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Abstract

For coalgebras over fields, there is a well-known construction which gives the cofree coal-
gebra over a vector space as a certain completion of the tensor coalgebra. In the case of a
one-dimensional vector space this is the coalgebra of recursive sequences. In this paper, it is
shown that similar ideas work in the multivariable case over rings (instead of fields). In par-
ticular, this paper contains a notion of recursiveness that exactly fits. For the case of a finite
number of noncommuting variables over a field, it is the same as Schiitzenberger recognizability.
There are applications to the question of the main theorem of coalgebras for coalgebras over
rings. As should be the case, the cofree coalgebra over a finitely generated free module over
a ring is the ‘zero dual’ of the free algebra over that module. A final application is a faithful
representation theorem for coalgebras, that is representing a coalgebra as a subcoalgebra of a
matrix-like coalgebra.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Let K be a field and V' a vector space over K. Let TV =KoV @V 1P g...
be the tensor coalgebra over V. It is relatively well known that a certain completion of
TV which could be called the representative completion, TV;ep, is the cofree coalgebra
over V' in the categories of K-modules and coassociative K-coalgebras with counit.
That means that 7V, comes with a natural projection TViep LV which satisfies the
following universal property. For any K-coalgebra C with counit and map of k-vector
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spaces CLV, there is a unique morphism of K-coalgebras with counit ciT Viepr such
that m o ¢ = ¢. This construction of the cofree coalgebra over a vector space is from
[3], and has been around since a preprint version of that paper circulated in 1974. It
should be called, I think, the Block—Leroux theorem.

It is the purpose of this paper to show that these constructions still work in the
case of free modules over an arbitrary Noetherian integral domain and their duals, to
explain in this more general setting the role of recursiveness (which plays such a nice
role in the case of dim;(V)=1, see [16]) and to point out an error in [10]. There are
also some results and open problems for the case of the coassociative cofree coalgebra
over not necessarily free modules.

As applications, there are a new proof of the (so-called) main theorem of coalgebras
over a field, a proof of the main theorem property for coalgebras over a principal ideal
domain, a proof of the main theorem property for various kinds of cofree coalgebras
over Noetherian integral domains, the theorem that, in appropriate cases, the cofree
coalgebra over a ring is the ‘zero dual’ of the free algebra over the dual module, and
finally, results on (faithful) representations of coalgebras, i.e. on (injective) coalgebra
homomorphisms into matrix-like coalgebras. This is not the dual of the notion of a
representation of an algebra; that dual notion is a corepresentation of a coalgebra, also
called a comodule. As far as I know, these are among the first results on representations
of coalgebras.

Probably the main contribution of this paper is the definition/recognition of an appro-
priate notion of recursiveness in the multivariable case and the proof that recursiveness
in this sense is the same as representativeness. For the case of a finitely generated
vector space over a field, this notion of recursiveness is the same as rationality or
recognizability in the sense of Schiitzenberger, which in turn is the same as realiz-
ability in the sense of system and control theory or automata theory. This notion of
recursiveness is more general than the obvious one even in the case of commutative
power series in more than one variable.

There also result two different Kleene—Schiitzenberger theorems for noncommuting
power series in infinitely many variables over a Noetherian integral domain generalizing
the original result for finitely many indeterminates.

2. The tensor coalgebra over a module, the tensor algebra, and tensor power series

Let A be a commutative ring with unit element and M a module over A. The tensor
powers of M (over A) are denoted

T°M = A4, T'4=M, T°M =M @M = M%?,
L T'M =M% 2.1)

Consider the direct sum, the module of tensor polynomials,

™ =P T"M. (2.2)
n=0
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The elements of T°M = M®* are called (homogeneous) tensors of degree s. There are
natural isomorphisms for all n€{0,1,2,3,...} =N U {0}

Y T'M — T*M @ T'M, kI1cNU{0}, k+I1=n (2.3)

and using these, define a comultiplication on 7M by assigning to a (homogeneous)
tensor r € T"M, the element

W) => Y e@PTM @ T"*M € TM & TM (2.4)
k=0 k=0

and extending linearly. Together with the natural projection on the zeroth factor of
(2.2), the tensors of degree zero,

e:TM — A (2.5)

as a counit, this defines a coalgebra structure (over 4) on TM, the tensor coalgebra.
There is, of course, also an algebra structure on 7TM

m:TM @ TM — TM, eid—T™ (2.6)

determined by assigning to # € T¥M and s € T'M the element m(z,s)=yy ' (t®s) € T**'M
and taking for e the natural inclusion 4 C TM of A as the zeroth summand of TM.
This is the tensor algebra of M over 4. (However, (2.4), (2.5), (2.6) do not combine
to define a bialgebra structure.)

We also consider the completion

tM=]]rM (2.7)
n=0

of TM with product and unit element determined by (2.6). This is the algebra of tensor
power series of M over A, or the module of tensor power series when the multiplication
is not being considered.

Let

M*=Mody(M,A) and (,):MxM"— 4 (2.8)

be the linear dual of M together with the canonical pairing (x, p)=@(x), x € M, @ € M*.
The elements of 7M define functionals on 7(M™)

(fro) =Y (/"9 (29)

where the f€ T'M and ¢’/ € T/(M*) are the homogeneous components of f and o,
and the pairings are defined by

T'MXxT/(M*)—4, (i@ @x;, »®@- @)=Ly (&, (2.10)

(which is well defined). The sum in (2.9) is well defined because only finitely many
of the homogeneous components of ¢ are nonzero. In case M is free (but also in other
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suitable cases) the functional defined by an element of 7M uniquely determines that
element.

If M is free and finitely generated, say with basis Xj,...,X,, the tensor power
series algebra naturally identifies with the algebra of noncommutative power series in
the Xj,...,X,, over 4 and T(M*) is the algebra with as underlying module the free

module with as basis all words o = [ay,...,a,] over the alphabet {1,...,m} (including
the empty word) and concatenation of words as product. For a word o ={[ay,...,a,]
write X, =X,,,...X,, and X;;= 1. Then, for an element

fETM =A((X1,.... X)), [=) cX, (2.11)

and a basis element = [by,...,b,]€ T(M™)

(f.B) = cp. (2.12)
Finally, consider the completed tensor product
TM&ETM =] T'M @ T/M. (2.13)
ij
The coassociative comultiplication u defined by (2.4) uniquely extends to a morphism
w:TM — TM&TM, (2.14)

but this does not define a coalgebra structure on 7'M because for most tensor power
series f, u(f) does not lie in M @ TM (but only in TM&TM).

The bihomogeneous components of 7M&TM are indexed by pairs of nonnegative
integers, and thus an element of TM&TM is conveniently represented as a bi-infinite
matrix:

a= , a;€T'M @ T'M C TM&TM. (2.15)

With this notation, the element u(f)e TM&TM, [ = (f° ', f2,..), ffeT'M is
equal to the Hankel-like matrix

VANV AR &

fl f2 f3
u(f) = LI Y AT I (2.16)
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3. Representative tensor power series and cofree coalgebras over free modules

A tensor power series /€ T'M is called representative if for some finite & there are

tensor power Sseries gi,...,Jk,A1,. .., In TM such that
k
w()=Y 9@ h. (3.1)
i=1
Written out in the infinite matrix notation of Section 2 this becomes
A" B g W hoh VAV AR
a9 o g W hy By o
® = (3.2)
g% g% gﬁ : : : : f2 f3 f4
W o kg

(where f7 is the degree i component of f, etc.).
If the module M is free, we can interpret an element f € 7M as a functional on
T(M*) and then (3.1) or (3.2) is equivalent to

k
f(ab)= Z gi(a)h(b) for all a,be T(M™). 3.3)
i=1
Here on the left ab is the tensor algebra multiplication of a,b € T(M™).

The terminology ‘representative’ comes from representation theory. If S is a semi-
group and p:s — A(s) is a finite dimensional matrix representation of S, then the
matrix entries, seen as functions on S, are representative. Indeed by the definition of
the notion of a representation

ai(ss') = au(s)a(s').
k

For all be T(M*) and f € TM define the right translate Ry, f of f as the functional

Ry f(a)= f(ab). (3.4)

It is instructive to figure out to what element of 7M the functional R,/ corresponds; it
is also somewhat necessary to do this, because in the case that M is not of finite rank
it is not a priori totally clear that R, f* is a functional that comes from some element
in 7M. Let {X;: j€J} be a basis of M. Write the element f of 7M more precisely
as

oo <o
=Y Xy (3.5)
k=0 lg(a)=k

where o = [ay,...,a;], a; €J, is a word of length k& over the alphabet J. Note that
the outer sum in (3.5) can be infinite but that the inner sums in (3.5) must be finite
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(as has been indicated by the upper limit ‘< oo’ in the notation for the inner sum).
In other words, for each length & there are only finitely many « of length & for which
¢y, # 0. An element b € T(M™*) can be written as a sum:

b=> > csp. (3.6)

k- lg(B)=k

This time the outer sum is finite (as indicated) but the inner sums may well be infinite
(if the module M is of infinite rank). For instance

> U
JjeJ

is a perfectly good element of M*. But for £ > 2 only certain infinite sums are actually
elements of (M*)®%. For instance a sum

Z Cl][laj]

ijes
is in (M*)®? if and only if the matrix of coefficients

(¢ij)ijes
has finite rank (assuming A to be an integral domain so that the notion of rank is well
defined). For higher k£ similar conditions can be formulated (see Theorem 6.25). As

it turns out, this does not matter much and R, f is well defined and a functional that
comes from an element of 7M for all b of the form (3.6).

Write
=3 ax, b= "> byp. Rpf =) X, (3.7)
k lg(e)=k k=0 1g(B)=k ?
Then
¢y =Rof())=f(b)=> > aybp, (3.8)
k=0 B

where yf is the concatenation of the words y and f. Now consider the set

{”/ﬁ: a},jb/j 7'5 0}.

For y varying but of a fixed length / and f varying arbitrarily this is a finite set.
Indeed if 1g(f) > r, then bg = 0. Thus all the yf have length < /4 r and there are
only finitely many a, of length < [+ r that are different from zero. Thus, first of all,
the sum (3.8) is finite so that ¢, is well defined and, second, for each length / there
are only finitely many y of that length that are nonzero.

