
Management of Stratified Databases

Krzysztof R. Apt
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
and

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

USA

Jean-Marc Pugin
BULL Research Center

P.C 58 A 14-A.l. Division
68 route de Versailles, 78430 Louveciennes

France

We propose here a knowledge based management system supporting immediate visualization and simula
tion facilities in presence of non-monotonic reasoning. It is based on a special class of indefinite deductive
databases, called stratified databases, introduced in APT, BLAIR and WALKER [ABW] and VAN GELDER [VG], in
which recursion "through" negation is disallowed.

A stratified database has a natural model associated with it which is selected as its intended meaning.
The main technical problem addressed here is the task of maintaining this model. To solve it we refine the
ideas present in the works of DoYLE [DJ and DE KLEER [dK] on belief revision systems. We also discuss the
implementation issues and the trade-offs involved.

1980 CR Categories: F.4.1, F.3.2, H.2.1.
Key Words & Phrases: non-monotonic reasoning, deductive databases, stratification, transaction process

ing, integrity constraints checking.
Note: Work partially supported by the ESPRIT project 415. Preliminary version of this paper appeared as

Apt and Pugin [AP].

1. INTRODUCTION

1.1. Objectives
The aim of this paper is to propose a knowledge based management system (KBMS in short) whose

main characteristics are: use of incomplete information, immediate visualization of modifications, gen
eration of explanations, simulation and "undo" capabilities. Our proposal has a clear semantics
allowing us to account for the use of incomplete information in an interactive environment. We
believe that due to the above features our proposal can be used as a system for interactive problem
solving and decision making. The framework in which we carry out our investigations is that of
deductive databases, or more generally rule based programming. While proposing such a system we
have in mind the following objectives:
1. Use of incomplete information.

It is well understood by now that monotonic reasoning is not sufficient to adequately describe
human style of reasoning, mainly because the assumption that all needed information is available, is
unrealistic.

So a major feature of a realistic KBMS should be its ability to deal with incomplete information. In
particular, such a system should be able to draw conclusions in the absence of some informations,
and to withdraw them when some information contradictory with the assumptions becomes available.

Report CS-R8760
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

2. Permanent interaction between the system and the user.
A dynamic character of the knowledge m~es it desirable. to pro~de ~n interactive KBMS w~?se models are generated in an incremental fashion ~ough an mteractlon ~~the user. Our defirut10n of "interaction" allows both additions and deletions of the clauses. This gives us a means to model simulation.

3. Simulation facilities.
An important aspect of decision making systems is their ability to simulate ~om~ representation of the world. It is possible in some advanced systems to use a WHAT-IF function m order to analyze the consequences of a modification, and subsequently to return to the previous state with an "undo" facility if needed. The use of the WHAT- IF function can be. viewed as a _l~ok ahead facility allowing us to analyze one of the next possible states of the system without colllIIlltmg oneself to this state. We provide this facility by offering a very general definition of interaction. In our proposal the user can not only (hypothetically) modify the actual situation by changing the set of facts but also temporarily change actual laws represented by the set of rules. When a given in advance condition (an integrity constraint) does not hold, the system will refuse to perform the modificati?n. We thi~ that this new type of interaction with a KBMS helps in an incremental problem solvmg because it allows the user to investigate consequences of some of the laws before deciding which ones to choose. 4. Generation of explanations.
Explanations are essential when one deals with interactive problem solving. When a desired fact is generated, we would like to be able to provide the reasons for which this fact holds. In our proposal such an explanation consists of the rules which triggered this fact.

The above considerations constitute a part of specifications of a new type of facility called Logical Spreadsheet described in CRAS, LECONTE and PuGIN [CLP}. These specifications form a basis for an internal project at the BULL Research Center which aims at producing a prototype of the Logical Spreadsheet. Logical Spreadsheets are intended to serve as an advanced interface in an environment in which rule based programming or object oriented programming is used.

1.2. Means
Our approach is based on logic programming. A natural representation for handling incomplete information is the one in which negative hypotheses are allowed in rules. A negative hypothesis, say,A, should then be interpreted as "if so far A cannot be confirmed" which models the non-monotonic character of reasoning. These and other aspects of negation were intensively studied in the framework of logic programming. Use of negation increases the expressiveness of the syntax (see CHANDRA and liAREL [CH]) but leads to several fundamental difficulties (see e.g. SHEPHERDSON [Sl,S2]. In particular, it is not clear what is the intended declarative meaning of the program. Recently, APT, BLAIR and WALK.ER [ABW] and independently VAN GELDER [VG] proposed a simple solution to the latter problem obtained by imposing a restriction on the syntax, namely by disallowing recursion "through" negation. This class of programs, called stratified programs, forms a simple generalization of a class of database queries introduced in CHANDRA and HAREL [CH]. It admits a simple declarative semantics in the form of a particular minimal model, which enjoys several natural properties (see APT, BLAIR and w ALKER [ABWJ and VAN GELDER [VG], LIFSCHITZ [L] and PRZYMUSINSKI [Pr]). Dynamic aspects of non-monotonic reasoning were studied by DOYLE [D], DE KLEER [dK] and others. in ~e fo~ of Truth M~ten~ce or Belief Revision Systems - a class of A.I. programs which mamtam consistency by mampulatmg a set of supports used in conditional proofs. In DOYLE [D] when an ~consistenc~ is detected a special mechanism is invoked to alter the supports associated with ~e conditionally denved facts. In DE KlEER [dK] in case of detection of inconsistency, the inconsistent part of the system (set of assumptions) is identified and associated contexts are removed. In .this paper we combine the declarative and dynamic aspects of non-monotonic reasoning by studymg the management of stratified databases, i.e. deductive databases which when seen as a logic

3

As their intended meaning we choose the above mentioned model.
renreS4:m .. ;1uRm is powerful enough to meet our objectives. First, the interaction with the user

means of updates, or more generally, by transactions. Secondly. immediate visuali-
as the task of generating the new model of the modified. stratified database. Finally,

•nu11 .. rnn"~"" facility is embodied in the possibility of issuing a "converse" to the previ-
ous one which effectively ''undoes" the previous transaction. The proposed automatically
embt14:11es a possibility of generating an explanation for the newly obtained facts.

Processing updates and transactions results in the maintenance of the intended model in
absence of complete information. This requires the use of powerful capabilities to compute the "new"
model using the "old" one. It is precisely the main technical point addressed and solved in this paper.

paper
programs form a basis for our proposal. in section 2 we recall their definition and main

concerning their semantics.
In section 3 we formulate the problem of maintenance in terms of computing the "new" model

from the one. We also introduce the notion of migration, which is a useful parameter to com
pare solutions to this problem. The non-monotonicity is reflected in the fact that insertions can lead
to deletions and vice-versa. To handle this problem we track dependencies between the facts from the
generated model and relations used in their derivations. These dependencies are attached to the facts
and called supports.

In section 4 we analyze a spectrum of solutions to the maintenace problem resulting from a
different choice of supports. All these solutions consist of two phases, namely the removal and the
addition phase.

In section 5 we study a different type of solutions - those in which the stratification is used to pro
pagate modifications through the strata and in which the removal and addition phases are interleaved.

In section 6 we extend one of the solutions proposed in section 5 to the case of transactions, i.e.
sequences of updates.

In section 7 we show how the solution given in section 6 can be modified so that integrity con
straints can be checked during the construction of the new model.

In section 8 we propose an efficient implementation of the algorithms given in sections 5, 6 and 7.
We also indicate there that this implementation automatically takes care of the problem of generating
the explanations for the newly derived facts.

Finally, in section 9 we briefly discuss related work in the area of deductive databases and Artificial
Intelligence.

