rules. These rules are not domain reduction rules. In this paper 
they are of the following form: 

{C; Ve) 
(C'; Ve} 

Now that we have defined the proof rules, we define the result of applying a proof 
rule to a CSP. Intuitively, we just replace in a given CSP the part that coincides with the 
premise by the conclusion and restrict the "old" constraints to the new domains. 

Because of variable clashes we need to be more precise. So assume a CSP of the form 
{CU C1 ; Ve u Ve1 ) and consider a rule of the form 

(C1 ; Ve1) 

(C2 ; Ve2) 
(1) 

Call a variable that appears in the conclusion but not in the premise an introduced 
variable of the rule. By appropriate renaming we can assume that no introduced variable 
of this rule appears in {C ; Ve). 

Let now c' be the result ofrestricting each constraint in C to the domains in VeUVe2. 
We say that rule (1) can be applied to {C UC1 ; 'De U'De1) and call 

(c' u C2 ; v& u 'De2) 

4 



the result of applying rule (1) to (CU C1 ; VE U V£1). 
To discuss the effect of an application of a proof rule to a CSP we introduce the 

following notions. 

Definition 2.1 Consider two CSP's if> and 'I/; and a deterministic rule R. 

• We call if> a reformulation of 'lj; if the removal of solved constraints from if> and 'lj; 
yields the same CSP. 

• Suppose that 'I/; is the result of applying the rule R to the CSP <f>. If 'I/; is not a 
reformulation of </>, then we call this a relevant application of R to if>. 

• Suppose that the rule R cannot be applied to if> or no application of it to </> is relevant. 
Then we say that if> is closed under the applications of R. D 

For example, the Boolean CSP if> := (x A y = z ; x = 1, y = 0, z = 0) is closed under 
the applications of the transformation rule 

(x A y = z ; x = 1, y E Dy, z E Dz) 
(y = z ; x = 1, y E Dy, z E Dz) 

Indeed, this rule can be applied to</>; the outcome is 'I/;:= (z = y; x = l,y = O,z = 0). 
After the removal of solved constraints from if> and 'lj; we get in both cases the solved CSP 
(0 ; x = 1, y = 0, z = 0). 

In contrast, the Boolean CSP if>:= (x A y = z; x = l,y E {0,1},z E {0,1}) is not 
closed under the applications of the above rule because (z = y ; x = 1, y E {O, 1 }, z E 
{ 0, 1}) is not a reformulation of if>. 

To conclude this brief review we need two more definitions. Given two CSP's </> and 
'I/; with the same variables, we say that if> is smaller than 'I/; if it is obtained from 'I/; by an 
application of a reduction rule. 

Finally, a proof rule 
if> 
'lj; 

is called equivalence preserving if if> and 'I/; are equivalent. 
All the rules discussed in this paper are easily seen to be equivalence preserving. The 

following lemma explains why the equivalence preserving rules are important. 

Lemma 2.2 (Equivalence) Suppose that the CSP 'lj; is the result of applying an equiv­
alence preserving rule to the CSP </>. Then if> and 'I/; are equivalent. D 

3 A Characterization of Arc Consistency 

The following notion was introduced in Mohr & Masini (1988). The original definition for 
binary constraints is due to Mackworth (1977). 

Definition 3.1 

• A constraint C is called arc consistent if for every variable of it each value in its 
domain participates in a solution to C. 

5 



• A CSP is called arc consistent if every constraint of it is. 0 

We now characterize arc consistency for Boolean CSP's by means of proof rules. In 
what follows we write these rules in a simplified form. We illustrate it by means of three 
representative examples. 

We write the solving rule 

as 

(•x = y ; x E Dx, y = 0) 
( ; x E Dx n {1 }, y = 0) 

-ix = y, y = 0-+ x = 1, 

the already mentioned transformation rule 

as 

and the solving rule 

as 

(x /\ y = z; x = 1, y E Dy, z E Dz) 
(y = z ; x = 1, y E Dy, z E Dz) 

x /\ y = z, x = 1 -+ z = y, 

(x V y = z ; x = 0, y E Dy, z = 1) 
(; x = O,y E Dy n {1},z = 1) 

x v y = z, x = 0, z = 1-+ y = 1. 