Consider, in particular, the case that b consists of a single word, » = . Then

Rﬁf = Z aocBXoc (39)
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and

f=@ReNXp+ > ayXy, (3.10)

where the sum on the right-hand side of (3.10) is over all words o that do not have
p as a tail. (The tails of a word o = [ay,...,a,] are the words [a;,aii1,...,a,], i =
1,2,...,n + 1; the empty word occurring for i =n + 1.) Thus, Rgf is obtained by
dividing f on the right by X3 ‘as best as possible’ and a possible suggestive notation
could be Rgf = [ lejl] with the square brackets indicating taking the nonnegative
degree part in the ring of noncommutative Laurent series over A in the indeterminates
X;.
j(It is partly for this reason that in some parts of control theory recursive sequences

are often written as power series in an indeterminate ¢~ '.)

3.11. Definition. A torsion free A-module M over an integral domain is of finite rank
if the vector space M ®4 Q(A4) over the quotient field Q(A4) of 4 is finite dimensional.

3.12. Theorem. Let M be a free module over a Noetherian integral domain A with
basis {X;: jeJ}, and let f e TM =A((X;: j€J)) be a noncommutative power series
in the X;. The following conditions on [ are equivalent:

(1) f is representative.
(ii) The A-module Rf ={Rpf: b€ TM*} is of finite rank.
(iii) The A-module Rp [ spanned by the Ry f, p€ Word(J) is of finite rank.

Moreover, if [ is representative u( f) can be written in the form

u()=Y gi®h (3.13)
i=1

with all the g;,h; representative.

For a free module M over a ring A4, let TMep,, C TM be the module of all repre-
sentative tensor power series over 4. Then, 7M., is a coalgebra by 3.13 (with the
comultiplication induced by (2.14). Unless M =0, TM,, is always strictly larger than
TM (and strictly smaller than 7M). For instance, for M free of rank 1, Sty X' is in
TMrepe \ TM.

3.14. Theorem (Generalized Block—Leroux theorem). For a free module M over a
Noetherian integral domain A, the coalgebra of representative tensor power series

TM;epr is the free coalgebra over M.

Proof of (Theorem 3.12). If f is representative, then as functionals (see (3.1), (3.3))

Ryf(a)= f(ab) ="y gia)hi(b) (3.15)
i=1
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so that all the Ry, f’s are linear combinations of the gi,...,g,. The module Rz f is a
submodule of Rf. This takes care of the implications (i) = (ii) = (iii). The final
implication (iii) = (i) needs a lemma.

3.16. Lemma. Let Rgf be of finite rank. Then for each k there are only finitely many
words B of length k for which Rg f # 0.

Of course, the lemma says something nontrivial only in the case that the free module
M is of infinite rank. This lemma is due to Block and Leroux [3]. The proof given
below is different.

Proof (of Lemma 3.16). Take some total ordering on the infinite index set J and order
the words X;, by length first and lexicographic ordering thereafter. For each f§ for which
Rgf # 0, let y(B) be the first term of Rpf with nonzero coefficient. Take a k£ € N.
Suppose there are infinitely many f of length & for which Rpf is nonzero. There are
two possibilities:

(1) There is a natural number m such that there are infinitely many f’s of length &
for which 1g(y(f)) = m.
(ii) There is a sequence of f31, 52, f3,-..,1g(f;) = k for all i, such that lg(y(f)) — oo

as i — 00.

In the second case the rank of Rpf is obviously infinite. In the first case the coeffi-
cients in f of the X, Xy for these ’s are all nonzero and that gives infinitely many
different monomials of length m + k in f with nonzero coefficient contradicting that
/€ TM. This proves the lemma.

3.17. Lemma. If M is a submodule of a module of the form A’ = [I;c; 4 over a
Noetherian integral domain A, and if M has finite rank, i.e. dimg(M ® K) < oo,
where K is the quotient field of A, then M is finitely generated.

This will be used below. A different proof is in [20]. To see this result consider the
diagram

M Al A"

MK K! K"

where the right-most horizontal arrows are natural projections onto a suitable finite
subset of the coordinates. Because dimg(M ® K) < oo, there is a finite n such that the
composed lower morphism is injective. As M is torsion free, the composed morphism
from M along the upper edge and then down on the right is injective and, hence,
the composed morphism of the upper edge is injective. Thus M is isomorphic to a
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submodule of a finitely generated A-module and hence is finitely generated because A
is Noetherian.

Proof of Theorem 3.12 (continued). Now let Rp f be of finite rank and let g,...,g,
be a finite generating set. Such a set exists by Lemma 3.17. For each word /3, choose
coefficients a; g € 4 such that

Rpf = aipg; (3.18)
i=1
taking care to take a; 5 = 0 for all f’s for which Rgf = 0. Thus, for each length £,
there are only finitely many «; g # 0 with f of length k. Now define

hi = a;pXp. (3.19)
B
By the remark just made /; € TM. Further, for all words o, f € Word(J)

FEB) =R f() = gi(@ais =3 gi()h(h) (3.20)
i=1 i=1

proving that f is representative. This proves the implication (iii) = (i) and the equiv-
alence of the three conditions (i), (ii), (iii).

As to the last statement of the theorem, so far it has been shown that if f is
representative, then there are tensor power series ¢; €Rpf, i = 1,...,r, and tensor
power series h;, i =1,...,r, given by (3.19) such that (3.20) holds. Consider the
matrix of coefficients (a; g). By (3.19), or rather the remarks just before that, the rows
of this matrix can be considered as the Rgf and the columns as the elements /;. Let
K be the quotient field of 4, and consider the matrix (a; ) over K. Because row rank
is column rank, it follows that

dim (ZKQ,-) =dim | > KRyf | =dim (ZKh,-) =s. (3.21)
i B i

Now consider left translates of f* defined by

Lof(b) = f(ab), L.f(P)= f(ap)

and let Lgf be the vector space spanned by the Lgf. Reasoning as before, one finds
that Lgf has finite rank and that there are Al €Lgf, i=1,...,7  and ¢}, i=1,...,7,
such that

’

SOBY=_ i) (3.22)
i=1

and that

dim (Z Kg;> = dim (Z KL, f> = dim (ZKh’) =5
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Suppose that 5" <s. Then (3.22) says that each Rg f and, in particular, the g; are linear
combinations of the g}. Hence

> Kgic> Ky (3.23)
i J

Hence, s = s’ and the two spaces in (3.23) are equal. Thus, each g} is a K-linear
combination of the g;. Now, R,(Rgf) = Rp,f and thus, for some a€ 4, Rg(ag}) is of
finite rank and thus, RB(g}) is of finite rank making the g} representative so that (3.22)
holds with all the g}, 4} representative. If 5" > s, reason symmetrically using the 4}, /;
instead of the g;, q; This finishes the proof of the theorem.

3.24. Remarks. In the case that 4 is a field or a principal ideal domain, one can thus
show that if f is representative then

WSf)ERf @ Lpf (3.25)

because in this case the Rz f (resp. Lpf) are free modules.

In general, the proof above does not quite give this. But introduce the pure closures
of these modules (see e.g. [11, p. 372] for the notion of a pure subgroup; this is a
natural analogue for modules),

Lpf={feTM: af €Lpf for some acA},

Rsf={feTM: af eRzf for some acA}. (3.26)
Then the Proof of Theorem 3.12 shows that

Wf)ERf @ Lgf (3.27)

and, of course, the elements of R f and Lp f are recursive and the ranks of these two
modules are the same as those of Rgf and Lpf.

Proof of Theorem 3.14. First of all, the theorem implies that 7M., is a coalgebra
under the ‘comultiplication’ induced from 7M. This is not entirely obvious because,
although Theorem 3.12 says that u(f) lands in the image of TMepr @ TMep in ™ ®
™ , if the tensor square of the inclusion TMe, C TM were not injective, one would
not know what representatives to choose and the comultiplication would not be well
defined. And, of course, the tensor square of an inclusion need not be injective even in
very nice looking cases, such as me well-known example mentioned just below (9.3).
In the present case, there is no problem so to speak, because, the comultiplication is
finitely defined, i.e. the homogeneous components pu( )" are completely determined by
the restriction of f to 7"M.
More generally there is the following (trivial) lemma.

3.28. Lemma. Let N be a submodule of TM that contains TM. Then the tensor square
of the inclusion is injective.
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Proof. Let f;,g; be elements of N with homogeneous components f7, g/ of degree m
(in M and hence in TM and in N). Suppose that > . f;®g; # 0 in N@N. Then there
is a finite & such that ) ek J1® gt # 0, these being the homogeneous components
of Y, fi ® g;. But this homogeneous component of degree & is in 7M @ TM and the
tensor square of TM C TM is certainly injective.

Proof of Theorem 3.14 (continued). The main statement of the theorem means that for
every coalgebra with counit (C, u,¢) over 4 and every A-module morphism C M,

there is a unique counit preserving morphism of coalgebras Ci>TMrepr such that
o = Q.
Define inductively

po=¢:M — A, wo=id:M — M, o =u:M — M®?, ..,
1 = (10 @ id® "D, M — MO (3.28)

Then the fact that ¢ must be a counit preserving morphism of coalgebras immediately
gives that it must be given by the formula

@) = (po(e) = e(e), p(pu1(€)) = @), 9P (a2())s -, 9" (p2(€)) ). (3.29)

It remains to show that the tensor power series (3.29) are representative. To see this,
let

w(e) = Z 1 @ €2y
j

Then, by the coassociativity of x4 and the counit property of uy = ¢

Z wi(ery) @ wi(ea) = peyi(c)
J

and it follows that

w(@(e)) = dlery) @ Gleay)
J

(where the left-hand side u is the one of 7M., ) so that u(¢p(c)) is a finite sum of
tensor power series of the same type, thus proving that ¢(c) is representative (and re-
confirming that ¢ is a morphism of coalgebras). This finishes the proof of the theorem.

3.30. Remarks. Very little of the above makes sense in the case there is torsion present
in the module M. The definition of ‘representative’ still makes sense. However, there
seems to be no way to define anything like the Ry /" which play such a crucial role in
the arguments above. To illustrate the point, consider the case that M =Z ® Z/(n) over
the integers. Taking the generators X; = (1,0), X; =(0,1), it is still possible to view
the elements of M as noncommutative power series in X, X, with the proviso that
if an X; is present the coefficient is only defined as modulo n. Now take a monomial
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of the form aX\X;---X1X> and try to apply Rpy in the way of formula (3.10). This
gives the monomial aX; - - - X;, with, however, the coefficient only determined modulo
n, while for these monomials we need coeflicients in Z.