2. STRATIFIED PROGRAMS - AN OVERVIEW

We recall here briefly the results of A.Pr, BLAIR and WALKER [ABW] which fonn a basis for this work.

2.1. Definitions
Throughout t~s paper we assume a fixed first order language L. An atom is a fonnula of L which is
of the form p(t) w~ere p is a relation symbol of arity n and t is a s~uence of terms of L of the length
n. If all terms in t are ground (i.e. variable free) then we call p(t) a fact. A literal is an atom (also
called a positive literal) or its negation (called a negative literal).

A clause is a formula of L of the form

A~Li. ... ,L,,

where n ;;;..o, A is an atom and L !>··.,I.,, are literals. A is called the conclusion of the clause and

4

LJ, ... ,Ln its body. If the body of the clause is not empty (i.e. n >0) then we call the clause a rule.
A relation symbol occurs positively in a clause if it appears in its positive literal. In particular the

relation appearing in the conclusion of the clause occurs in it positively. A relation symbol occurs
negatively in a clause if it appears in its negative literal.

Finally, a logic program (or just a program) is a finite, non-empty set of clauses of L. Given a pro
gram, a definition of a relation symbol is the set of clauses of the program using it in its conclusion.

Given a program P, we denote by Bp the set of facts of L whose relation symbol appears in P. Bp
is called the Herbrand base associated with P. A Herbrand interpretation of P is a subset of Bp. Given
a relation p and a Herbrand interpretation M, [p]M stands for the meaning of p in M, i.e. the set of
facts of the form p (/) true in M.

Given a logic program P we define its dependency graph DP by putting:

(r,q) belongs to DP iff there is a clause in P using r in its conclusion and q in its body.

We then say that r refers to q. If q occurs positively in the body, then we call the arc (r,q) positive. If q
occurs negatively in the body, then we call the arc (r,q) negative. Note that an arc can be both posi
tive and negative because q can appear both positively and negatively in a (not necessarily the same)
rule using r in its conclusion.

Now, following APT, BLAIR and WALKER [ABW], a logic program is called stratified if no cycle in
its dependency graph contains a negative arc (intuitively: there is no recursion "passing through" a
negation). Equivalently, a program P is stratified if there is a partition (where P 1 can be empty)
P = P 1 U · · · UPn, called a stratification of P, such that for i = l, ... ,n
a) if a relation symbol occurs positively in a clause in Pi then its definition is contained in U J.;;,iPJ,
b) if a relation symbol occurs negatively in a clause in Pi then its definition is contained in U J<iP1.
Each P; is called a stratum.

Tiris definition implies that a stratum R of a stratified program is a union of the definitions of some
relation symbols such that if a relation symbol occurs negatively in a clause from R then its definition
is disjoint with R. In general there is more than one way to stratify a program. A stratification
P 1 U ... UPn of P is maximal if no stratum in it can be further decomposed into different strata.

Given a stratum Panda set of facts M from L, we denote by SAT(P,M) - the saturation of M by P
- the set of facts obtained by closing the set M under the clauses of P. Given a stratification P 1 U · · · UPn of P we put:

M1 = SAT(P1,0),

Mn = SAT(Pn,Mn - I),

Mp =Mn,

and call Mp the standard model of the program P.
In general, SAT(P,M) can depend on the order of rule application, but this is not the case when P

is a stratum. The actual implementation of the saturation process is discussed in detail in section 8.

Let M be a Herbrand model of a program P. Mis called minimal if no proper subset of it is a
model of P. M is called supported if for every element A of it there exists an explanation for it in the
form of an instance of a clause of P whose body is true in Mand whose conclusion is A.

5

some general on of non-monotonic operators on complete lattices the following
,,_,., .. ,,.,,..,...,..., of the model Alp were proved in APT, BLAIR and WALK.ER [ABWJ.

THEOREM: p be a Then
i) does not depend on the stratification of P,

is a minimal model of P.
is a model of P.

there is an equivalent definition Mp which uses iteratively smallest models as follows:

,4.f n :M is a supported model P: }.

= n{M:,~f is a supported model of P2 and MnBP, =Mi}

= n :Mis a supported model of and MnBp, _ a ... = M,,_ 1 },

111-fp = M,,.

v) M,. is a model of comp(P), Clark's [C] completion of P,
there is an (ineffective) backchaining interpreter for P using the negation as failure rule and loop
checking (but working only with fully instantiated clauses) which tests for the membership in
Mp. This interpreter becomes effective when P is function-free. 0

Other properties of Mp were proved independently by VAN GELDER [vGJ. LIFSCHITZ [L] showed that
Mr can also be defined using the circumscription method of McCARTHY [MC]. PRzYMUSINSKI [Pr]
generalized the above results by introducing an (ineffective) form of resolution that allows to test for
membership in M,. He also introduced a notion of a perfect model and showed that every stratified
program has exactly one perfect model, namely M,. This provides in our opinion an ample evidence
that M p is a natural model for a stratified program P.

The choice of a Herbrand model as the semantics of P can be viewed as a compact representation
of the intended meaning of P. In the model only (atomic) facts are explicitly recorded. This allows us
to answer directly a query about validity of a particular fact. However, a query about validity of a
first order formula has to be computed using the standard definition of truth.

3. STRATIFIED DATABASES AND THE MAINTENANCE PROBLEM

3. J. Definition
From now on we assume that the first order language L has no function symbols and only finitely
manv, but at least one constant.

F~llowing GAU.AIRE, MINKER and NICOLAS [GMN]) we define a deductive database as a function
free logic program in the above language L augmented by the usual particularization axioms defining
uniquely its domain and the equality predicate. P is divided into
i) a set of facts defining ex.tensional relations (Extensional Database),
ii) a set of clauses defining intentional relations, all of them different from extensional relations

(Intensional Database).
Moreover, each clause in P is range restricted which means that every variable which appears in a

conclusion of the clause also appears in its body. Note that this implies that clauses of a deductive
database can be divided into facts and rules.

In addition a deductive database contains a finite set of integrity constraints. These are first order
formulas which are required to be continuously true in the sense described in the next subsection.
Now, by a stratified database we mean a deductive database built from a stratified logic program.

6

A stratified database P has as its intended meaning the standard model Mp. When maintaining P
two representation possibilities arise:
i) explicit representation consisting of P and M p,

ii) implicit representation consisting just of P.
Which alternative is more attractive depends on the application. Alternative i) is more appropriate

when trying to support immediate visualization and simulation facilities. Also i) is more interesting
when dealing with frequent queries and infrequent updates.

Consequently, we choose, similarly as NICOLAS and Y AZDANIAN [NY] for the case of definite
deductive databases (i.e. those in which use of negation in the clauses is disallowed), the explicit
representation.

As we shall soon see, we shall actually maintain an enrichment of Mp in which each fact from Mp
is tagged with some additional information.

It is worthwhile to note that alternative ii) leads to difficult problems concerning an efficient imple
mentation of queries which only recently have been solved in a satisfactory way - see BALBIN, PORT
and RAMAMOHANARAO [BPR] and KERISIT, LESCOEUR, ROHMER and RouCAIROL [KLRR].

3.2. Maintenance
The maintenance problem can be viewed as a task of processing supplementary information. To this
purpose we first define the notion of an update. By an update of a stratified database P we mean a
clause deletion or insertion. We require that in the case of the insertions
i) no constant outside of L is introduced,
ii) the inserted clause is range restricted ,
iii) the resulting database P' remains stratified.

Updates can be divided into fact insertions and deletions and rule insertions and deletions because
all clauses are assumed to be range restricted.