Using this convention we now introduce 20 solving rules presented in Table 1 and call 
the resulting proof system BOOL. 

To read properly such formulas it helps to remember that 0 and 1 are domain elements, 
so atomic formulas of the form x = 0 and x = 1 are domain expressions while all other 
atomic formulas are constraints. 

Observe, however, that our interpretation of these formulas as shorthands for the 
corresponding rules amounts to a different, dynamic interpretation of them. For example 
AND 1 should be interpreted as: x /\ y = z, x = 1 and y = 1 imply that z becomes 1. 
Additionally, as a side effect of applying such a rule, the constraint - here x /\ y = z -
is deleted. 

Note also that each of these rules can yield a failed CSP - take for instance the NOT 
2 rule applied to (•x = y ; x = 0, y = 0). 

We now establish the following result. 

Theorem 3.2 (Arc Consistency) A non-failed Boolean CSP is arc consistent iff it is 
closed under the applications of the rules of the proof system BOOL. 

Proof. Let <P be the CSP under consideration. Below C := x /\ y = z is some AND 
constraint belonging to cp. We view it as a constraint on the variables x, y, z in this order. 
Let Dx, Dy and Dz be respectively the domains of x, y and z. 
( => ) We need to consider each rule in turn. We analyse here only the AND rules. For 
other rules the reasoning is similar. 

AND 1 rule. 

6 



EQU 1 
EQU 2 
EQU 3 
EQU 4 

NOT 1 
NOT 2 
NOT 3 
NOT4 

AND 1 
AND 2 
AND 3 
AND 4 
AND 5 
AND 6 

OR 1 
OR 2 
OR 3 
OR 4 
OR 5 
OR 6 

x = y, x = 1-+ y = 1 
x = y, y = 1-+ x = 1 
x=y,x=O-+y=O 
x = y, y = 0-+ x = 0 

•X = y, X = 1 -+ y = 0 
•X = y, X = 0 -+ y = 1 
•X = y, y = 1 -+ X = 0 
•X = y, y = 0 -+ X = 1 

x (\ y = z, x = 1, y = 1 -+ z = 1 
x (\ y = z, x = 1, z = 0-+ y = 0 
x (\ y = z, y = 1, z = 0-+ x = 0 
x (\ y = z, x = 0-+ z = 0 
x (\ y = z, y = 0 -+ z = 0 
x /\ y = z, z = 1-+ x = 1, y = 1 

x v y = z, x = 1 -+ z = 1 
x v y = z, x = 0, y = 0-+ z = 0 
xv y = z, x = 0, z = 1-+ y = 1 
xv y = z, y = 0, z = 1-+ x = 1 
xv y = z, y = 1-+ z = 1 
x Vy= z,z = 0-+ x = O,y = 0 

Table 1: Proof system BOOL 

Suppose that Dx = { 1} and Dy = { 1}. If 0 E D z, then by the arc consistency for some 
d1 E Dx and d2 E Dy we have (d1, d2, 0) EC, so (1, 1, 0) EC which is a contradiction. 

This shows that Dz = {l} which means that</> is closed under the applications of this 
rule. 

AND 2 rule. 
Suppose that Dx = {l} and Dz = {0}. If 1 E Dy, then by the arc consistency for some 

d1 E Dx and d2 E Dz we have (d1, l,d2) EC, so (1, 1, 0) EC which is a contradiction. 
This shows that Dy = {O} which means that </>is closed under the applications of this 

rule. 

AND 3 rule. 
This case is symmetric to that of the AND 2 rule. 