Returning to the setting of Theorem 3.12, things should still work for more general
modules than free modules. In particular, Theorem 3.12 should remain true and its proof
work for, for instance, reflexive 4-modules and the linear duals of free A-modules. This
latter case is dealt with in Section 6. See Section 8 for the notion of reflexive 4-modules
and examples of those. It also should work in all cases where the functionals on the
dual module of M suffice to distinguish the points in AM; i.e. when the canonical
morphism M — M** is injective.

4. Recursive tensor power series

Let feTM with its homogeneous component weight n denoted f”. A natural
possible definition of left (simply polynomial) recursiveness could be as follows:

There is a finite set of monomials ¢.X;,, i =1,...,/,1g(4;) = 1 such that for large
enough n
!
I1=) ek [ (4.1)

i=1

and it is right (simply polynomial) recursive if there is a finite set of monomials
diX,,, i=1,...,7, such that for large enough n

p
[1=) S, (4.2)
i=1
And f is (simply polynomial) recursive if it is both left and right (simply polynomial)
recursive in the sense of formulas (4.1) and (4.2). This is probably the first guess
one would make at a definition of recursiveness in the multivariable (noncommutative)
case. As it turns out, this is not a general enough notion of recursiveness for the present
purposes. To distinguish this possible notion from the more general one below, I shall
call this simply polynomial recursiveness (as already indicated). It will be discussed a
little more in Section 7.
The right notion of recursiveness that fits with cofree algebras over free modules is
as follows.

4.3. Definition. A tensor power series f over a free module M with basis {X;: je€J}
over A is left recursive if there is a finite set of monomials X, i=1,...,/, and for some
fixed s > max{lg(4;), i=1,...,/1}, there are coefficients c,; € 4, for each i€ {l,...,I}
and word y&€ Word(J) of length s, such that for n > s for each o€ Word(J) of
length n

I

S(0) = o if Gitraar), (4.4)

i=1
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where if f3,y are two words over J, ffy is the concatenation of them and where for a
word o of length > s, opre(s) is the prefix of o of length s and oy is the corresponding
suffix (or tail), so that o = otre(s)Oisuf -

The tensor power series f is right recursive if there is a finite set of monomials
X, i=1,...,r, and for some fixed t > max{lg(p;), i=1,...,r}, there are coeflicients
d,; €4, for each i€ {1,...,r} and word y € Word(J) of length ¢, such that for n > ¢
for each o« € Word(J) of length n

1
f(O() = Z dosz(,yif(“prepi)a (45)

i=1

where this time o) is the suffix (tail) of « of length ¢ and o, is the corresponding
prefix (so that o = oreisur(r))-

The tensor power series f is left (resp. right) recursive with finiteness condition if
is left (resp. right) recursive and moreover the recursion coefficient matrix (c.,; )ig(x)=s.:
(resp. (dy,i)ig(x)=s,i) has only finitely many entries unequal to zero.

The tensor power series f is recursive if it is both left and right recursive in the
sense of formulas (4.4) and (4.5); it is recursive with finiteness condition if it is left
recursive with finiteness condition and right recursive with finiteness condition.

Of course, ‘with finiteness condition’ only gives something extra if there are an
infinite number of indeterminates.

Note that these two formulas (4.4) and (4.5) exactly capture the idea of recursiveness
in the sense that a coefficient f(a) for large enough lg(«) is (both from the left and
the right) a linear combination of coefficients for words of lesser length in a uniform
manner (same coefficients).

In the case of power series in one variable, this notion of recursiveness is the same
as simple polynomial recursiveness and the same as the usual notion of recursiveness
for sequences.

But even in the commutative case for more than one indeterminate, this notion of
recursiveness is more general than (simply) polynomial recursiveness.

As it turns out, these notions of recursiveness are closely related to a notion of
recursiveness defined by Schiitzenberger, see (5.6). Indeed, for a finite number of
noncommuting indeterminates, the notions turn out to be equivalent; for an infinite
number of indeterminates there are important differences.

4.6. Theorem. A tensor power series over a free module is recursive with finiteness
condition if and only it is representative.

Proof. First assume that f is representative. Then by Theorem 3.12, more precisely
its proof, see (3.18), there are a finite set of monomials X, and tensor power series
h; such that for all o, f € Word(J)

FBN =D Ro f(BIN(). (4.7)

i=1
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Now take ¢ = 1 + max{lg(p;) and for each o of length > ¢ take

V= Gsuf(r)s ﬁ = Upre, O = Xpre Lsuf(r)

in formula (4.7) and observe that (4.5) holds with the monomials X,, for the p; that
occur in (4.7) and d;,=h;(y) for all y of length ¢ (because R,, f ()= f(Bp:)). Note that
only finitely many of the d;,=/;(y) are nonzero because the /; are tensor power series
and there are only finitely many of them. This gives right recursiveness with finiteness
condition of f. Similarly, left recursiveness with finiteness condition follows from the
fact (see (3.22)) that there are tensor power series g}, Jj=1,...,1, and monomials X,
such that

1
FBN = g{(BILy (). (4.8)

j=1

This proves that f is recursive with finiteness condition if it is representative.

Inversely, suppose that f is recursive, so that (4.4) and (4.5) hold. Take n =
max{s,¢}. Working in the completed tensor algebra TM it is easy to find polyno-
mial tensors g¢;,h;, i =1,...,r, such that (for any fixed s;7 depending on s)

L ST oo R F A LT

aNoG o B Wy hyo-e B AN TR At
® pr—

Qs g W hyoe B fo s+l f®

(4.9)

The idea is to use lots of zeros and ones. Here is the start. Let

m
2 12 12 12 12
fP=Y bl bl eM,

J=1

m m
3 13 23 23 13 13 13 23 23 ®2
=Y o= e, biceM, b eM,
=1 pa

m m m
4 14 o 34 2% o 24 34 o 14 14 14 i
=Y btedgt=Y tegt=3 ot bieteM®,
=1 =1 =1

(4.10)
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(There is no loss of generality in taking the same m everywhere as long as only finitely
many f' are considered.) Then for =3 in (4.9)

1 o o o o0 0 0 0O 0 0

oo b2 pB o 0 0 0 0 0
20 0 0 0 »3 ¥ pP 0 0 0
0 0 0 0 0 0 0 »* b3 b0
1 0 0 0
0 fl f2 f3
0 Cl2 0 0 1 2 3
0 0 ¢ o0 4 4 4 4 0 1 a2
o 0 o ot| [ TR eps Sagt| (10 st
J J j fl fz f3 f4
®lo B 0 0 |= 2 23 13 24 24 25 35 | = ’ s
2N bR St > b R
0 0 o - 7o - J - J o f f I
3 4 5 6
35 3 Z JETRE Z 3525 Z 536,36 A A R |
0 0 0 ¢ S i Cj i Cj i Cj
J J J
0 o0 o0
0 0 & 0
0 0 o0

where b7 is the row vector (b7, ...,b%) and ¢/ is the column vector (c?,...,clh) . From
this the general pattern is clear.

Now extend the g1,...,g, in (4.9) by the left recursion recipe for f, and extend the
hi,...,h, in (4.9) by the right recursion recipe for f. Then

I ST .o A e
hi hy - K .
L SEREH b : AR SRR
hg h; e B
® . . . = :
hnoeB g s ' £t
Wonooo

so that f is representative.

5. Recognizable tensor power series over free modules of finite rank

In this section we consider noncommutative power series in a finite number of
indeterminates X, X,...,X,, over a commutative ring with unit 4, i.e. expressions of
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the form
.f:ZCO!XOU a:[alaa2>"'aam]a me{ovlaza"'}9
acEW
a;€{1,2,...}, c, €A, (5.1)

where W is the free monoid of all words in the alphabet {1,2,...,n}, and
X, :XalXaz o 'Xam- (52)

The coefficient of X, in f is variously denoted ¢, (as in (5.1)) or f(a), or f,. Or,
equivalently, we consider elements of the tensor power series algebra 7M, where M
is the free module over A4 with basis X1, X3,...,X,. We also write A{(X],...,X,)) for
™.

A noncommutative power series (5.1) is said to be recognizable if there exists a

natural number » and » x r matrices p(X;), i=1,2,...,n, an r X 1 matrix b (i.e. a
column vector) and a 1 x » matrix ¢ (i.e. a row vector) such that for all « € W
So=cp(Xy)b, (5.3)
where
p(Xy) = p(Xa,) - - - p(Xa,, ), (5.4)

i.e. p is the representation of the free monoid X* defined by the n matrices p(X;), i=
1,2,...,n. In the control theory world this is usually called realizable. There are two
slightly different interpretations of (5.3).

Consider a discrete time automaton with state space A" and initial state » € 4”. When
the automaton is in state x € 4" at time ¢ and is fed the input JX;, it moves to state
p(X;)x and outputs the scalar cx; if it is fed nothing, i.e. the empty word, it stays in
the same state and outputs cx. Then, if the automaton starts in the initial state b at

time zero and is fed successively the inputs X, ,X,, ,,-..,Xq, 1.€. it is fed the word
X,, o=la,as,...,a,] (from right to left), then the output sequence is
cb,cp(Xy, )b, cp(Xa, \ Xa, )by cpXa)D = faus for-eos foreens (5.5)

i.e. feeding in a word o produces the corresponding coefficient f, of f.

A slightly different interpretation, much closer to the setting of the original paper
[18] of Schiitzenberger is that of a ‘transition system’ with » nodes ¢;,...,q, each of
which can hold an element of A{(X],...,X,)) in its memory. There is an arrow form
node ¢; to node g; for each k€ {l,...,n} for which p(X;);; # 0 and that node is
labelled p(Xj); i Xi. The transition system works as follows. It starts at time zero with
memory state b; for node ¢; and outputs cb. If at time ¢ the memory states are y;, then
it outputs

hg!

Yn
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and the memory states at time 7 4 1 are
Y+ 1= p(Xi)i Xy,

i.e. the sums of the labels of all the incoming arrows multiplied with the memory
states from which they come. Then, (5.3) means that this transition system successively
produces the components f* of f at time i.

A noncommutative power series in a finite or infinite number of indeterminates (5.1)
is left Schiitzenberger recursive if and only if there is a finite nonempty set of words
S closed under taking prefixes (so that in any case the empty word is in S) such that
for all words fe T =SX \ S there are coefficients og,, « €S, f €T such that for all
words y

fon=>_ap.fa. (5.6)
oaeS

At first sight this does not look all that recursive. For one thing, the words o) occurring
on the right-hand side of (5.6) may very well have longer lengths than the word fy.
However, for each word w let o be the longest prefix of w that is in S, and write
w = oaw'. Then (5.6) is recursive with respect to the length of w'.