The maintenance problem can now be formulated as follows:

given an update of a stratified database P yielding P' compute the intended meaning MP' of P' mak
ing use of the already existing model Mp of P. If this update leads to a model which does not satisfy
the integrity constraints, then a failure should be reported.

Thus we require that the integrity constraints continuously hold in the intended model of the
stratified database. Until section 7 we ignore the issue of the integrity constraints checking and con
centrate on the problem of processing the updates. The computation of Mr using Mp is closely
related to the issue of dependency-directed backtracking discussed in ST ALLMAN and SUSSMAN [SS]. In
general, Mr will be neither a superset or subset of Mp.

Consider for example the stratified database

PODS = {submitted(I), ... ,submitted(~,accepted(n 1), ••• ,accepted(nk),

rejected (x)~...,accepted (x)}

where k,~l and for i = l, ... ,k l:E;;n;:i;;;;;eholds.

Its model MpoDs consists of all facts already present in PODS together with the set of facts
rejected(i) for ie Failure = {l,. .. ,e} \ {n 1,. .. ,nk}·

Now an insertion of the fact accepted(m) where me Failure leads to a new database PODS' with
the following associated model

MPoDS' = MPoDs \ {rejected(m)} U {accepted(m)}.

Similarly, a deletion of the fact accepted(nj) where I :E;;j :E;;k leads to a new database PODS" with

7

the following associated model

Mpovs" = Mpovs \ {accepted(n1)} U {rejected(nj)}.

Thus to compute the new model Mr , it is in general necessary to remove some facts from M p
and also add some other facts.

In the next two sections we study the maintenance problem in the case of updates. Then we study
this problem for the more general case of transactions which are finite sequences of updates.

3.3. The STRATIFY procedure
Let now P be a stratified database. Assume a given maximal stratification of P with the corresponding
sequence of models Mi, ... ,Mm = Mp. An effect of an update on this stratification can be quite
"dramatic". For example in the case of insertions a new stratum can be created or a number of
strata can be "collapsed" into one, and in case of deletions a stratum can "disappear" or "explode"
into a number of strata. In general, the resulting maximal stratification P 1 U · · · U Pn of P' is such
that one of the following conditions holds:
i) Exactly one stratum of P' differs from a stratum of P. This stratum results from the stratum of

P to/from which a clause has been inserted/ deleted.
ii) One stratum of P' contains a number of strata of P and the other strata of P' are strata of P.

This distinguished stratum of P' results from an insertion of a rule which caused a "collapse" of
a number of strata of P into one.

iii) One stratum of P contains a number of strata of P' and the other strata of P are strata of P'.
This distinguished stratum of P "explodes" into a number of strata of P' after a deletion of a
rule.

iv) This stratification is obtained by removing one stratum from the initial stratification of P.
v) This stratification is obtained by adding one stratum to the initial stratification of P , say as the

last one.

We assume that the order of strata of P' which are also strata in the original stratification of P is
compatible with their order in the statification of P.

In one case the solution to the maintenance problem is trivial. Consider an update consisting of a
deletion of a clause which results in removing the highest stratum Pn + 1 from P. Then the model Mr
simply consists of Mp with the last "layer" MP,+, \Mp, removed. Therefore, in the subsequent con
siderations we do not consider this case. This allows us to introduce the following definition.

If an update results in a deletion of an "intermediate" stratum from P, we say that it refers to the
next stratum from the original stratification of P. This stratum is P; for some i, 1 ~i :s;;,n. Otherwise,
we say that an update refers to a stratum R from the stratification P' if the definition of the relation
appearing in the conclusion of its clause is contained in R.

We assume that the maximal stratification P 1 U · · · UPn of P' is computed in the procedure
STRA TIFY(P, u, P',i) where P is the original stratified database, u is an update, P' is the resulting
stratified database, and i such that u refers to P;. Note that then P1,. • ., P1 for j < i are initial strata
in the original stratification of P.

We can assume that the conditions i) - iii) from the previous subsection 3.2 are checked in this pro
cedure and a failure is reported if one of them is not met.

To compare solutions to the maintenance problem we concentrate on the issue of a migration of
facts - a phenomenon consisting of an erroneous removal of a fact from the model. In such case, this
fact has to be added back to the model. Different solutions to the maintenance problem can be com
pared in terms of the amount of migration caused.

While searching for good solutions to the maintenance problem it makes sense to strike a balance
between the minimization of migration and the cost of book.keeping involved. We think that the solu
tion proposed in section 5 achieves this compromise because of an efficient implementation proposed

8

in section 8. The bookkeeping consists of a maintenance of supports attached to the facts present in
the model. These supports will allow us to detect which facts should be removed from the model after
an insertion or deletion.

4. Two PHASE SOLUTIONS

In this section we present various solutions to the maintenance problem in the case of updates. They
cliff er in the form of supports chosen. For pedagogical reasons we order these solutions in such a way
that each of them builds upon deficiences found in the previous one. No attempt is made at propos
ing efficient implementations of these solutions. Throughout this section P is a given stratified data
base.

4.1. Static solution using the dependency graph
This is perhaps the simplest solution and usually the most inefficient one. In this solution no supports
are attached to the facts in the model. Instead, the dependency graph is used. For each relation p of
P, let Pos(p) stand for the set of relations of P from which p depends through an even number of
negations and Neg(p) stand for the set of relations of P from which p depends through an odd
number of negations. Thus
Pos(p) = {q: there exist relationsp 1 = p, ... ,pn=q, such that for all i<n (p;,p;+ 1) belongs to Dp, and
the number of negative arcs among them is even },
Neg(p) = {q: there exist relations p 1 = p, ... ,pn = q, such that for all i<n (p;,p;+ 1) belongs to Dp,
and the number of negative arcs among them is odd }.

Note that Pos(p) and Neg(p) need not be disjoint; Pos(p)U Neg(p) is the set of all relations in P
from which p depends.

We use here the notations Pos and Neg to indicate the nature of dependencies between the meaning
of relations in the model. If r depends on p then a modification of p through an update can influence
the meaning of r in the new model. The form of this influence implies the type of dependency of r on
p. Suppose that an increase of pleads to some decrease of r. Then p belongs to Neg(r). Suppose that
a decrease of p leads to some decrease of r. Then p belongs to Pos (r).

The following lemma formalizes this observation.
Let [p Ju stands here for the meaning of the relation p in the Herbrand model M.

LEMMA 1.
Suppose that p (t) is E fact.
i) Let P' = PU{p(t)}.
If not ([r Ju, C[r Ju,.) then p belongs to Neg(r).
ii) Let P' = P \ {p(t)}.
If not ([r]u, C [r]u,,,) then p belongs to Pos (r).

Proof idea. By an induction on the index of the stratum which contains the definition of the relation
r. D

Thus in the case of an insertion of a fact about p, only relations r, for which p belongs to Neg(r),
can decrease and in the case of a deletion of a fact about p only relations r, for which p belongs to
Pos(r), can decrease. We use these observations in the procedures below.

Fact insertion:

INSERT (p(t)):
1) STRATIFY(P,INSERT(p(t)),P',i);
2) remove from Mp all facts r(S) such that p belongs to Neg(r);

(these !:_acts all belong to Mp \Mi_ 1)
3) add p(t) and call the resulting set of facts M;
4) compute the sequence

M'i = SAT(P;,M),

M'n = SAT(Pn,M'n-1)

and put MP' = M'n·

Rule insertion:

INSERT (p(x)<:-L 1, •.. ,Lk):
I) STRATIFY(P,INSERT(p(x)<:-L 1, ••• ,Lk),P',i);
2) recompute the sets Pos(r) and Neg(r) for r :p and all relations which depend onp;
3) perform step (2) of the fact insertion. Call the result M;
4) perform step (4) of the fact insertion.