AND 4 rule. 
Suppose that Dx = {O}. If 1 E Dz, then by the arc consistency for some d1 E Dx and 

d2 E Dy we have (d1, d2, 1) E C, so (1, 1, 1) E C which is a contradiction. 
This shows that Dz = {O} which means that </>is closed under the applications of this 

rule. 

AND 5 rule. 
This case is symmetric to that of the AND 4 rule. 

AND 6 rule. 

7 



Suppose that Dz = {1}. If OE Dx, then by the arc consistency for some d1 E Dy and 
d2 E Dz we have (O,d1,d2) EC, so 0 E Dz which is a contradiction. 

This shows that Dx = {1}. By a symmetric argument also Dy= {1} holds. This 
means that 1> is closed under the applications of this rule. 

( ~) Consider the AND constraint C. We have to analyze six cases. 

Case 1. Suppose 1 E Dx. 
Assume that neither (1, 1) E Dy x Dz nor (0, 0) E Dy x Dz. Then either Dy = {1} and 

Dz = {O} or Dy= {O} and Dz = {l}. 
If the former holds, then by the AND 3 rule we get Dx = {O} which is a contradiction. 

If the latter holds, then by the AND 5 rule we get Dz = {O} which is a contradiction. 
We conclude that for some d we have (1, d, d) EC. 

Case 2. Suppose 0 E Dx. 
Assume that 0 tJ. Dz. Then Dz = {1}, so by the AND 6 rule we get Dx = {1} which 

is a contradiction. Hence 0 E Dz. Let now d be some element of Dy. We then have 
(O,d,O)EC. 

Case 3. Suppose 1 E Dy. 
This case is symmetric to Case 1. 

Case 4. Suppose 0 E Dy. 
This case is symmetric to Case 2. 

Case 5. Suppose 1 E Dz. 
Assume that (1, 1) tJ. Dx x Dy. Then either Dx = {O} or Dy = {O}. If the former holds, 

then by the AND 4 rule we conclude that Dz = {O}. If the latter holds, then by the AND 
5 rule we conclude that Dz = {0}. For both possibilities we reached a contradiction. So 
both 1 E Dx and 1 E Dy and consequently (1, 1, 1) EC. 

Case 6. Suppose 0 E Dz. 
Assume that both Dx = {l} and Dy= {l}. By the rule AND 1 rule we conclude that 

Dz = {l} which is a contradiction. So either 0 E Dx or 0 E Dy and consequently for some 
d either (0, d, 0) E C or (d, 0, 0) E C. 

An analogous reasoning can be spelled out for the equality, OR and NOT constraints 
and is omitted. D 

Note that the restriction to non-failed CSP's is necessary: the failed CSP {x /\ y = 
z ; x E 0, y E {O, 1 }, z E {O, 1}) is not arc consistent but it is closed under the applications 
of the rules of BOOL. 

It is also easy to check that all the rules of the BOOL system are needed, that is, this 
result does not hold when any of these 20 rules is omitted. For example, if the rule AND 
4 is left out, then the CSP {x /\ y = z; x = 0,y E {0,1},z E {0,1}) is closed under the 
applications of all remaining rules but is not arc consistent. 

The above theorem shows that in order to reduce a Boolean CSP to an equivalent one 
that is either failed or arc consistent it suffices to close it under the applications of the 
rules of the BOOL system. We shall return to this matter after having discussed a related 
proof system. 

8 



4 The Proof System of Codognet and Diaz 

In Codognet & Diaz (1996) a slightly different proof system was introduced to deal with 
Boolean constraints. It consists of the proof rules given in Table 2. We call the resulting 
proof system BOOL'. 