It is left Schiitzenberger recursive with finiteness condition if there are only finitely
many nonzero coefficients in the recursion matrix (ag.)gerscs-

There are obvious corresponding notions of right Schiitzenberger recursive which
work with suffixes instead of prefixes. A noncommutative power series f € A{((X1,..., X))
is Schiitzenberger recursive if it is both right and left Schiitzenberger recursive.

It will turn out that for a finite number of indeterminates the notions of recursiveness
and left right recursiveness are equivalent to Schiitzenberger recursiveness. In the case
of an infinite number of indeterminates there are important differences. As will appear
later, in the case of tensor power series over the dual of an infinite rank free module,
it is the notion of recursiveness as in Section 4 that is the appropriate one.

The main point is that in the Schiitzenberger case, the power series is entirely de-
termined by the recursion matrix and a finite number of initial conditions, viz. the
coefficients of the X,, o €S, while in the recursive case there are potentially infinitely
many initial conditions, viz. the coefficients of the X,, lg(a) <s.

As an example, the power series in an infinite number of variables

>_X7
jeJ
is recursive but not (left or right) Schiitzenberger recursive. Another example is

> rX;,  red

jes
This is always recursive. But it is left (or right) Schiitzenberger recursive if and only
if the ideal in 4 generated by the r; is finitely generated. This is even a little disturb-
ing because one does not intuitively expect a notion like recursiveness to depend on
properties of the underlying ring of coefficients.
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For a noncommutative power series (5.1) (in a finite or infinite number of indeter-
minates) the associated Hankel matrix H(f) is an infinity by infinity matrix whose
columns and rows are indexed by the free monoid W and whose entry in row o and
column f is the coeflicient of X, Xg = X,p in f. This is not to be confused with the
Hankel-like matrix (2.16), though of course the two are far from unrelated. Let 4 be
an integral domain with quotient field Q(4). Then f € A((W)) is said to be of finite
Hankel rank if the rank of the matrix H(f) over Q(4) is finite.

It is simple but important to note that the entries in the column labelled 8 are the
coeflicients of the Ry /" and the entries in the row labelled « are the coefficients of L, f".

5.7. Theorem. Let [ € A{(Xy,...,X,)) be a noncommutative power series in finitely
many variables over a Noetherian integral domain A. Then the following are equi-
valent:

(1) f is left recursive,

(it) f is right recursive,

(iii) f is recursive,

(iv) f is left Schiitzenberger recursive,
(v) f is right Schiitzenberger recursive,
(vi) f is Schiitzenberger recursive,

(vii) f has finite Hankel rank,

(viii) f is recognizable (=realizable),
(ix) f is representative.

5.8. Comments. Over a field the equivalence (iv) < (v) is basically due to Schiitzen-
berger, [18]. However, the two basic constructions work just as well over an integral
domain 4, see [2].

The equivalence (v) < (vi) for 4, a field, is due to Fliess [8].

A noncommutative power series f is invertible if and only if its constant term is
invertible in 4. The rational power series are the ones that are contained in the minimal
submodule of A{(Xj,...,X,)) over 4 that contains A(Xj,...,X,) and is closed under
inversion (when applicable), sums and products. The celebrated theorem of Kleene—
Schiitzenberger says that the rational noncommutative power series are precisely the
recognizable ones, see [9].

Theorem 5.7, of course, subsumes Theorem 4.6 (for the case of finitely many indeter-
minates). However, the proof is more roundabout and does not show very directly the
narrow connection between recursive and representative as in the Proof of Theorem 4.6.

5.9. Corollary. For a finite rank free module M over a Noetherian integral domain,
the cofree coalgebra over M is TMcpe = TM cq, the module of realizable noncommu-
tative power series in the Xi,...,X,.

Proof. It follows directly from the realizability property that TM o = TMicq is a coal-
gebra. The remainder of the proof is as in the proof of Theorem 3.14. [
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Proof of Theorem 5.7. (i) = (iv). This is almost immediate. Let f be left recursive
in the sense of (4.4). Take S to be the set of all words of length <s. Then T is the
set of words of length precisely s 4+ 1. Now take for €S, feT

c i if o=,
gy = et (5.10)
0 otherwise,

to see that f is left Schiitzenberger recursive.

(iv) = (vii). Let f be left Schiitzenberger recursive. Then by induction on the
length of ' where w = aw’ with o the longest prefix of w that is in S, we see that
the rows of the matrix H(f') are linearly dependent on the rows with index in S. This
proves (vii).

(vii) = (viii). This is the heart of the proof of the theorem. The proof of this
bit is a rather straightforward adaptation of the proof of Fliess in the case of a field
[8], combined with the observation of Rouchaleou in the case of one variable (which
means linear system theory), that Noetherianness is precisely what is needed to prove
realization theorems given finite Hankel rank, see [17].

So suppose that f is of finite Hankel rank. Let the rows of H(f) be denoted
rw, @€ W and let the entry indexed by o’ of ry, i.e. fuw = f(w@') be denoted
ro(w'). Let g be the empty word. Because rk(H(f)) < oo, there are by Lemma 3.17
finitely many wy, w;,w;,...,w, such that each r, is an A-linear combination of the
P> Teys - - -»Ve,- Note that the row indexed by the empty word is included in the set of
chosen generators (whether really needed or not).

Now define a representation p of the monoid X* in the (£ + 1) x (¢ + 1) matrices
by p(Xu) = p(1) =1d, and

t
Foyti) = O PX) ks (5.11)
k=0

where, of course, w;[7] is the concatenation of the word w; with the length one word
[/]. There is choice involved here of the p(X;), but that does not matter; any matrix
such that (5.11) holds will do.

Claim.

t
Foyn = Zp(Xa)j’krwk VoeW, Vj=0,1,2,...,t (5.12)
k=0
Because p(X,,) =1d, using (5.11), one sees this holds for Ig(«) < 1. So assume with
induction that (5.12) has been proved for 1g(«) < s. Consider an @ of length s + 1.
Then there is an i such that w = [i]w’, 1g(w’) =s. Now note that

Foo (") = re(a' o). (5.13)
So
P @) = Fop it (0") = rp (e’ @”) - (by (5.13))

=D pX)jare, (@) (by (5.11))
k
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=Y p(X)jiFu (@) (by (5.13))
k

= Z p(Xi);kp(Xo )70,  (induction hypothesis)
k1

= Z p(XiXy ) 17w, (matrix multiplication)
1

= Z p(X:x)j,Irw,
1

proving the claim.
Now in (5.12) substitute j =0 and take the value at w,. This gives

ra(@0) =Y p(X )i, (09)- (5.14)
k
Now take
l”mo(wo)
I’(,,I(CO())
b= , c=(1,0,...,0),
——
t
FU),(CO())
then cp(X,) = (p(X»)o,0---,p(Xy)o,r) and hence from (5.14)
Sa=ry(wo) = cp(Xy)b (5.15)

proving this implication.
(viii) = (ix). Now suppose that f is recognizable (= realizable) so that (5.15)
holds. Then, by the definition of the representation p

[ a5 = cp(Xop)b = cp(X)p(Xp)b. (5.16)

Now define g;, i = 0,1,...,¢, as the column vector indexed by W whose entry at o
is cp(X,)(i)X,, where cp(X,)(7) is the ith entry of the row vector cp(X,), and define
hi, i=0,1,2,...,¢, as the row vector indexed by W whose entry at f§ is p(Xp)b(i)Xj,
where p(Xg)b(i) is the ith entry of the row vector p(Xp)b. Then (5.16) precisely says
that

M(f)zzgi®hi

showing that f is representative.

(ix) = (i), (i1). This is Part of Theorem 4.6.

This proves that (i), (iv), (vii), (viii), and (ix) are equivalent and that any of them
implies (ii). Similarly, working with the corresponding right concepts, one shows that
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(ii), (v), (vii), (viii), (ix) are equivalent and that any of them implies (i). This proves
the theorem.

6. Cofree coalgebras over infinite rank free modules and over the duals of free
modules

Now consider the case of an infinity of indeterminates
X={X;: jeJ} (6.1)

In this case, there are three different notions of noncommutative power series in the
infinite set of indeterminates X, viz.

TM C TN C A((W)). (6.2)
Here, M is the infinite rank free module
M= EB AX; (6.3)
jeJ

with basis {X;: je€J}, N is the module
N =]]4x;.
jes

the linear dual of M, and A{(W)) is the module of all formal sums of monomials in
the X;

A<<W>>={ny,Xa: faeA}zAW, (6.4)
13/4
which is also the 4-module of all functions on W to A. Note that if
fETM, =" fuXa, (6.5)
aeW

then for each length & there are only finitely many o of that length for which the
coefficient f, = f(«) is nonzero.

Note also that the (Cauchy) product is still well defined on A((W)). The coefficient
at o of the product of two elements g, € A{((W)) is equal to

(S9)=>_ gphy, (6.6)
py=u

which is a finite sum. The two inclusions in (6.2) are both strict. For instance, any
element of the form

Sy (6.7)

jeJ
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with infinitely many of the a; # 0 is in TN but not in 7'M, and any element of the
form

> ax? (6.8)

jes

with infinitely many of the a; # 0 is in A((/)) but not in TN.

In the case of a finite set of indeterminates all three modules in (6.2) coincide.

Note that the elements of TM are polynomials in the X; in the most usual sense of
the word; that is they are sums ) _, a,X, for which only finitely many of the a, are
nonzero. Note, however, that polynomials in an infinite set of variables are not always
defined this way. In the theory of symmetric functions and quasisymmetric functions
one works with an infinite set of commuting variables and polynomials in these are
defined as power series of bounded degree, see, e.g. [13,15]. In the symmetric functions
case these are then precisely the polynomials in the elementary symmetric functions
in the sense that only finitely many coefficients are nonzero. The elements of 7N are
neither polynomials in the sense of finitely many coefficients nonzero, see (6.7), nor
do they coincide with power series of bounded degree, see (6.8).

Corresponding to the three different algebras of (6.2), in the case of an infinite set of
indeterminates, there are several different versions of the recursiveness Theorem (5.7)
and there are different associated Kleene—Schiitzenberger type theorems.

6.9. Theorem. Let f € TM. Then the following are equivalent:

(1) f is left recursive with finiteness condition.