Fact deletion:

DELETE(p (t)):
I) STRATIFY(P,DELETE(p(t)),P',i);
2) remove from Mp all facts r(S) such that p belongs to Pos (r);

(these fac~ all belong to M p \ M; _ 1)
3) remove p (t) and call the resulting set of facts M;
4) perform step (4) of the fact insertion.

Rule deletion:

DELETE (p(x)<:-L1>···,Lk):
I) STRATIFY(P,DELETE(p(x)<:-L1, ... ,Ld,P',i);
2) recompute the sets Pos(r) and Neg(r) for r=.p and all relations r which depend onp;
3) perform step (2) of the fact deletion and call the resulting set of facts M;
4) perform step (4) of the fact insertion.

9

In all four procedures during the removal phase we take a "pessimistic" view and delete facts tak
ing into account exclusively the dependencies recorded in the dependency graph. Clearly certain facts
will then be subject to migration.

EXAMPLE 1. Let

CONF = {submitted(l), ... ,submitted(~,late(e+ 1),

accepted (x)<:-submitted (x),-,rejected (x),

10

accepted (e+ 1)}

where e;;;:. I.
Then McoNF consists of all facts already present in CONF together with the fact:

accepted (I), ... ,accepted (0.
However, after the insertion of the fact rejected(e+ 1) in CONF we should not remove the fact

accepted(e+ 1) from the model. In this case the static solution leads to a migration of the fact
accepted(e+ 1). 0

Thus the static analysis using the dependency graph can provide dependencies which are not used
during the construction of the model. This problem can be overcome by constructing the dependen
cies in a dynamic fashion.

NOTE. The presence of facts in a given program like accepted(e+ 1) in CONF above cannot be
discovered through the analysis of the dependency graph of the program but it still can be viewed as
a part of a static analysis. This idea might "save" certain facts like accepted(e+ 1) from migration.
However, this solution falls down when some trivial derivations for certain facts are used instead of
asserting them.

4.2. Dynamic solution using Pos and Neg sets
We now maintain Mp by computing the Pos and Neg sets dynamically during the construction of the
model, i.e. during the saturation process iterated through the strata. This leads to a better solution
because the Pos and Neg sets are computed taking into account the dependencies actually used and
not the potential ones. However, as we shall soon see, the use of negative literals complicates the issue.
Each fact in the model Mp has a support in the form of Pos and Neg sets attached to it. Their actual
form depends on the way the saturation process is implemented.

We are interested in keeping the Pos and Neg sets small. In such a way less facts will be deleted
during the removal phase in each of the above four procedures. To this purpose for each fact we just
record the dependencies found during a deduction of this fact. These Pos and Neg sets should not be
changed unless a smaller pair of them is found during another deduction of the fact. This idea leads
to the following construction.

Suppose that during the model construction a fact p (t) is deduced by an application of a clause
p (x)~Li. ... ,Lk ~th some substitution making eve!Y literal f.:J. ground. Among those ground literals,
let q1(s 1), ... ,qi(sJ _Ee the _rositive ones and ...,r1(t 1), ... ,...,r1(t1) the negative ones. As the positive
ground literals q1(s 1), ... ,qi(si) already belong to the constructed part of Mp, they have the correspond
ing sets Pos 1 , ... ,Posi and Neg 1 , ... ,Neg; attached to them.
We form the Pos and Neg sets attached to p(t) as follows:

Pos := Pos1 U · · · UPos; U {q1, ... ,q;},

Neg:= Neg1 U · · · UNeg;U {r 1, ... ,r1}.

If p (t) is already present in the model, we keep its old pair of Pos and Neg sets unless the new pair
is pairwise smaller than the old one. In that case the new pair is preferable. As before, the Pos and
Neg sets need not be disjoint.

Insertions and deletions are performed analogously as in 4.1 but now using the above Pos and Nt:_E
sets attached to all facts of the model. For example, in step (1) of the fact insertion concerningp(t)
we now remove from M p all facts r (S) whose Neg set contains the relation p and then add p (t) with a
support consisting of empty Pos and Neg sets.
Unfortunately this solution is incorrect.

11

After an insertion of the fact po we get a new database P' with a model Mr = {p0 ,p2 }. However,
the removal of the fact p 3 from M p is not captured by the solution proposed above.

Indeed, the Neg set attached to p 3 in the model Mp equals {p 2 } and the crucial (negative) depen
dency of p 3 from po is not recorded. Similarly, a deletion of the fact po leads to the model
Mp = {pi.p 3 }. However, the removal of the fact p 2 from Mr is not captured by the proposed
solution. In this example, all constructed Pos sets are empty. 0

To resolve these difficulties in the case of negative hypotheses we keep track of their static depen
dencies, as well. The actual construction and form of these supports remains almost the same. What
changes is their use during the updates. Given the above mentioned deduction of p (t) we form the
Pos and Neg sets attached to it by putting

Pos := Pos 1 U ·· · UPos;U{q 1, ••• ,q;}U{-ri, ... ,-rj},

Neg:= Neg1U · · · UNegiU{+r 1, ... ,+rj}·

During the updates we compute the actual form of the supports by interpreting the signed relations
as follows:

Pos' = {q:q E Pos}UNeg(ri)U · · · UNeg(r1)

where -r 1, ••• , -rj are all elements of Pos with the"-" sign,

Neg'= {q:q E Neg}UPos(ri)U · · · UPos(rj)U{ri. ... ,rj}

where +ri, ... , +rj are all elements of Neg with the"+" sign.
Neg(r) and Pos(r) refer here of course to the sets defined in section 4.1, i.e. to the static dependen

cies.
Intuitively, Pos' is the set of relation symbols used positively in the found d~rivation of p(t) and Neg_'
is the set of relation symbols used negatively in the found derivation of p (t). Each derivation of p (t)
provides a different pair of Pos' and Neg' sets. Only one of such pairs is kept in this solution.

The details of the insert and delete procedures are the same as before. The above modification
restores correctness of this solution. The following lemma states the relevant property of the Pos' and
Neg' sets.

LEMMA 2.
Suppose that p (t) is _E fact.
i) Let P' = PU{p(t)}.

Suppose that r(S) belongs to [r]M, \[r]M,., i.e. that r(S) was removed from the model Mp. Then p
belongs to the Neg' set associated with r(S) in the model Mp.
ii) Let P' = p \ {p(t)}.

Suppose that r(S) belongs to [r]M, \[r]M,., i.e. that r(s) was removed from the model Mp. Then p
belongs to the Pos' set associated with r(S) in the model Mp.

Proof idea. By an induction on the index of the stratum which contains the definition of the relation
r. 0

In contrast to lemma 1, lemma 2 refers to sets Pos' and Neg' whose form depends on the actual
form of the saturation procedure computing the sets SAT(P,M).

In the case of the database P from example 2 the facts of the model are generated only in one pos
sible sequence. The resulting Pos' and Neg' sets coincide with their static counterparts. The following
example shows an interest in keeping a pair of smaller supports if a choice arises.

12

ExAMPLE 3. Let

CONGRESS= {submitted(1), .. .,submitted(0,

accepted (x)':--submitted (x),-,rejected (x),

accepted (O':--submitted (0 }.

Suppose now that the fact accepted(O is first deduced by the first rule. Then the associated Pos and
Neg sets have the following form:

Pos = {submitted, -rejected} and Neg = {+rejected}.

If the second rule is applied we obtain another pair of Pos and Neg sets associated with the fact
accepted (0:

Pos = {submitted} and Neg = 0.

Clearly, the latter pair is preferable because an insertion of a fact rejected(i) will not lead then to a
migration of the fact accepted (0. 0 . . .