EQU 1 -4 

NOT 1 -4 

AND 11 

AND 2 1 

AND 31 

AND 4 
AND 5 
AND 61 

OR 1 
OR 2' 
OR 3' 
OR 4' 
OR 5 
OR 61 

as in the system BOOL 

as in the system BOOL 

xAy=z,x=l-+z=y 
x A y = z, y = 1-+ z = x 
x A y = z, z = 1 -+ x = 1 
as in the system BOOL 
as in the system BOOL 

x A y = z, z = 1 -+ y = 1 

as in the system B 0 0 L 
x v y = z, x = 0-+ z = y 
x v y = z, y = 0 -+ z = x 
x v y = z, z = 0-+ x = 0 
as in the system B 0 0 L 

x v y = z, z = 0 -+ y = 0 

Table 2: Proof system BOOL' 

To be precise, the rules EQU 1-4 are not present in Codognet & Diaz (1996). Instead, 
the constraints 0 = 0 and 1 = 1 are adopted as axioms. Note that the rules AND 1 ', AND 
2', OR 2' and OR 3' are transformation rules. 

The main difference between BOOL and BOOL 'lies in the fact that the rules AND 1-3 
of BOOL are replaced by the rules AND 1' and AND 2' of BOOL' and the rules OR 2-4 
of BOOL are replaced by the rules OR 2' and OR 3' of BOOL'. (The fact that the rule 
AND 6 of BOOL is split in BOOL' into two rules, AND 3' and AND 6' and analogously 
for the rules OR 6 of BOOL and OR 3' and OR 6' of BOOL' is of no importance.) 

A natural question arises whether the proof systems BOOL and BOOL' are equivalent. 
The precise answer is "sometimes". First, observe that the following result holds. 

Theorem 4.1 If a non-failed Boolean CSP is closed under the applications of the rules 
of the proof system BOOL ', then it is arc consistent. 

Proof. The proof relies on the following immediate observation. 

Claim 1 Consider a Boolean CSP </> containing the AND constraint x A y = z on the 
variables x, y, z with respective domains Dx, Dy and Dz. If</> is closed under the appli­
cations of the AND 1' rule, then Dx = {1} implies Dy = Dz. If</> is closed under the 
applications of the AND 2' rule, then Dy= {1} implies Dx = Dz. 0 

Suppose now that the CSP in question contains the AND constraint x A y = z on the 
variables x, y, z with respective domains Dx, Dy and Dz· We present the proof only for the 

9 



cases where the argument differs from the one given in the proof of the Arc Consistency 
Theorem 3.2. 

Case 1. Suppose 1 E Dx. 
Assume that neither (1, 1) E Dy x Dz nor (0, O) E Dy x Dz. Then either Dy= {l} and 

Dz = {O} or Dy= {O} and Dz = {l}. 
If the former holds, then by Claim 1 Dy = Dz, which is a contradiction. If the latter 

holds, then by the AND 5 rule Dz = {O} which is also a contradiction. We conclude that 
for some d we have (1, d, d) EC. 

Case 6. Suppose 0 E Dz. 
Assume that both Dx = {l} and Dy = {l}. By Claim 1 Dy = Dz, which is a 

contradiction. So either 0 E Dx or 0 E Dy and consequently for some d either (0, d, 0) EC 
or (d,0,0) EC. 

The reasoning for the OR and NOT constraints is analogous and omitted. 0 

In constrast to the case of the BOOL system the converse result does not hold. Indeed, 
just take the CSP <P := (x /\ y = z ; x = 1, y E {O, 1 }, z E {O, 1} ). Note that </> is arc 
consistent but it is not closed under the applications of the AND 1' rule. 

This brings us to the following definition. 

Definition 4.2 We call a Boolean CSP limited if none of the following four CSP's forms 
a subpart of it: 

• (x/\y=z; x=l,yE{O,l},zE{O,l}), 

• (x/\y=z; xE{O,l},y=l,zE{O,l}), 

• (x V y = z ; x = 0, y E {O, 1 }, z E {O, 1} ), 

• (xVy=z; xE{0,1},y=O,zE{0,1}). 0 

We can now prove the following result. 

Theorem 4.3 If a non-failed Boolean CSP is limited and arc consistent, then it is closed 
under the applications of the rules of the proof system BOOL '. 