(ii) f is right recursive with finiteness condition.

(iii) f is left Schiitzenberger recursive with finiteness condition.

(iv) f is right Schiitzenberger recursive with finiteness condition.

(v) f has finite Hankel rank.

(vi) f is realizable with a representation p for which p(X;) =0 for all but finitely

many 1i.

(vii) f is representative (with the g; and h; in TM).

The first step in proving this is to realize that in these circumstances one is really
only dealing with finitely many variables as recorded in the next two propositions.

6.10. Proposition. Let f € TM and let f be recursive with finiteness condition. Then
there are only finitely many variables involved in f.

The latter statement means the following. There is a finite subset Jy of the set of
indices of variables J, such that if j€J \ Jy occurs in a word o over the alphabet J,
then the coefficient of X, in f is zero.

Proof of Proposition 6.10. Let s and /; be as in Definition (4.4). Because f is in 7'M
there are only finitely many monomials of length < s that have nonzero coefficient in
f and so these involve only finitely many variables. There are also only finitely many
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A; and for each i only finitely many ¢, ; # 0 and these also involve only finitely many
variables. Let Jy C J be the finite subset of all these variables. Then by formula (4.4)
for Ig(a) > s

1
F@) = Copif Gittsur)- (6.11)

i=1

For a word a over the index set J, let varsupp(x) = {j €J: j occurs in o} and for an
S in A((W)) let

varsupp( f) = U varsupp(o). (6.12)
F@)#0
Thus
Jo= U varsupp(f") U U varsupp(m). (6.13)
n<s ilg(w)=s
Ca, i 70

By induction we can assume that varsupp(f?) C Jy for i <m >s. Let lg(a) =m + 1
and suppose that varsupp(o) ¢ Jo. Then one of the following holds (or both):

(1) Varsupp(“prc(s)) ¢ JOs
(i) varsupp(tsur) & Jo.

In the first case Cotpregari = 0 for all /, and in the second case f(Ajogqr) =0 by the
induction hypothesis.

6.14. Proposition. Let f € TM be left (or right) Schiitzenberger recursive with finite-
ness conditions. Then varsupp(f) is finite.

Proof. This time let

Jo= U varsupp(ff) U U varsupp(a.) (6.15)
there is an o oES
with ag,7#0

and prove (in the same way) with induction on the length of «’, starting with 0, that
the coefficient of X, in f is zero unless varsupp(w) C Jy. Here, @’ is determined by
o = aw’ with o € S of maximal length.

Proof of Theorem 6.9. (i) = (iii). By Proposition 6.10, there are only finitely many
variables involved in f. Thus by Theorem 5.7, f is left Schiitzenberger recursive in
these finitely many variables, proving (iii).

(iii) = (v). By Proposition 6.14, only finitely many variables are involved. So this
follows from Theorem 5.7.

(v) = f is realizable. The proof of Theorem 5.7 works unchanged. But this does
not yet imply that the extra finiteness condition: p(X;) =0 for all but finitely many &
holds.
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f is realizable = f is representable. As in the proof of Theorem 5.7, this comes
directly from the realization formula f(o) = cp(X,)b so that f(af) = cp(Xy)p(Xp)b.
f is representable (and f € TM) = (iii). By Theorem 3.12

B =" gi(B)hi(2) (6.16)

i=1

with each g;, equal to some R, f and hence in TM. Consider a word of length k.
Because the g; in (6.16) are in 7'M, there are only finitely many words f8 of length &
such that f(fw) # 0 for any w. On the other hand by Theorem 3.12, the rank of H( f")
is finite, because the columns of H( /') are the coefficients of the Rg f. Thus f is left
(or right) Schiitzenberger recursive, so that there are coefficients cp,, f€ T =SX \ S,
ae S, S a finite set of words, such that for all w

f(Bo) =" ap.f (). (6.17)
€S

The length of the ff € T is bounded because S is finite. Thus for all but finitely many
p in (6.17) we can choose the ag, to be zero. This then establishes that f is left
Schiitzenberger recursive with the extra finiteness condition on the recursion matrix.
Thus f involves only finitely many variables (by Proposition 6.14), and Theorem
5.17 establishes that f is left recursive (and right recursive). This proves the theorem.
Alternatively use Theorem 4.6.

6.18. Remark. Another way to get from (iii) to (vi) in Theorem 6.9 is to use the
standard construction as given in [2].

6.19. Corollary. If f € TM for an infinite rank free module M over a Noetherian in-
tegral domain, then, actually, { is in TM' for some finitely generated free submodule
M’ of M.

6.20. Corollary. The cofree coalgebra over an infinite rank free module over a Noethe-
rian integral domain is the union (more precisely the inductive limit) of the cofree
coalgebras over the finite rank free submodules.

The proof is the same as above in Sections 4 and 5.

6.21. Remark. This last observation before Corollary 6.20 fits very well with the main
theorem of coalgebras as discussed in Section 8.

The celebrated Kleene—Schiitzenberger theorem for noncommutative power series in
a finite number of variables over a Noetherian integral domain says that the rational
closure of the polynomials is the algebra of realizable (= recognizable) power series.
Here the rational closure means the following. Let P C A{(W)) be a subalgebra. An
element of A((W)) is invertible if and only if its constant term is a unit. The rational
closure, Py, of P is the smallest subalgebra containing P that is closed under inversion
(when applicable).
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In the case of finitely many variables the classical Kleene—Schiitzenberger theorem
says

TMrepr - TMreal = TMrata (622)

where TM,., is the set of realizable power series. It is easy to see that this is indeed a
subalgebra: use the direct sum and (tensor) product of representations (see below for
details). The first equality in (6.22) then comes from Theorem 5.12 and the second is
the classical theorem itself.

Here is a version for infinitely many variables.

6.23. Theorem (Kleene—Schiitzenberger theorem for free modules of infinite rank). Let
M be a free module over a Noetherian integral domain (of any rank). Then

TMrat = TMreal = TMrepr- (624)

Here TM,cq is the module of realizable noncommutative power series in the X;, j€J,
a basis of M, that is those power series f in 7'M that can be realized (= recognized)
by a triple (p,b,c) consisting of a finite dimensional representation p of X*, say of
dimension n, an n X 1 vector b and a 1 x n vector ¢ such that f(a) = cp(X,)b.

Proof. The second equality of (6.24) is part of Theorem 6.9. This theorem also says
that if f' € TM,, then it involves only a finite number of variables, and thus by the
classical Kleene—Schiitzenberger theorem it is a rational power series in those finite
number of variables and thus in 7M. That TM,, is part of TM,, is established just
like in the case of the classical theorem. The details will be given below (in a more
general setting) because in the case of the dual of a free module the corresponding
Kleene—Schiitzenberger theorem does not immediately follow from the classical one.

The next step is to examine the rational, representative, and realizable closures of
TN in TN and in A((W)) where N = [[,e; 4X; and W is the free monoid on the
infinite alphabet J.

A first step is to characterize the elements of TN and TN in A((W)).

6.25. Theorem. An element f € A((W)) is in TN if and only if each homogeneous
component " has finite Hankel rank; it is in TN if and only if it is of bounded
degree and has finite Hankel rank.

Here ‘bounded degree’ means that f is of the form Zlg(w) <n doXy for some n.
Proof. Let /€ N®", Then f is of the form
<00
f= Z 91.i® gi2 @ Q Gm,i- (6.26)

The Hankel matrix of each one of the summands g;; ® g;» ® -+ ® g, consists of
blocks of zeros and a finite number of blocks, viz. m+ 1, of rank 1 and thus is of finite
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rank. And thus the Hankel rank of the finite sum (6.26) is finite as the Hankel matrix
of f is a sum of the finite number of Hankel matrices of the summands of (6.26).
This proves that if f € TN then it has finite Hankel rank. Inversely, let f € A((W)) be
homogeneous of degree m and of finite Hankel rank:

= > @y XiXy X, (6.27)

JVsJ2ss Jm €S

The claim is that then f € N If m=1, then there is nothing to prove. So let m > 1.
Then the part of the Hankel matrix of f consisting of the rows indexed by elements
of J, i.e. the words of length one, is also of finite rank. So there are a finite number
of indices jj,...,J, so that each row of H(f) indexed by a word of length one is
dependent on these » rows. So, in particular, there are coeflicients c; s such that

Aoty = D Ciok @it Tor all Ly . (6.28)
i=1
Now let
9= cjuke (6.29)
k
and let
hi= > @0, XX, (6.30)

D5l
Then by (6.28)

f=Y 9;®h (6.31)
i=1

Now the Hankel matrices of the 4; are parts of the Hankel matrix of f, viz. the parts
consisting of the rows indexed by words with length 1 prefix [i]. Thus these are of
finite rank and with induction #; € N®"=1 and hence by (6.31) f € N®™,

Now let f€A((W)) be of bounded degree n and finite Hankel rank. Let f* be the
homogeneous part of f of degree s < n. Then the Hankel matrix of f* consists of
zero blocks and a finite number of blocks of the Hankel matrix of f, viz. the blocks
indexed by rows indexed by words of length & and columns indexed by words of
length [, [ 4+ k =s. Thus the Hankel matrix of each of the f* is of finite rank and
hence in N®. This proves the theorem.

The remainder of this section is about recursiveness, etc. for the duals of free modules
over Noetherian integral domains 4. When 4 is a field K, and N is the dual of a free
module M over K, i.e. a vector space, then N is again free, with, if the rank of M
is infinite, usually a basis of larger cardinality than that of a basis of M. So in the
case that 4 is a field there is nothing new. However, if 4 is an integral domain the
dual of a free module is not necessarily free. Indeed, often it is not. For instance,
if M is the free module of countable infinite rank over the integers, then its double
dual is isomorphic to M, and so the dual M* cannot be free because otherwise its
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dual M** would have larger cardinality than M* which has larger cardinality than M.
This happens quite frequently. For instance the double dual of a free module M over
the integers is isomorphic to that module (i.e. that module is reflexive) if and only if
the cardinality of a basis of it is a non-w-measurable cardinal. The countably infinite
cardinal is non-w-measurable. For details see [6,7].

6.32. Theorem. Let f € A{(W)), where W is the free monoid on the infinite alphabet
{Xj: jeJ}. Then the following are equivalent:

(1) f is left Schiitzenberger recursive.

(it) f is right Schiitzenberger recursive.

(iii) f has finite Hankel rank.

(iv) f is realizable (= recognizable).