Though this solution leads to smaller migration sets t~an the prev10us one 1t can still lead to so~e
inaccuracies. The major reason is that only one support is kept for each deduced fact. Thus the mam
tained information can be incomplete. Consider the following example.

EXAMPLE 4. Let

MEET= {submitted (I), ... ,submitted (0,

in -program -committee(namei), ... ,in -program -committee(name9),

author (m 1, 1), ... , author (m r, 0,
accepted (x)':--submitted (x), -,rejected (x),

accepted(y)':--author(x,y), in -program -committee(x)}

where e ~I and {nameJ, ... ,name9 } ~ {m1>···,me}.
Then MMEET consists of all facts already present in P together with the facts

accepted(l), ... ,accepted(O.
Suppose now that the fact author(name 2,a) is in MEET. Then after the insertion of the fact

rejected(a) we should not remove the fact accepted(a) from the model. However, if for the fact
accepted(a) the support Pos = {submitted, - rejected}, Neg = { + rejected} is initially produced, it
will lead to its migration. Here the second possible support Pos = {author, in-program-committee},
Neg = 0 is preferable with respect to this update but this support is not kept. 0

To take care of this type of situations we should maintain supports in the form of Pos and Neg sets
for each derivation of a fact, and thus maintain supports not in the form of sets but rather sets of sets.
This observation leads us to the following solution.

4.3. Dynamic solution using Pos and Neg sets of sets
The sets Pos and Neg will now be sets of sets of relations. Intuitively, when a fact p(ij has a set
Pos =.{A i,._..,Ak} associated ~th it, it means that for each set Aj a derivation of p (t) has been
found m which exactly all relations from Aj are negated an even number of times. Similarly with the
Neg set.

Let B, , ... ,Bk be non-empty sets of sets, we put:

B1EB · · · ffiBk = {A1 U · · · UAk: whereA;EBi for i = l, ... ,k}

During the model construction in the case discussed in the beginning of the previous subsection Pos

and Neg sets are now updated as follows:

Pos := PosU(Pos 1 ffi · · · EBPos;)ffi{{qi. ... ,q;,-r1, ... ,-r1}}

Neg:= NegU(Neg 1 ffi · · · EBNeg;)ffi{{+r1> ... ,+r;}}

with Pos and Neg initialised to the empty set.

13

Thus each time a new deduction of a fact has been found, its Pos and Neg sets are updated as
stated above. If a fact has a trivial deduction, i.e. it is asserted, its Pos and Neg sets will both have the
empty set as an element. Similarly as in the previous subsection we might be interested in keeping
only "small" supports. That is, we might remove an element A from Pos (or Neg) each time a proper
subset of it has been added to Pos (or Neg).

Because the supports have now a different structure, the removal phase in each of the four pro
cedures will be different. Intuitively, a fact should now be removed from the model only if all ele
ments of its support "fail". More precisely, in accordance with the previous solution we first put for
an element A which belongs to Pos

A'= {q:qEA}UNeg(r1)U · · · UNeg(r1)

where -r1,.., -r1 are all elements of A with the"-" sign, and for an element A which belongs to
Neg

A'= {q:qEA}UPos(r1)U · · · UPos(r1)

where +rJ, ... , +r1 are all elements of A with tE-e "+" sign.
Then in the case of an insertion of a fact p (t) we proceed as follows during the removal phase:

for each element r(S) of Mp do
remove from its Neg set all elements A such that p belongs to A';
if the Neg set becomes empty then remove r(.f) from Mp fi.
od.

Thus a "failure" of an element of a support means here that p belongs to it.
An analogous action is taken during the removal phase in other three procedures.
To see an improvement over the previous solution reconsider the program from example 4. During

the construction of the model MMEET both supports of the fact accepted(a) will be kept. Thus the Pos
and Neg sets associated with accepted(a) will have the following form:

Pos = {{submitted, -rejected},{ author, in -program -committee}}

Neg = { {+rejected}, 0 }.

Now, after the insertion of the fact rejected(a) we see that rejected belongs to
{+rejected}' = {rejected), so the Neg set associated with accepted(a) becomes { 0 }. Since it is not
empty, the fact rejected(a) is not removed from the model, as desired.

5. INCREMENTAL SOLUTIONS

So far we discussed solutions to the maintenance problem which consisted of two phases: the removal
phase during which some facts were deleted, followed by the addition phase during which some facts
were inserted. We now present another type of solutions in which the removal and the addition
phases are alternated. This will lead to solutions with smaller migration and among others will obvi
ate the need for the static information in the supports.

Informally, this form of solutions can be described as follows. Consider an update u of P resulting
in a stratified database P' with a maximal stratification P 1 U · · · UPn, where exactly one stratum

14

among Pi-s differs from a stratum of P (case i) in section 3.3). The original model Mp of P can be
decomposed into a sequence of layers N 1 = M1o N1 = M1 \Mi. ... , Nm =Mm \Mm-I• with each
M; corresponding to a stratum in the original maximal stratification of P.

Suppose that u refers to Pi. Then to construct MP' we first consider the modification of the layer
Ni. This leads to deletions and insertions inside Ni + 1 which in turn leads to deletions and insertions
inside N; +2, etc. This form of solutions thus produces a cascade effect. Other situations described in
section 3.3 lead to slightly more complex but similar sequence of changes.

5.1. Auxiliary procedures
To describe this process we shall introduce three procedures. We describe them for the form of sup
ports used in the second dynamic solution i.e. in subsection 4.3. It is clear how to modify them for
the case of supports used in the first dynamic solution.

Assume a given maximal stratification P 1 U ... UP n of a stratified database P'.

1) The SA TU RA TE procedure

The purpose of the procedure SATURATE(Stratum, B) is to compute the saturation of the current
version of the model using all clauses the Stratum, and update during this computation the Pos and
Neg sets of sets attached to every derived fact. The result of this saturation becomes a new version of
the model. B is the set of relations which increased.

SATURATE(Stratum, var: B):

a) Compute the set SAT(Stratum,M) where Mis the current version of the model and during this
computation update the Pos and Neg sets attached to the derived facts. This time these sets are
constructed as follows.
Suppose that a fact p(t) is deduced by means of a clause such that qi. ... ,q; are all relations which
appear positively in its body and r1 , ••• ,r1 ar~ all relations which appear negatively in its body.
Then the sets Pos and Neg associated with p(t) are updated as follows:

Pos :=PosU{{q1, ... ,qi}},

Neg :=NegU{{ri. ... ,r1}}

with Pos and Neg initialised to the empty set.
b) Bis the set of relations to which new facts where added in step (a).

2) The REMOVEPOS procedure

Let B be the set of relations which decreased during the construction of the new model carried out
so far. Their decrease can affect the supports of some facts from the model and, in particular, can
lead to a decrease of some other relations. The purpose of the REMOVEPOS (B, C) procedure is to
compute this modification using the Pos part of the supports. C is the set of relations which get
decreased.

C:=0;
repeat

REMOVEPOS(B, var: C):

D:=0;
for each element p(t) of Mp do
remove from its Pos set all sets A such that A nB=j=0;

if the Pos set becomes empty then remove p (t) from M p; D: = D U {p} fi
od;
B:=D; C:=CUD

until D= 0.

3) The REMOVENEG Procedure

15

Let B be the set of relations which increased during the construction of the new model carried out so
far. Their increase can affect the supports of some facts from model and, in particular, can lead to a
decrease of some other relations. The purpose of the REMOVENEG(B,C) procedure is to compute
this modification using the Neg part of the supports. C is the set of relations which get decreased.