Proof. In view of the Arc Consistency Theorem 3.2 we only have to consider the rules 
of BOOL' that are absent in BOOL. We present here an argument for one representative 
rule. 

AND 1' rule. 
Suppose that Dx = {1 }. If 0 E Dy, then by the arc consistency for some d E Dz 

we have (1, 0, d) E C, which means that 0 E Dz. Conversely, if 0 E Dz, then by the arc 
consistency for some d E Dy we have (1, d, 0) EC, so 0 E Dy. By a similar argument we 
get that 1 E Dy iff 1 E Dz. This shows that Dy= Dz. 

By assumption </> is limited, so either Dy i {O, 1} or Dz #- {O, l}. Hence either 
Dy= Dz = {1} or Dy= Dz = {O}. In both cases The CSP under consideration is closed 
under the applications of the AND 1' rule. D 

10 



5 Enforcing Arc Consistency 

The Arc Consistency Theorem 3.2 suggests an obvious way of transforming a Boolean 
CSP into one that is failed or arc consistent: it just suffices to compute its closure under 
the rules of the BOOL system. 

This brings us to the question whether such a closure is uniquely defined. Before we 
proceed, it is useful to point out that a naive argument based on commutativity of the 
considered rules does not hold here. 

Indeed, consider the CSP 

</; := (x /\ y = z,-,x = u; u = l,x E {O, 1},y E {O, 1},z E {O, l}). 

By applying to it the NOT 3 rule we get 

'!/; := (x /\ y = z; u = I,x = O,y E {O, l},z E {O, 1}). 

An application of the AND 4 now yields the solved CSP 

(f/J; u=l,x=O,yE{O,l},z=O). 

However, when we apply these two rules in the reversed order, we "only" get 'lj;. The 
reason is that the AND 4 rule cannot be applied to </;, or to put it in other words, </> is 
closed under the applications of the AND 4 rule. 

Let us define now the notion of a closure formally. 

Definition 5.1 Consider two CSP's </> and '!/; and a finite set of proof rules R. We say 
that '!/; is a closure of 1> under the rules from R if 

• 'I/; is obtained from 1> by a finite number of consecutive applications of the rules from 
R, 

• '!/; is closed under the applications of the rules from R. 0 

Each proofrule can be viewed as a function on CSP's by assuming that it is the identity 
function on CSP's to which it cannot be applied. Therefore the following definition is 
meaningful. 

Definition 5.2 We say that a proof rule R is monotonic if, when viewed as a function, 
it is monotonic, w.r.t. the "smaller than" relation. D 

Now, the general result proved in Apt (1997) (more precisely, the Domain Reduction 
Theorem on page 47) implies the following. 

Theorem 5.3 (Closure) Consider a CSP 1> with finite domains and a finite set of re­
duction rules R. Suppose that all rules in R are equivalence preserving and monotonic. 
Then 

• a closure of 1> under the rules from R exists and is equivalent to c/>, 

• if a closure of</> under the rules from R is non-failed, then it is uniquely defined and 
it is the largest CSP closed under· the rules from R that is smaller than <f>. D 

11 



The above theorem applies to our situation because all proofrules of the system BOOL 
are easily seen to satisfy the conditions of this theorem. This shows that a closure of a 
Boolean CSP </> under the rules of BOOL exists and is equivalent to <f>. Moreover, if it 
is non-failed, then it is uniquely defined and is the largest arc consistent Boolean CSP 
smaller than <f>. 

It is useful to see that the closure under the rules of BOOL does not have to be unique. 
Indeed, take the CSP 

<P := (x /\ y = z, x /\ y = u ; u = 0, x = 1, y = 1, z = 0). 

Then the AND 1 rule can be applied in two ways, so both 

(x /\ y = u; u = 0, x = 1, y = 1, z E 0) 

and 
(x /\ y = z ; u E 0, x = 1, y = 1, z = 0) 

are closures of </>, since by definition no rule can be applied to a failed CSP. On the other 
hand, all closures under the rules of BOOL are obviously equivalent. 