(v) fisin TN and representative (in TN).

(vi) f is representative in A((W)).

Moreover, if f€TN these conditions are equivalent to both

(vii) f is left recursive.
(viii) f is right recursive.

6.33. Corollary. The cofree coalgebra over the dual of a free module N =] ey AX;
iS TNrepr = TNreal-

The proof of the corollary is the same as in the case of free modules, see above. The
important thing is that the realizability property (iv) immediately implies that 7Ny, is
a coalgebra.

Proof of Theorem 6.32. The proofs of (i) = (iii) = (iv) are as before. Now suppose
that f is realizable. Then there is a formula f(a)=cp(X,)b for the coeflicients of f.
Explicitly the homogeneous component of degree m of f is given by the formula

= K P by X X,
Jleees Js K seees i

showing that it is a finite linear combination of the entries of the finite dimensional
matrix

> (X)) p(Xi )X -+ X, = <Z P(Xk )Xk>
K yeees iy k

and hence an element of N®”. This proves that f e TN. Also because f(aff) =
cp(o)p(P)b it follows that f is representative in TN. Trivially, (v) implies (vi). But
if (vi) holds

FOBY=>_ gi(hi(B)
i=1

showing that the Hankel matrix of f is of finite rank, the rows depending on the finite
number of rows of the coefficients of the g;. Thus (vi) implies (iii) which trivially
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implies (i) and (iii). Thus going around once more using right notions instead of left
ones we have the equivalence of (i)—(vi).

Finally if (iii) holds than certainly f is left recursive. Inversely, if f is left recursive
and it is in 7N, then by Theorem 6.25 its finite degree parts are in TN and of finite
Hankel rank and hence the left recursiveness says that the Hankel rank of f is finite,
proving (iii). Similarly, (viii) is equivalent to (iii). This concludes the proof of Theorem
6.32.

Corresponding to Theorem 6.32 there is a Kleene—Schiitzenberger type theorem as
follows.

6.34. Theorem. Let N = H].EJ AX; be the dual of a free module over the Noetherian
integral domain A . Then

TNyat = TNreal = TNrepr- (6.35)

Proof. The rational power series in TN (or A((W)) for that matter) are the ones that
can be obtained from 7N by sums, scalar multiples, products, and inversions. They are
all in TN, . This is seen as follows. If f € TN, then it is of finite Hankel rank (by
Theorem 6.25) and hence realizable by Theorem 6.32. If f and g are both realizable by,
say, (p,b,c) and (p’,b’,c") then the scalar product af is realized by (p, b, ac), the sum
is realized by (p @ o, ( lj’,) .(¢,¢')) and the product is realized by (p® p',b @b, c@ ')
where the tensor product of an m x n matrix M and an m’ x n’ matrix M’ is the
mm’ x nn' matrix M @ M’ whose entry at ((i,i'),(/,j")) is m; jmj, ;. Finally, let f be
invertible with inverse g. We can as well assume that the constant term of f (and g)
is 1. Then in [18,19], there is a construction that realizes g in one dimension more
than a realization of f. That can be adapted to the present case. Another way to see
that the inverse of a realizable element of 4((W)) is realizable is as follows. Let H(f)
be the Hankel matrix of f and define the lower triangular W x W matrix R(f) with
1’s on the main diagonal by

0 if o is not a suffix of w,

R(fIw,a = o ] ) (6.36)
f(p) if ais a suffix of w,with f§ determined by w = fo.

Further, let H(g) be the Hankel matrix of g, the inverse of f, and define the upper
triangular matrix Q(g) with ones on the main diagonal by
0 if f is not a prefix of o',
Qhpor = { g(y) if B is a prefix of w'with y determined by fy = o' (037)
Then

RUOH(G) + H(IOGDowr = > R VorsH (@sor + > H(ou Q@i

= > f(BeGe) with fy=ow

f a prefix of w
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+ > flepy(y) with fy=a

7 a suffix of o’

Z f(a)g(e')  with ao’ = wae’

o a prefix of ww’

1 ifo=w =[]
0 if lg(ww') =1,

because ¢ is the inverse of f. This even works if the coefficients of f and g do not
commute. And thus, because R(f) and Q(g) are invertible, the rank of the Hankel
matrix of f and its inverse g differ at most by one. Thus, by Theorem 6.32, if f is
realizable and invertible so is it inverse g. This shows that TNy C TNyeql.

To prove the reverse inclusion first consider an n X n matrix S with entries from
A{(W)) with zero constant terms. Then the infinite sum

L+S+8+8+-

is well defined and equal to the inverse (1, —S )~!. If the entries of S were commuting,
of course, the entries of (I, —S)~' would be rational functions in the entries of S. It
is a fundamental insight of Schiitzenberger [18] that this is still true if the entries of
S do not necessarily commute. This can be seen as follows. If n =1 there is nothing
to prove. If n =2 the inverse

of
l—s11 —sn
( =521 1—522>
is given by
up = (1 —s11 —s12(1 —s22) 's12) 7",
up = (1= s11 = s12(1 = 522) 's21) 5121 = 522) 7" = uppsia(1 — s0) 7"
up = (1 — s —sn(1 —s11) " 's12) 7",

upr = (1 — 520 —s21(1 — 511) " s12) s (1 —s11) 7" = wpsor (1 —s11) 7"

These formulas still work if sy, is an (n — 1) x (n — 1) matrix, s isa 1 x (n — 1)
matrix (= row vector), and s;; is an (n — 1) x 1 matrix (= column vector), all with
constant terms equal to zero. This proves the statement (with induction on n). (NB:
This treatment is a bit different from the one in [18], which uses quasi-inverses instead
and anyway I could not make the formulas in [18] work out right.)
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Now if f is realized by (p,b,c), define

S=>" p(Xi)Xi. (6.38)
k

Then
f=cl,—8)"'b (6.39)

proving that f is rational. This finishes the proof of Theorem 6.34.

Note that formula (6.39) is almost identical with the formula for the transfer matrix
of a linear dynamical input—output system (which corresponds to the case of power
series in a single variable).

There should be a third Kleene—Schiitzenberger-type theorem, namely one that de-
scribes the rational closure of the subalgebra A{((W)),; of noncommutative power series
in an infinite set of indeterminates of bounded degree. Quite likely this is the module
of elements of A((W)) that are recursive in the sense of Section 4 (see Definition 4.3).

7. Polynomial recursiveness

Simply polynomial recursiveness has already been defined in a previous section (for-
mulas (4.1) and (4.2)). A sum of two simply polynomially recursive power series need
not be simply polynomially recursive, so define a power series to be polynomially re-
cursive if it is a finite sum of simply polynomially recursive power series. Such a
power series is rational. Indeed, formula (4.1) says that = (1 — Zle X)) N0+
S14 -+ f™), where m is some fixed number larger or equal to max{lg(4;)}. Thus
f 1is rational and by the appropriate Kleene—Schiitzenberger theorem it is realizable
and thus left and right recursive. (I know of no way to see this directly, just as
there seems to be no simple direct way to translate recursiveness of Schiitzenberger
type into rationality.) Thus f is representative and there is a formula (see 4.24
above)

f@B)=_g(h(B). g €Lf. heRSf (7.1)
i=1

such that the g;,h; are representative and recursive. It is easy to see that the Rpf
(resp. Lpf) are still left (resp. right) simply polynomially recursive. The matter of
right polynomial recursiveness for the right ‘translates” R f is more complicated. Be-
cause Rg(R,f)=R,sf it suffices to examine the matter in the case f has length one.
So take the case Ryijf. As an example, consider the right recursive power series in
three variables, with starting term 1, and recursion monomials X3, XX7, so that

1= Z Xg, -+ Xp, (7.2)
pie{[2,11,131}
> lg(pi)=n
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and

RufY'= Y. Xp XX (7.3)
pie{[2.11.31}
> lg(Bi)=n—1

This is certainly still right recursive in some sense; otherwise a nice simple formula
like (7.3) could not be written. But the recursion now involves an infinite number
of starting terms and an infinite number of recursion monomials, viz. starting terms
X{X;, j=0,1,2,..., and recursion monomials X;XjX,, j=0,1,2,... . And both the
starting terms and the recursion monomials, and the corresponding coefficients have
themselves a recursive structure.

To illustrate things here is Ry / up to and including the terms of degree 6.

RS =X + XX + X0 X1 X0 + X3X0 + X3 X0X1X, + XX\ XGX, + X5X,
XXX + XXX + GXoX XX + 6X XX + X5 X
+X3X0X1 00X X0 + XX GX0X X + X5 X0X X0 + XX X0X XX,
+XPX0X XX + XX X2 + XX XG5X + X3 X 4+ .

This type of ‘infinite recursive recursiveness’ seems to be getting somewhat close to
the right notion of recursiveness as discussed in the previous sections. The reason for
the interest in some polynomial versions is that those would make sense for general
tensor algebras 7'M with M not necessarily torsion free. In [10, p. 196] there is an
attempt to define such a notion. However, the condition as stated there is empty as is
easily seen by introducing superfluous extra terms like (f +¢g)®h— fR@h—g®h in
the tensor sums (or much more complicated zero terms in the case of the presence of
torsion).

Much remains to be examined as regards polynomial types of recursiveness.

Another idea to get at a suitable notion of recursiveness in the presence of torsion
could be as follows. For an arbitrary 4-module M let MM be a covering with M
free. Then define f € TM to be recursive if there is a recursive lift in 7M. This also
has drawbacks (so far). A few words on this are in the final section.

8. The main theorem of coalgebras over rings

The (so-called) main (or fundamental) theorem for coalgebras over a field says the
following. If C is a coalgebra with counit over a field K and ¢ € C is an element of
C, then there is a finite dimensional subcoalgebra C’ of C that contains c. See e.g.
[22, Section 2.2, p. 45ff]. A short and elegant proof of this (of which I do not know
the provenance) is in [5, p. 25].
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Using Lemma 8.5 these arguments can be extended to the case of principal ideal
domains. However, these arguments are not strong enough to establish the main theorem
for the cofree algebras over free modules and their duals over general Noetherian
integral domains (see Theorem 8.10).

There is a natural analogous property that can be considered for coalgebras with
counit over an arbitrary ring 4 (commutative and with unit element). Such a coalgebra
C satisfies the ‘main theorem property’ if for every element ¢ € C there is a finitely
generated (as a module) subcoalgebra over 4 containing the element c.

This is not always true as the following example shows [12].