REMOVENEG (B, var; C):

C:=0;
for each element p(t) of M do
remove from its Neg set all sets A such that 1_ nB=f:.0;
if the Neg set becomes empty then remove p (t) from M p; C : =CU {p} fi
od.

5.2. Algorithms
We now present the update algorithms in the case of incremental solutions. They use the procedures
SATURATE, REMOVEPOS and REMOVENEG defined above.

Fact insertion:

INSERT (p(t)):
Initialize:

DEC:= 0;/NC:= 0;
STRbTIFY(P, INSERT(p(t)), P', i);
if p(t)EMp then _

fi·
'

Propagate:

modify the support of p(t) as follows:
Pos := PosU{0};
Neg:= NegU{0}
else continue : = true

if continue then

fi.

while i =/:=n + 1 do
Stratum : = Pi;
REMOVENEG(INC,DECNEG);
REMOVEPOS(DEC U DECNEG,DECPOS);
SATURA TE(Stratum,ADD);
DEC : = DEC U DECPOS U DECNEG;
INC : = INC U ADD;
i:=i+l
od

16

Note that when the fact p(t) is already in the model its support is modified and no further action is
taken. Note also that the Propagate part is executed exactly when the control passes through the else
part of the Initialize part. We preferred here to isolate the Propagate part in order to use it in other
algorithms.

In the above algorithm, DEC (INC) is the set of relations which were decremented (incremented) so
far during the construction of the model. Maintaining the sets DEC and INC allows us to use the
current fonn of supports. Note that these supports are now "one level deep" as opposed to the previ
ous fonn in which practically whole proof trees were maintained. This difference can be also found in
the approaches of Doyle [D] and De Kleer [dK]. In Doyle [D] the latter type of supports is used
whereas De Kleer [dK] uses the previous form which allows him to maintain several contexts at the
same time.

An improvement of the above algorithm can be obtained by taking into account the structure of
each stratum. When proceeding through the while loop one can skip the strata in which no relation
depends from a relation in the set DEC U INC.

To see how this version of fact insertion leads to a smaller migration than the algorithm given in
subsection 4.3, consider the database P={r~p, q+-r, q+--.p}. Then Mp={q}. INSERT (p) when
computed using the previous version leads to the removal of q, followed by the insertion of p and r
and finally the insertion of q. In the above version the removal of q does not take place.

Rule insertion:

INSERT(p(X)+-L1 , ... ,Lk):
Initialize:

DEC:= 0; INC:= 0;
STRATIFY(P, INSERT(p(x)+-L1> ... ,Lk), P', i);
continue : = true;

Propagate.

Note that contrary to the case of fact insertion at least one iteration of the loop in the Propagate
part is perfonned. An improvement of the above algorithm can be obtained by terminating this loop
when after the first iteration the SATURATE procedure produces no new facts, that is when both
DEC and INC remain empty.

Fact deletion:

DELETE(p (t)}:
Initialize:

DEC:= 0; INC:= 0;
ST~TIFY(P, DELETE(p(t)), P', i);
if p(t)EMp then

fi·
'

modify the support of p(t) as follows:
Pos := Pos \ {0}; Neg:= Neg\ {0};
if both Pos and N~ sets become empty then

remove p(t) from Mp;
DEC:= DEC U {p};
continue : = true

fi

Propagate.

17

Note that when the fact p (t) remains in the model, its supports are modified and no further action
is taken. Indeed, the model remains then the same and other supports do not change.

Rule deletion:

DELETE(p (x)~L 1, •.. ,Lk):
Let q1, ... ,qi be all relations which appear positively in the body L 1, ... ,Lk and let r1, ... ,r1 be all rela

tions which appear negatively in this body.
Initialize:

DEC : = 0; INC : = 0; removed : = false;
STRATIFY(P, DEJ:ETE(p(x)~L 1 , ••• ,Lk), P', i);
for each element p (t) of Mp do

od;

remove from its Pos set the set {q., ... ,qi}
and from its Neg set the set {r 1, ••. ,r1} if
both sets are effectively present;
if both Pos an<!_ Neg sets become empty then

remove p(t) from Mp;
removed : = true

fi

if removed then DEC : = DEC U {p }; continue:= true fi;

Propagate.

Note that in the Initialize part an attempt is made to identify the facts of the form p (t) which were
deduced in only one way, namely by means of the rule p (x)+-L 1 , ••• , Lk.

6. 'TRANSACTION PROCESSING

So far we have dealt with the processing of updates. In this section we consider a more general situa
tion, namely that of transactions.

Following LLOYD, SoNENBERG and TOPOR [LST] by a transaction we mean a finite sequence of
updates. We can assume without loss of generality that in any transaction we do not have insertions
and deletions of the same clause. Given a stratified database P and a transaction, let P' be the result
ing stratified database with a fixed maximal stratification P'=P 1 U ... UPn· Similarly as in section 3.3,
we can now define to which stratum in this maximal stratification of P' an update from the transac
tion refers to. We can now order a sequence of updates forming a transaction in such a way that
those refering to lower strata in the above stratification of P' appear first.

We now propose an algorithm showing how to process a transaction. It builds upon the incremen
tal solution to the update processing proposed in the previous section. We assume that a transaction
is ordered in the way explained above. We first introduce the MODIFY procedure whose purpose is
to process the changes within Mp resulting from updates referring to a stratum Pi. These changes
consist in general of
i) removal of some facts,
ii) addition of some facts,
iii) resulting modification of the sets DEC and INC,
iv) modification of some supports.

This procedure has the following form.

MODIFY (Stratum, var. DEC, var. INC):

18

Consider the updates referring to the stratum Stratum. Perform their Initialize parts in any order but
with the initial assignments DEC : = 0; INC : = 0, the call of the STRATIFY procedure and the
assignment continue : = true everywhere deleted.

Now, the following algorithm is used to process a transaction, where io is the smallest value such
that an update from the transaction refers to P;0 •

DEC:= 0; INC:= 0; i := i0 ;

while i=f=n + 1 do

od

Stratum : = Pi;
MODIFY(Stratum,DEC,INC);
REMOVENEG(INC,DECNEG);
REMOVEPOS(DEC U DECNEG,DECPOS);
SATURA TE(Stratum,ADD);
DEC : = DEC U DECPOS U DECNEG;
INC : = INC U ADD;
i:=i+l

This algorithm is more efficient than the one resulting from a one by one processing of the updates
forming the transaction. Indeed, only one pass through the strata is made in it and all modifications
are treated in a cumulative fashion.

7. INTEGRlTY CONSTRAINTS CHECKING

Similarly as in LLOYD, SONENBERG and TOPOR [LST], by an integrity constraint we mean a first order
formula in the language of the considered stratified database. Assume a stratified database P with a
finite set of integrity constraints Fi, ... ,Fk.

Our intention is to check whether after processing a transaction leading from P to a new stratified
database P', the new model Mr satisfies all formulas F 1 ,. •• ,Fk. The simplest solution is to evaluate
each of these formulas in Mr. This however, does not take into account the fact that all Fi, .. .,Fk
were satisfied in the old model Mp.

We propose now a solution which allows us to identify a subset of F 1,. • .,Fk which needs to be
checked. Moreover, in this solution it is not necessary to wait until the construction of the new model
is completed to evaluate each of the "suspected" integrity constraints.

Thus the construction of the new model will be aborted as soon as an integrity constraint is
identified which does not evaluate to true.

Consider a first order formula F and its conjunctive normal form W. We say that a relation sym
bol occurs positively in F if it occurs in a positive literal in W. We say that a relation symbol occurs
negatively in F if it occurs in a negative literal in W. Note that a relation symbol can occur both
positively and negatively in a formula.