The Closure Theorem 5.3 also allows us to study confluence of the rules of the BOOL 
system. 

Definition 5.4 Let ~ be a binary relation on a set A and ~* its transitive reflexive 
closure. An element a of A is called confluent w.r.t. ~ if for all b, c E A the fact that 
a~* band a~* c implies that for some d EA we have b ~* d and c ~*d. D 

We now have the following immediate consequence of the Closure Theorem 5.3 that 
can be applied to the BOOL system. 

Theorem 5.5 Consider</> and 1l as in the Closure Theorem 5.3. For two CSP's 1./J1 and 
'l/J2 let 'l/J1 ~ n.'l/J2 denote the fact that 'l/J2 is obtained from 'l/J1 by a single application of a 
rule from 'R. 

If a closure of</> under the rules from n is non-failed, then</> is confluent w.r.t. ~ 1?.· 

D 

The above Boolean CSP (x /\ y = z,x /\ y = u; u = O,x = l,y = l,z = 0) shows 
that the restriction to CSP's with non-failed closure is necessary here. 

Without going into details let us mention that analogous results also hold for the 
system BOOL' though the argument is more involved as AND 1', AND 2', OR 2' and 
OR 3' are not reduction rules. To deal with this complication an appropriate modification 
of the Constraint Reduction Theorem of Apt (1997, page 49) can be used. 

The obvious question that comes now to one's mind is how to schedule the proof rules 
of the BOOL system in a meaningful way when computing a closure. 

One possibility is to apply one of the generic chaotic iteration algorithms of Apt (1997). 
Such algorithms schedule the rules in a way analogous to the one used in the AC-3 and PC-
2 algorithms of Mackworth (1977). As pointed out in Apt (1997), this scheduling strategy 
is employed in several constraint propagation algorithms proposed in the literature. 

Here, however, because all rules are solving, a more natural strategy is to put all 
constraints in a ring and repeatedly advance around it, each time trying to apply some 
rule. In this approach the constraints and not the rules are scheduled. 

12 



6 From Arc Consistency to a Boolean Constraint Solver 

Of course, reducing a Boolean CSP to an equivalent one that is failed or arc consistent 
is not sufficient to find all solutions to it, let alone to solve it. Take for example the 
simple constraints x /\ y = z, x /\ v = z, -.y = v with all variable domains equal { 0, 1}. 
This CSP is arc consistent but to find its two solutions, x = 0, y = 1, z = 0, v = 0 and 
x = 0, y = 0, z = 0, v = 1, some additional techniques are needed. 

One, widely used, method is the look-ahead search strategy (see Tsang (1993)). Look­
ahead is usually defined for binary constraints only. Here we use a natural generalization 
of it to arbitrary constraints. Look-ahead for arbitrary CSP's combines backtracking, 
triggered by instantiation of some variable with non-singleton domain, with enforcement 
of the arc consistency on the resulting CSP. If during this enforcement process the domain 
of a variable becomes empty, a failure arises. 

To explain this technique for Boolean CSP's in logical terms we return to Apt (1998) 
and extend our proof theoretic framework by adding to it splitting rules. 

The splitting rules are of the form 

where </>, 'if;1 and 'if;2 are CSP's with the same sequence of variables. As for deterministic 
rules we assume here that </; is not failed and its set of constraints is non-empty. 

These rules allow us to replace one CSP by two CSP's. They are counterparts of the 
deterministic rules, so we distinguish two cases. 

• Reduction splitting rules. These are rules such that both fr and -?'2 are reduction 
rules. 

• Transformation splitting rules. These are rules such that both fr and -fA are trans­
formation rules. 