8.1. Example. Consider the Abelian group
C=17X, & (@ Z/(n)X,,) =ZX S L)X, B LI & - - (8.2)
n=2

and consider the comultiplication
WXy~ 10X, +X, @1 +nX, X, n=2 Xi—Xi®X, 1=X1 (83)

and the counit which is projection onto the first factor. This is a coassociative comul-
tiplication (because Z/(n*) ® Z/(n*) ® Z/(n) ~ Z/(n)) and the counit does what it
is supposed to do. It is easy to show, because of the term nX,» ® X,. in (8.3), that
there are no subgroups of C other than subgroups of the first summand that are sta-
ble under the comultiplication. Thus, this coalgebra does not have the main theorem

property.
On the other hand, there is the following theorem.

8.4. Theorem. Let C be a coalgebra with counit over a principal ideal domain A
whose underlying module is a free A-module. Then C has the main theorem

property.
The (present) proof of this requires a lemma.

8.5. Lemma. Let A be a principal ideal domain, and let M = A’ be a free module
over A. Let V be a finite dimensional subvector space of W =M QK , where K is the
quotient field of A. Then

MOMYNVV)=(MNV)2MNV). (8.6)

Proof. Take a basis of V' whose elements are in M. These basis elements,
written as column vectors form an oo X r matrix (more precisely an [ X r
matrix) with entries from 4. A slight extension of the standard arguments concern-
ing Smith canonical form (see e.g. [14, p. 337ff]), shows that there is another
basis of M = A’ such that suitable linear combinations of the chosen basis of V
form a basis that takes the form (as a matrix whose columns are the basis
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elements)
d 0 0 ... 0
0 dy O 0
0
dr—l
0 d,
0 O 0

It follows that the columns of the matrix

1 0 0 ... O

o 1 o0 ... 0
0

1 0

0 1

0 0 ... 0 O

form (in this new basis of M) a basis of M N V. The statement of the lemma now
follows immediately.

8.7. Example. Formula (8.6) is most definitely not true in general. Consider the ring
A of all integer linear combinations of 1 and v/—35 inside the complex numbers, 4 =
Z + Z+/—5 and let M be the free module M = 4°. Let K be the quotient field of 4
and let V' be the one-dimensional vector space generated by the vector (2,1 — /—5)’.
Then, because there is no nonunit element u of 4 such that u='(2,1 — +/=5) is in
M, MNV =A4(2,1 —+/=5), and written in terms of matrices
4 2-2v/-5

. (8.8)
2-2V/-5 —4-— 2\f5>

On the other hand, the element of K? ® K2 represented by the matrix
2 1—v-=5
1—+v=5 2—+v-5

isin (M @M)N(V®V) and it is not in the set (8.8).

(MﬂV)@(MﬂV)zA(
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The reason that things fail here is that the ring 4 is not an UFD. For V' one-dimensional
and M a free module over an UFD, formula (8.7) holds. Besides the case of PIDs
(Lemma 8.5) this is the only general case that I know of where formula (8.7) is true.
The general question of when formula (8.7) holds is clearly a matter that needs more
investigation.

Proof of Theorem 8.4. Let ¢ be an element of C. Then, by the main theorem of coal-
gebras over fields (of which another new proof is given below; see Corollary 8.11),
there is a finite dimensional subvector space V' of C®K, K the quotient field of A4, that
contains ¢ and is a subcoalgebra of C®K. Let C’=VNC (in C®K). Then by Lemma
8.5 the submodule C’ is stable under the comultiplication, and hence does the job.

There is a (large) other class of coalgebras for which the ‘main theorem property’
of coalgebras holds.

Let M be a module over a ring A. The module M is called reflexive if the canonical
morphism ¢ : M — M**, @(x)(f)= f(x), is an isomorphism. This looks, at first sight,
an unusual property. For instance if 4 is a field K and M is an infinite dimensional
vector space over K, it is never true. But, for instance if A=Z and M is a free Abelian
group with infinite but countable basis, it is true.

Quite generally, it is a fairly straightforward matter to prove the following theorem,

[4].

8.9. Theorem. Let C be a coalgebra over a ring A whose underlying module is re-
flexive. Then the coalgebra C has the main theorem property.

The proof of this makes serious use of duality (like the original proof of the main
theorem over fields in [22]).

The matter of when a module over a ring 4 is reflexive is a delicate one involving
higher set theoretic notions. In the case of 4 = Z the answer is as follows. Let M be
a free Abelian group. Then M is reflexive if and only if the cardinality of (a basis of)
M is non-w-measurable. (A set is w-measurable if and only if it has a nonprincipal
ultrafilter & such that for all countable sets of elements D;, i€ N, D; € 2, ﬂ,. D;e9.
It is easy to see that N is non-w-measurable.) The reflexivity of free Abelian groups
with countable basis was established by Specker in 1950, [21]. For results on higher
cardinals see [1], and for a general survey of these matters see [7, Chapter 3] or [6].

An A-module M is slender iff for every morphism [,y 4 LM, Ale;) =0 for all
but finitely many 7. Here the e; are the dual ‘basis’ to the standard basis of @,y 4.
A ring A is slender if and only if it is slender as an 4-module. It turns out that a PID
is slender iff 4 is not a field or a discrete complete valuation ring. So from the point
of view of reflexivity properties of modules over a ring, fields and complete discrete
valuation rings are exactly the wrong thing to look at.

It is a general (ununderstood) phenomenon that the universal objects of some kind
tend to be rather nicer than one has any reason to expect. A manifestation of this is
the following theorem.
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8.10. Theorem. The cofree coalgebras TM e, and TM; . for M a free module over a

repr
Noetherian integral domain A have the main theorem property.

Proof. Let f be representative. Consider Lg(Rp /). This is a finitely generated sub-
module. Also Rp(Lpf)=Lp(Rpf). Let LRy f be the pure closure of LpRp [ (see 4.24).
Then LRy f is finitely generated (because it is finite rank, see 4.28) and

W(LRs ) C LRy f @ LRy f
proving the theorem for 7M. Alternatively, use Theorem 6.9 and the realizability

property. If p is a representation involved in realizing f, and has dimension #n, then
the n? elements of TMyepr = TMeal defined by the matrix entries p;, jof p

oo
iy = (s SO p(X)X; (8.11)
k=0 JjeJ

*

form a finite rank subcoalgebra that contains f. For the case TMy, use Theorem 6.32

instead.

8.12. Corollary (Main theorem of coalgebras over a field). Let C be a coalgebra over
a field and ¢ an element of C. Then there is a finite dimensional subcoalgebra of C
containing c.

Proof. Consider the free coalgebra TCp, over the module C. The identity morphism

C % C induces an imbedding of coalgebras C — TCp,. There is a finite dimensional
subcoalgebra C” of T Crepr that contains ¢. Then CN C’ is a finite dimensional subcoal-
gebra of C containing ¢ (because over a field the intersection of two coalgebras is a
coalgebra; this is not necessarily true over rings).

9. The ‘zero dual’ coalgebras of algebras over a ring

For algebras R over a field K the ‘zero dual’ coalgebra is defined as
R’ ={R L4 Ker(f) contains an ideal of finite codimension}. 9.1)

This vector space has a natural coalgebra structure dual to the algebra structure of R,
see e.g. [22]. It turns out to be exactly the right duality notion, a fact that has very
much to do with the main theorem property of coalgebras over fields.

For algebras R over a ring A (where 4 is commutative with unit element) there is
an obvious analogue. Define

R’ ={R L4 Ker(f') contains an ideal a of finite corank}, (9.2)

where ‘finite corank’ means that R/a is finitely generated (as a module). Now define
a comultiplication on R° by requiring

w(f ) a @ b)= f(ab). (9.3)
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Then u(f), for £ €R° lands in RO @R’ C R* ® R* C (R®R)* provided that the tensor
square of the inclusion R® C R* is injective.

(This is a potentially tricky point because the tensor square of an inclusion is not
necessarily injective, even in the torsion free case, as the following well-known example
shows. Let A=K[X,Y], E=A4, Ey=(X,Y) C E the ideal generated by X and Y. Then
the tensor square of the inclusion takes the nonzero element X ® Y — Y @ X € Ey ® Ey
to zero. In the case considered below, where R is the tensor algebra over a free finite
rank module over 4 (i.e. a free finitely generated A-algebra) there is no problem. One
thing that calls for investigation in this context is when (for arbitrary A-algebras R)
the modules R* and R° are flat).

9.4. Theorem. Let M be a free finitely generated module over a Noetherian integral
domain A. Let R=TM be the free A-algebra over M. Then
= (TM)O r(m* Drepr (9.5)

the free coalgebra over M*.

(As it should be.)

Proof. Let € R%. Then u(f) is a finite sum Y g; ® h; with g;,h; € R® C R*. And so,
using the characterization (9.3),

u(f)Na®b)= f(ab) ="y gi(a)h(b).
i=1

Thus f is representative. On the other hand, let f* be representative. Then by the main
theorem property of T (M*)wpr (see Theorem 8.10) there is a finitely generated sub-
coalgebra C of T(M*)wepr containing f. Define a={a € TM: g(a)=0 for all ge C}.
Then, a is an ideal of finite corank (because C is finitely generated as a module), and
a C Ker(f) so that f € R,

10. Representations of coalgebras

Let 4 be a Noetherian integral domain. Consider a (finite dimensional) representation
p of the monoid W, i.e. a collection of nxn matrices {p(X;): j€J}. Let N= HJEJ
Now define the subcoalgebra

Mnxn(p)c TNteal- (101)

coalg

As the one spanned by the n? entries of p as in (8.11).
Let

My es)) = ze,k @ e (102
be the standard matrix coalgebra over 4. There is a natural surjective coalgebra homo-
morphism

: MU — MES(p). ey piy. (103)

coalg coalg
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Now let C be a coalgebra over a Noetherian integral domain A4 that is (as a module)
isomorphic to a submodule of a finite rank free module N. By the universality prop-
erty of TNy, the inclusion C C N gives rise to an associated coalgebra morphism

C Y, TNieq that is of course injective. Now let ¢1,..., ¢, be a finite set of generators of
C (as a module over 4). And let p;, be a representation that gives a realization of y(c;).
Let p be the direct sum of the representations p;. Then the coalgebra (10.1) contains all
the Y(c;) so that C embeds as a coalgebra in one of the special coalgebras (10.1). So
as a final application of the cofree algebra constructions we get a faithful representation
theorem.