Consider now a stratified database P and a transaction, and let P' be the resulting stratif ed data
base with the maximal stratification P1 U · · · U Pn. We say that a formula Fin the language of P'
refers to a stratum P; if the definitions of all relation symbols appearing in F are contained in
u j<.ipj·

Consider now a formula F refering to a stratum P;. We can evaluate truth of Fin the new model
Mr once in the construction of this model, using the algorithm given in section 6, stratum P; + 1 has
been reached.

Moreover, such an evaluation of F is unnecessary if none of the relations appearing positively in F

19

appears in the set DEC, and none of the relations appearing negatively in F appears in the set INC.
Indeed, in that case Fis true in Mr because it is true in Mp. This follows from the fact that truth of
a formula in a Herbrand model is uniquely determined by the meaning of the relations appearing in
this formula and from the following straightforward lemma.

LEMMA 3.
Let Mand M' be two Herbrand models and Fa formula. Suppose that
i) for all relations r appearing positively in F [r]M ~ [r]M',
ii) for all relations r appearing negatively in F [r]M' ~ [r]M.
Then F is true in M if! it is true in M'. D

We can apply this lemma here because once in the algorithm given in section 6 a new stratum has
been reached, DEC (INC) includes the set of relations defined in the previous strata which were
decremented (incremented) so far during the construction of the model.

Once a constraint does not evaluate to true, the construction of the new model is aborted. To
reconstruct the old model it is enough to process a transaction "reverse" to the previous one (that is
the one in which deletions are replaced by insertions and vice versa) and stop once the stratum has
been reached at which the construction of the new model had been aborted. Indeed, the effect of both
construction on the layers which were taken care of is nil, because both transactions cancel each
other.

Finally, we offer the following improvement upon the previous method of identifying when an
integrity constraint does not need to be verified. When evaluating an integrity constraint F in a (com
puted fragment of a) new model, we attach to it a support containing the information which relation
symbols from each conjunct of the conjunctive normal form were used during this evaluation.

Similarly as in section 4.2 such a support consists of a set Pos of relations which appear positively
in F and were used in this evaluation, and a set Neg of relations which appear negatively in F and
were used in the evaluation. Then a constraint does not need to be evaluated if Pos is disjoint with
DEC and Neg is disjoint with INC. Each time a constraint is computed anew, the sets Pos and Neg
are computed anew.

8. IMPLEMENTATION ISSUES

In this section we study the problem of an efficient implementation of the algorithms proposed in the
previous sections. We concentrate on the incremental solutions in which supports consist of Pos and
Neg sets of sets of relations.

8.1. Implementation of supports
There is an obvious dependence between the support of a fact from the model and the set of clauses
which triggered this fact during the construction of the model. This suggests an efficient implementa
tion in which the support of a fact consists of the set of pointers to the clauses which triggered this
fact. Note that this implementation of supports automatically takes care of the problem of generating
explanations for the newly derived facts. Indeed, the clauses derived from the support can be viewed
as an explanation for the presence of the fact in the model.

We now explain how supports are maintained and used under this representation. To this purpose
we explain their use in the algorithms proposed.

1) The SATURATE procedure.
Each time a fact is deduced during the construction of the model, a pointer to the last clause applied
is added to the support of this fact.

20

2) The REMOVEPOS procedure. _
Consider a set B of relations. For each element p(t) of Mp remove from its sup_port all clauses in
whose body a relation from B appears positively. If the support becomes empty, p (t) is removed from
the model. Set B to the set of relations which decremented. Iterate this procedure until B becomes
empty.

3) The REMOVENEG procedure. _
Consider a set B of relations and an element p(t) of Mp. ~clauses in whose body a relation fro.!_11 B
appears negatively are removed from the support of p(t). If the support becomes empty, p(t) is
removed from the model.

4) F~ct insertion - the Initialize part. _
If p (t) is in Mp, then a pointer to itself is added to the support of p (t).

5) Fact deletion - the Initialize part. _
A pointer to itself is removed from the support of p(t). If the support becomes empty, p(t) is
removed from the model.

6) Rule deletion - the lni!J.alize part.
Consider an elem~nt p(t) of Mp. The deleted rule is removed from its support. If the support
becomes empty,p(t) is removed from the model.

8.2 Implementation of the SATURATE procedure.
As stated in section 2 the set SAT(P,M) for a stratum P of a stratified program and a set of facts M
does not depend on the order of rule application. To see this, first note that relations negated in the
hypotheses do not appear in the conclusions of rules from P. Thus their meaning remains fixed
throughout the saturation process. This implies that the rules of P form a monotonic production sys
tem and the desired independency follows by a general result proved in CousoT [Co].

We exploit this independency by making use of an efficient implementation of the saturation pro
cess proposed in RoHMER, LESCOEUR and KERISIT [RLK] for the case of definite deductive databases.
This algorithm is called there the delta driven mechanism, and was first implemented in the framework
of a relational production system in PuGIN [Pu]. It was also introduced in BANCILHON [B], where it is
called semi-naive evaluation.

Informally, each rule when fired produces an increase (delta) of the relation in the conclusion of the
rule. When this increase is non-empty all rules using this relation in a body can be fired. The process
stops when all increases are empty.

More formally, consider a stratum P with rules R1i ... ,Rm and relations q1, ... ,qk defined in it. Given
a rule Rh in P let B 1,. .. ,Bk, be the (positive) literals in its body in which a relation from q1, ... ,qk
appears. Let qi, 1, ... ,qi,k, be the relations occuring in B1, .. .,Bk,• respectively. Of course, qi, 1,. . .,qi,k, do
not need to be pairwise different. Each qi,J is a relation from q 1,. .. , qk. Let Q 1,. .. , Qk be the predicates
corresponding to the meanings of the relations q 1'···, qk. Each Qi,J is a predicate from Q 1 ,. •• , Qk.
Each rule Ri in P induces a mapping Ji from Qi, 1, ... Qi,k, to Conc(i), where Conc(i) is the predicate
associated with the relation used in the conclusion of the rule Ri. This mapping is obtained by
translating the rule into an expression of the relational algebra. Let / 1 , ••. ,fm be the mappings
obtained. The algorithm has the following form:

add to M all facts from from P;
for j : = l to k do Q1 : = [q1]M;

repeat
for
for

b.Qj := Qj;

b.b.Qj : = 0

od;

i : = l tom do
j : = I to ki do if AQi,J =!=- 0 then

AA Cone (i) : = Ji (Qi,i, ... , AQi.J, ... , Q;,k) U AA Cone (i)

od

od;

for j : = 1 to k do AQ1 : = AAQ1 \ Q1 ;

k

until LJ t::.Q1 0.
j=l

od

Qj : = Qj u 6.Qj;

6.6.Qj : = 0

21

The above algorithm computes SAT(P,M). However, in our setting we also need to maintain sup
ports attached to the facts produced. These facts are generated in chunks of the form b.A Conc(i).
Each of them is produced by one rule. Adding now to the support of each fact in Mi Conc(i) a
pointer to this rule Ri, we obtain a refinement we need to implement the SATURATE procedure.

8.3 Discussion
The supports constructed in subsection 4.2 and 4.3 use the supports already attached to individual
facts derived from the body of the rule applied. To maintain them, each newly derived fact has to be
handled individually. Thus the delta driven mechanism which produces new facts in chunks cannot be
applied. This shows that from the implementation point of view the solution proposed in section 5 is
clearly preferable.

Note however that in general there is a trade-off between an efficient choice of the supports and the
minimization of the migration. Indeed, to maintain supports efficiently they should be kept small.
But then each fact will be more often subject to migration.