Consider now a CSP of the form (CU C1 ; V£ UV£ 1) and a splitting rule of the form 

(C1 ; V£1) 
(2) 

(C2 ; V£2) I (C3 ; V£3) 

We then say that rule (2) can be applied to (C U C1 ; VE UV£ 1 ) and call 

(Cu C2 ; VE u VE2) I (Cu C3 ; 1)£ u VE3) (3) 

the result of applying it to (CU C1 ; VE U VE1)- If neither (C U C2 ; 'DE U 'D£2) nor 
(CU C3 ; V£ U V£3) is a reformulation of (CU C1 ; 1)£ U V£1), then we say that (3) is the 
result of a relevant application of rule (2) to (CU C1 ; VE U 7)£1). 

Finally, we introduce the notion of a proof tree. 

Definition 6.1 Assume a set of proof rules. A proof tree is a tree the nodes of which are 
CSP's. Further, each node has at most two direct descendants and for each node</; the 
following holds: 

• If </> is a leaf, then no application of a rule to 'if; is relevant; 

13 



• If <f; has precisely one direct descendant, say 'If;, then 'If; is the result of a relevant 
application of a proof rule to <jJ; 

• If <jJ has precisely two direct descendants, say 'l/J1 and 'l/J2, then 'l/J1 I 'l/J2 is the result 
of a relevant application of a proof rule to </J. D 

The idea behind the above definition is that we consider in the proof trees only those 
applications of the proof rules that cause some change. Note also that more proof rules 
can be applicable to a given CSP, so a specific CSP can be a root of several proof trees. 

In what follows we consider only one splitting rule, namely 

INSTANTIATION 

(C; 1JE,x E {O, l}) 
(C' ; x = 1) I (C" ; x = 0) 

where C' is the result of restricting each constraint in C to the corresponding subsequence 
of the domains D~, ... , D~ domains in DE U { x = 1} and analogously with C". 

We add it to BOOL and call the resulting system BOOL+. We then have the following 
result that characterizes the set of all solutions to a Boolean CSP. 

Theorem 6.2 Consider a Boolean CSP <f; := (C ; x1 E D1, ... , Xn E Dn) and a proof tree 
T for the proof rules of BOOL+ with the root cj>. Then an n-tuple (d1, ... , dn) is a solution 
to c/> iff the solved CSP (0 ; X1 =di, ... , Xn = dn) is a leaf in T. 

Proof. It is an immediate consequence of the fact that all rules of BOOL are equivalence 
preserving and that given the INSTANTIATION rule wif'f/.>2 , every solution to <jJ is a 
solution to 'lj;1 or to 'l/J2 and every solution to 'I/Ji (i E [l, 2]) is a solution to <f>. D 

The above result provides us with a way of computing all solutions to a Boolean CSP 
but leaves us with a considerable degree of freedom concerning the choice of the proof 
tree. A natural, widely used, heuristic consists of delaying the applications of the splitting 
rule INSTANTIATION as much as possible. This leads to the proof trees that embody 
the look-ahead search strategy. Indeed, the proof trees are defined in such a way that 
the internal nodes are non-failed CSP's. Hence by the Arc Consistency Theorem 3.2 the 
INSTANTIATION rule can be applied to a CSP only if it is non-failed and arc consistent. 

Let us mention also that the other well-known search strategy, forward checking, can 
be described in a similar way. Recall that forward checking differs from look-ahead in that 
after the instantiation of some variable the arc consistency is enforced only on the set of 
constraints that contain this variable. 

In our approach forward checking for Boolean constraints translates into a strategy 
according to which after each application of the INSTANTIATION rule to some variable, 
say x, a closure under the rules of BOOL is computed only for the set of constraints that 
contain the variable x. 