10.4. Theorem. Let C be a coalgebra over a Noetherian integral domain that is (as
a module) isomorphic to a submodule of a finite rank free module. For instance, C
can be a finite rank projective module. Then C is isomorphic to a subcoalgebra of a
matrix-like coalgebra M""(p).

coalg

5 T nxn nxn
These coalgebras are called matrix like because M . — M o(p), eij — pij (see

(8.11)) is a surjective (but not necessarily injective) coalgebra morphism.

11. Coda: lifting coalgebras to coalgebras with free underlying module

In this last section I want to try to draw attention to the following problem that I
think is of some importance.

Let C be a coalgebra over a ring A. Does there exist a coalgebra C whose underlying
module is free together with a surjective coalgebra morphism C — C? If this were
true in general, then the suggestion made at the end of Section 7 would be perfectly
workable. That is, one could define a tensor power series f in 7'M for an arbitrary
module M to be representative (resp. recurswe) if and only if there is a representatlve
(resp. recursive) tensor power series f in 7'(M) that maps into f under T'n where M
is a free module together with a surjective 4-module morphism M = M. Eventually,
one may also want to lift the ring 4 to an integral domain.

Unfortunately, the answer to this lifting question is not an unequivocal yes. Consider
the Example 8.1 of a coalgebra for which the ‘main theorem property’ does not hold.
If this one were liftable to a coalgebra (over Z) with free underlying Abelian group,
then that lift would satisfy the ‘main theorem property’ (by Theorem 8.4) and hence
so would the coalgebra of Example 8.1. Thus that coalgebra is not liftable.

I am inclined to think that for coalgebras over 4 whose underlying module is finitely
generated the answer to the lifting question is yes.

The results of Section 10 seem to indicate that this may be true.
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that I take a good look at the work of the French school on noncommutative power
series.

Appendix A. The non-Noetherian case

In the case the ring 4 is not anymore Noetherian and not even necessarily a domain,
a number of the main results of the paper survive in some form. The formulations are
perhaps a little less elegant and some equivalences do not survive; the main victim
is the idea of finite Hankel rank; another is that representative and realizable need no
longer coincide. Here is a short account.

A.1. Theorem. Consider a (finite or infinite) set of indeterminates {X;: jeJ} and
let M be one of the modules M = @®,., AX; or M =[], AX;. Let feTM be
a corresponding noncommutative power series. Consider the following proper-
ties:

(1) The module R is finitely generated.
(it) The module Lgf is finitely generated.
(iii) f is left Schiitzenberger recursive.
(iv) f is right Schiitzenberger recursive.
(v) [ is left recursive.

(vi) f is right recursive.
(vii) f is realizable.
(viil) f is representative.

Then the following implications hold

(a) (i) < (iii) = (v) = (vii) = (viii).
(b) (ii) & (iv) = (vi) = (vii) = (viii).

If the module M is free then also

(c) (v) = (iii).
(d) (vi) = (iv).

If the set of indeterminates is finite (so that in particular M is free), and A is an
integral domain, then also

(e) (vii) = (1), (ii)

so that in this case (1)—(vii) are all equivalent.

Most of the proofs are rather similar to the ones in the main body of the paper. The
exception is (e). So suppose that the set of indeterminates is finite and that f is realiz-
able, say, by (p,b,c). Because there are only finitely many indeterminates involved, the
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p(X;),b,c involve only a finite number of entries from A. Thus, f is actually defined
over a subring of 4 generated by a finite number of elements (as a ring), and that
subring is hence Noetherian.

Below are a number of examples that show that in the non-Noetherian case nothing
more than Theorem A.l can be expected.

For instance, the argument that representative implies realizable, or, e.g. that Rp f
is finitely generated, breaks down. Representative just gives that there are a finite
number of g; in TM such that each element of Rzf is a linear combination of these
elements. It does not say that there are such g in Rp f itself. This can actually happen.
Consider the ring over a field K of polynomials in infinitely many commuting variables
A=Kly;: jeJ]. Let

[=Y X (A2)

Jjes
Then
yp if lg(B) =1,
Ref =30 if lg(p) > 1,
St p=11]

and thus all the Rgf are A-linear combinations of two elements from TM but Rpf
is not finitely generated. The power series (A.2) is representative (because u(f) =
1® f+ f®1 for this ) and also realizable, but it does not satisfy any of (i)—(iv).
But it does satisfy (v) and (vi).
Here is an example that shows that realizability does not necessarily imply either left
or right recursiveness and hence certainly not left or right Schiitzenberger recursiveness.
Let A be as in example (A.2), and define f by

[=Y" vk (A3)

1S/

where, as usual, ¥ is the free monoid on the index set J, and y; j=X; j=1. This f
is realizable by ¢ =b =1, p(X;) = y; and hence representative; indeed u(f)=f ® f.
Suppose it were left recursive, then, there is a finite number of words oy, %,..., %,
such that all rows of the Hankel matrix are linear combinations of the rows indexed
by these words. Take an index ;j that does not occur in any of the o’s; i.e.
m
JEJo= U varsupp(o; ). (A4)

i=1

The first entry in the row indexed by [/] is y;; and so y; would be in the ideal
generated by the y;, i€Jy, which is not the case by (A.4).

Finally, here is an example of a representative tensor power series in one variable that
is not realizable. Take three sets of commuting indeterminates x;, y;,z;, i =0,1,2,... .
Let 4 be the ring of polynomials over a field K in these indeterminates subject to
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the relations y;z; = x;;;, Vi,j (so that the x,, are really superfluous). 4 is an integral
domain. !
Let f,g,h be the power series in one variable

f:ime’”, g:ime’”, h:izm)(m. (A.5)
m=0 m=0 m=0

Then f is representative. Indeed u(f) =g ® h. The rows of the Hankel matrix of
f indexed by the monomial X" (i.e. the word [1,1,...,1]) is (X,,Xpe1,X042,-..). SO
——

n
if Rpf were to be finitely generated, there is an n such that row (n 4 1) is linearly
dependent on rows 0, 1,2,...,n. Taking a look at the first entries means that there must
be ay,ay,...,a, € A such that

apxo +aixy + -+ apX, = Xpyq1- (A.6)

Eliminating the x,, the ring 4 is the ring of polynomials K[y;,z;: 7, j € NU{0}] modulo
the ideal generated by the y;z; — yxz; for i+ j=/k+ /. These elements are homogeneous
of degree 2, so there is a well-defined notion of degree on 4. So (A.6) can only hold
if there are constants a € K such that

agxg + afxy + - 4 dyx, =Xy (A7)

Now consider the ring of polynomials B=K[t]. There are a good many ring homomor-
phisms from 4 into B. For instance, the homomorphism ¢ : y; — X, z; — t*. Applying
this to the relation (A.7) would give that the polynomial

ad +adt 4+l — !

is zero (which it is not). Thus, Rz f is not finitely generated. Now suppose that f
were realizable. Then there is a single matrix p(X) with entries from 4 such that

f =l - XpX))~'b

which is of the form det(/ — Xp(X))~' (some polynomial in the single variable X),
and which is therefore a recursive power series in a single variable and would have
Rp f finitely generated. Thus (A.7) is not realizable.

! There are probably better ways to see this, but here is one. First show that yo is not a zero divisor.
Then in the localized ring z; = z9y, ! vi, and there are the relations zoy;y; = zoyoyi+;. Using these, every
monomial in the localized ring can be written in the form zjyjy:, € NU {0}, s€Z, t €N or z5y;. The
product of two monomials of the first type is zj' " ) 271y, and the other products are obvious. It is
now easy to find an ordering on these monomials (e.g. lexicographic ordering) such that, the top term of

product of two sums of such monomials is the product of the two top terms of these sums.
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Appendix B. The strongly representative completion of the tensor coalgebra and the
cofree coalgebra over a module

Let M be module over 4. Consider submodules 7 C 7M such that
TMcTCTM and wWT)CT®T. (B.1)

Then the tensor square of the injection 7 C T'M is injective (Lemma 3.37), and thus
T is a coalgebra (with the comultiplication u of (2.14) restricted to 7 and with the
canonical projection onto the zeroth component 7M — A restricted to T as counit. An
example of such a submodule is TM C 7M. If T and T’ are two submodules that
satisfy (B.1), then so does the sum 7 4 T’. Thus there is a largest such submodule that
contains all the others. This largest such submodule is denoted 7M., and is called
the strongly representative completion of 7M. From what has been said just now it
is evident that it has a natural coalgebra structure. Its elements are called strongly
representative tensor power series.

Obviously, TM C TMepr, but TMpr is always larger (unless M =0). For instance,
if 0 # x € M, the non-terminating tensor power series

(Lx,x@x,xQx®x,...) (B.2)

is in TMpr. Indeed, using the notations of (2.15), (2.16)

1 1 x  x®?
X X x®2 x®3
o [ @A xx® =1 g ey e | (B.3)

(The element (B.2) is group like.)
To check for a given element f € TM whether it is in 7M., potentially involves
an infinity of conditions. Specifically, it means that for every finite sequence iy, i, ..., i

of 1’s and 2’s there are a finite number of tensor power series g, ,, i..j.j»...;; sSuch that
u(f)= E g1, @ g2y,
:u(gil,iZ;-»-,ik;jl»ij-xjk) = E Givizoeii it rfid & Git izt 21 20 (B4)

J

B.5. Theorem. Let 1 : TMyepy — M be the module morphism of projection onto the
first factor. Then m: TMgeor — M is the cofree coalgebra with counit over M.

Proof. Exactly as in the proof of Theorem 3.14 it follows that the sought for morphism
¢ associated to ¢ : C — M must be given by the formula

@(c) = (no(c) = &(0), p(1u(€)) = @), 2 (2(€) )., 9" (a(€))s-.). (B.6)
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It remains to show that the tensor power series (B.6) is strongly representative. To see
this, let

we) = ZCLJ‘ ® €2,
j

Then, by the coassociativity of p and the counit property of g =¢
> wler) @ piea ) = esi(c)
J

and it follows that
u(p(e)) =3 plery) ® pleay)
J

(where the left-hand side yu is the one of TMgey) so that u(p(c)) is a finite sum of
tensor products of power series of the same type, thus proving that p(c) is strongly
representative (and reconfirming that p is a morphism of coalgebras). This finishes the
proof of the theorem.

B.7. Corollary. If A is a Noetherian integral domain and M is a free module or the
linear dual of a free module, then TMepr = TMyepy.
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