One might consider a different form of supports in which not relations (or pointers to the clauses)
but facts used in the deductions are recorded. This would be clearly preferable from the point of view
of minimization of migration. In fact, this form of supports combined with an appropriate type of a
saturation procedure keeping all possible original deductions would lead to a solution with no migra
tion.

This solution could be of interest in the case of Artificial Intelligence applications where typically
few facts and many rules are used.

However, this choice is less attractive in the case of database applications. First, use in the sup
ports of pointers to the rules instead of facts, allows us to use the delta driven mechanism based on

22

relational algebra operators to implement the saturation process. Secondly, the computation costs
incurred in the task of analyzing all possible deductions is clearly too prohibitive to be of practical
interest when many facts are present.

9. RELATED WORK

Deductive databases:
Nicolas and Y azdanian [NY] consider the maintenance problem for definite deductive databases.
Absence of negation considerably simplifies the issue. Lassez, McAloon and Port [LMP] address the
problem of interactive construction of the intended model of a stratified database in case of proposi
tional programs, concentrating on the complexity issues. Their definition of interaction does not allow
deletions of clauses and does not include the integrity constraints checking. Lloyd, Sonenberg and
Topor [LST] study the problem of integrity constraint checking in stratified databases using construc
tions somewhat related to our formation of Pos and Neg sets. In their approach Clark's [C] comple
tion is used as the intended semantics of the database. Topor and Sonenberg [TS] consider the prob
lem of domain independent queries in stratified databases.

Non-monotonic Reasoning:
Doyle [D] introduces the class of justification-based Truth Maintenance Systems and studies them
both from a theoretical and practical point of view. De Kleer [dK] and Martins and Shapiro [MS]
introduce (we use here the original term of De Kleer) the class of Assumption-based Thruth Mainte
nance Systems. De Kleer gives a new, elegant notion of consistency by introducing the multiple con
text framework instead of using the classical scheme in which only one consistent context is selected
and used by the maintenance system. In both papers the notion of selective backtracking in case of
detection of inconsistency is studied. These issues were subsequently studied in other frameworks, for
example in Shmueli et al. [STZE] for the case of PROLOG.

ACKNOWLEDGEMENTS:
We would like to thank Roland Bol and Kayliang Ong for helpful comments on the subject of this
paper.

REFERENCES
[ABW]K.R. APT, H. BLAIR, and A. WALKER, Towards a Theory of Declarative Knowledge, in: Proc.

Workshop on Foundations of Deductive Databases and Logic Programming, Washington D.C.
pp. 546-629, 1986.

[AP]K.A. APT and J.M. PuGIN, Maintenance of Stratified Databases viewed as a Belief Revision Sys
tem, in: Proc. 6th ACM SIGMOD-SIGACT Symposium on Principles of Database Systems,
1987.

[BPR]I. BALBIN, G.S. PORT and K. llAMAMOHANARAO, Magic set computation for stratified databases,
Department of Computer Science, The University of Melbourne, Technical Report No. 87-3,
1987.

[B] F. BANCILHON, Naive Evaluation of Recursively Defined Relations, MCC Technical Report No.
DB-4-85, 1985.

[CH]A. CHANDRA, and D. HAREL, Horn Clause Queries and Generalizations, Journal of Logic Pro
gramming, vol. l, pp. 1-15, 1985.

[C] K. CLARK, Negation as failure, in: Logic and Databases, H. Gallaire and J. Minker (Eds.), Ple
num Press, New York, pp. 293-322, 1978.

[Co] P. CousoT, Asynchronous Iterative Methods for Solving a Fixed Point System of Monotone Equa
tions in a Complete Lattice, Technical Report No. 88, L.A. 7, Univ. Scientifique et Medicale de

23

Grenoble, 1977.
[CLP]J.Y. CRAs, M. LECONTE and J.M. PuGIN, Specifications du tableur logique, Bull Research Center,

Louveciennes, France, Technical Report, 1987.
[D] J. DOYLE, A Truth Maintenance System, Artificial Intelligence 12, pp. 231-272, 1979.
[GMN]H. GALLAIRE, J. MINKER, and J.M. NICOLAS, Logic and Databases: A Deductive Approach,

ACM Computing Surveys, pp. 153-185.
[VG]A. VAN _GELDER, Negation as Failure Using Tight Derivations for General Logic Programs, in:

Proc. Third IEEE Symposium don Logic Programming, Salt Lake City, Utah, 1986.
[KLRR]J.M. KERISIT, R. LESCOEUR, J. ROHMER and G. ROUCAIROL, The Alexander Method - an

Efficient Way for Handling Deduction on Databases, Bull Research Center, Louveciennes, France,
Technical Report no. 87-015, 1987.

[dK]J. DE KLEER, An Assumption-Based Truth Maintenance System, Artificial Intelligence 28, pp. 127-
162, 1986.

[LMP]C. LASSEZ, K. MCALOON and G.S. PORT, Stratification as a Tool for Interactive Knowledge Base
Management, in: Proc. 4th International Conference on Logic Programming, The MIT Press,
Cambridge, Mass., 1987.

[L] V. LIFSCHITZ, On the Declarative Semantics of Logic Programs with Negation, in: Proc. Workshop
on Foundations of Deductive Databases and Logic Programming, Washington D.C. pp. 420-432,
1986.

[LST] J.W. LLOYD, E.A. SONENBERG, and R. TOPOR, Integrity Constraint Checking in Stratified Data
bases, Technical Report 86/5, Dept. of Computer Science, Univ. of Melbourne, 1986.

[MC]J. McCARTHY, Circumscription - A Form of Non-monotonic Reasoning, Artificial Intelligence 13,
pp. 295-323, 1980.

[MS]J.P. MARTINS, and S.C. SHAPIRO, Reasoning in Multiple Belief Spaces, in: Proc. IJCAI-83, pp.
370-373, 1983.

[NY]J.M. NICOLAS, and K. Y AZDANIAN, An Outline of BDGEN: A Deductive DBMS, in Proc. IFIP-
83, pp. 711-717, 1983.

[Pr] T. PRzYMUSINSKI, On the Semantics of Stratified Deductive Databases, in: Proc. Workshop on
Foundations of deductive Databases and Logic Programming, Washington D.C. pp. 433-443,
1986.

[Pu] J.M. PuGIN, Bourn: Manual de reference et d'utilisation, Bull Research Center, Louveciennes,
France, Technical Report, 1984.

[RLK]J. ROHMER, R. LESCOEUR and J.M. KERISIT, The Alexander Method, a Technique for the Pro
cessing of Recursive Axioms in Deductive Databases, New Generation Computing vol. 4, No.3,
pp.273-285, 1986.

[SI] J.C. SHEPHERDSON, Negation as Failure: A Comparison of Clark's Completed Database and Reiter's
C. W.A., Journal of Logic Programming N 1, pp. 51-81, 1984.

[S2] J.C. SHEPHERDSON, Negation as Failure. II, Journal of Logic Programming, N 3, pp. 185-202,
1985.

[SS] R.M. STALLMAN, and GJ. SUSSMAN, Forward Reasoning and Dependency-Directed backtracking in
a System for Computer-Aided Circuit Analysis, Artificial Intelligence 9, pp. 135-196, 1977.

[TS] R. TOPOR, E.A. SONENBERG, On Domain Independent Databases, in: Proc. Workshop on Founda-
tions of deductive Databases and Logic Programming, Washington D.C. pp. 403-419, 1~86. .

[STZE]O. SHMUELI, S. TSUR, H. ZFIRA, and R. EVER-liADANI, pynamic ~ule SuPf~Or~ m Prolog, m:
Expert Databases Systems (L. Kerchberg, ed.), The Benjamm/Cummmgs Publishing Co., Menlo
Park, pp.247-270, 1986.