In practise it seems that for Boolean CSP's forward checking is inferior to look-ahead. 
The above considerations lead to a natural implementation of a Boolean constraint 

solver. In fact, a student of ours, Antal Godkewitsch, implemented such a Boolean con­
straint solver in C, both based on the rules of the BOOL+ system and on a similar system 

14 



that deals with simple Boolean constraints built out of literals instead of variables only. 
This, when combined with the well-known heuristic of instantiating the most constrained 
variable, led to a constraint solver that performs on various benchmarks 1.3 to 7 times 
slower than the apparently fastest known Boolean constraint solver, c 1 p (B) of Codognet 
& Diaz (1996). This is not too bad, having in mind that the latter solver was implemented 
by means of a highly optimized and dedicated extension of WAM. 

A truly straightforward way of implementing the above approach consists of using the 
constraint handling rules (CHRs) of Friihwirth (1995) that are part of the ECLipse system 
(see A. Aggoun et al. (1995)). In fact, Boolean constraints form a prime example for an 

effective use of CHRs. 
The CHRs allow us to add various deterministic (in our terminology) rules to a con­

straint logic program. The application of these rules has a priority over the logic program­
ming resolution step. Rewriting the rules of the BOOL system as so-called simplification 
rules of CHR and adding the labeling to simulate the INSTANTIATION rule effectively 
results in a Boolean constraint solver that realizes the look-ahead search strategy discussed 
here. 

In fact, in Friihwirth (1998, page 113) a Boolean constraint solver can be found that 
consists of CHRs that amount to the rules of the BOOL' system. 

It should be remarked though that this approach comes with a fixed strategy of se­
lecting the constraints and rules because the scheduler of CHRs is hardwired within the 
ECLipse system. 

Acknowledgements 

We would like to thank Antal Godkewitsch for useful discussions on the implementation 
of a Boolean constraint solver based on the approach here discussed. 

References 

A. Aggoun et al. (1995), ECLiPSE 3.5 User Manual, Munich, Germany. 

Apt, K. R. (1997), From chaotic iteration to constraint propagation, in P. Degano, R. Cor­
rieri & A. Marchetti-Spaccamela, eds, 'Proceedings of the 24th International Collo­
quium, ICALP '97', Vol. 1256 of Lecture Notes in Computer Science, Springer-Verlag, 
New York, pp. 36-55. Invited Lecture. 

Apt, K. R. (1998), 'A proof theoretic view of constraint programming', Fundamenta In­
formaticae 33(3), 263-293. Available via http://www. cwi .nl;-apt. 

Benhamou, F. & Colmerauer, A., eds (1993), Constraint Logic Programming: Selected 
Research, MIT Press, Cambridge, MA. 

Codognet, P. & Diaz, D. (1996), 'A simple and efficient Boolean constraint solver for 
constraint logic programming', Journal of Automated Reasoning 17(1), 97-128. 

Dalal, M. (1992), Efficient Propositional Constraint Propagation, in 'Proceedings of the 
10th National Conference on Artificial Intelligence, AAAI'92', pp. 409-414. San Jose, 
California. 

15 



Friihwirth, T. (1995), Constraint Handling Rules, in A. Podelski, ed., 'Constraint Pro­
gramming: Basics and Trends', LNCS 910, Springer-Verlag, pp. 90-107. (Chatillon­
sur-Seine Spring School, France, May 1994). 

Friihwirth, T. (1998), 'Theory and practice of constraint handling rules', Journal of Logic 
Programming 37(1-3), 95-138. Special Issue on Constraint Logic Programming (P. 
Stuckey and K. Marriot, Eds.). 

Mackworth, A. (1977), 'Consistency in networks of relations', Artificial Intelligence 
8(1), 99-118. 

Mohr, R. & Masini, G. (1988), Good old discrete relaxation, in Y. Kodratoff, ed., 'Pro­
ceedings of the 8th European Conference on Artificial Intelligence (ECAI) ', Pitman 
Publishers, pp. 651-656. 

Stallman, R. M. & Sussman, G. J. (1977), 'Forward reasoning and dependency directed 
backtracking in a system for computer-aided circuit analysis', Artificial Intelligence 
9, 135-196. 

Tsang, E. (1993), Foundations of Constraint Satisfaction, Academic Press. 

16 


