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Abstract

For coalgebras over �elds, there is a well-known construction which gives the cofree coal-
gebra over a vector space as a certain completion of the tensor coalgebra. In the case of a
one-dimensional vector space this is the coalgebra of recursive sequences. In this paper, it is
shown that similar ideas work in the multivariable case over rings (instead of �elds). In par-
ticular, this paper contains a notion of recursiveness that exactly �ts. For the case of a �nite
number of noncommuting variables over a �eld, it is the same as Sch�utzenberger recognizability.
There are applications to the question of the main theorem of coalgebras for coalgebras over
rings. As should be the case, the cofree coalgebra over a �nitely generated free module over
a ring is the ‘zero dual’ of the free algebra over that module. A �nal application is a faithful
representation theorem for coalgebras, that is representing a coalgebra as a subcoalgebra of a
matrix-like coalgebra.
c© 2003 Elsevier B.V. All rights reserved.

MSC: 16W30

1. Introduction

Let K be a �eld and V a vector space over K . Let TV =K ⊕ V ⊕ V⊕2 ⊕ V⊕3 ⊕ : : :
be the tensor coalgebra over V . It is relatively well known that a certain completion of
TV which could be called the representative completion, TVrepr, is the cofree coalgebra
over V in the categories of K-modules and coassociative K-coalgebras with counit.
That means that TVrepr comes with a natural projection TVrepr

�→V which satis�es the
following universal property. For any K-coalgebra C with counit and map of k-vector
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spaces C
’→V , there is a unique morphism of K-coalgebras with counit C

’̃→TVrepr such
that � ◦ ’̃ = ’. This construction of the cofree coalgebra over a vector space is from
[3], and has been around since a preprint version of that paper circulated in 1974. It
should be called, I think, the Block–Leroux theorem.
It is the purpose of this paper to show that these constructions still work in the

case of free modules over an arbitrary Noetherian integral domain and their duals, to
explain in this more general setting the role of recursiveness (which plays such a nice
role in the case of dimk(V ) = 1, see [16]) and to point out an error in [10]. There are
also some results and open problems for the case of the coassociative cofree coalgebra
over not necessarily free modules.
As applications, there are a new proof of the (so-called) main theorem of coalgebras

over a �eld, a proof of the main theorem property for coalgebras over a principal ideal
domain, a proof of the main theorem property for various kinds of cofree coalgebras
over Noetherian integral domains, the theorem that, in appropriate cases, the cofree
coalgebra over a ring is the ‘zero dual’ of the free algebra over the dual module, and
�nally, results on (faithful) representations of coalgebras, i.e. on (injective) coalgebra
homomorphisms into matrix-like coalgebras. This is not the dual of the notion of a
representation of an algebra; that dual notion is a corepresentation of a coalgebra, also
called a comodule. As far as I know, these are among the �rst results on representations
of coalgebras.
Probably the main contribution of this paper is the de�nition/recognition of an appro-

priate notion of recursiveness in the multivariable case and the proof that recursiveness
in this sense is the same as representativeness. For the case of a �nitely generated
vector space over a �eld, this notion of recursiveness is the same as rationality or
recognizability in the sense of Sch�utzenberger, which in turn is the same as realiz-
ability in the sense of system and control theory or automata theory. This notion of
recursiveness is more general than the obvious one even in the case of commutative
power series in more than one variable.
There also result two di�erent Kleene–Sch�utzenberger theorems for noncommuting

power series in in�nitely many variables over a Noetherian integral domain generalizing
the original result for �nitely many indeterminates.

2. The tensor coalgebra over a module, the tensor algebra, and tensor power series

Let A be a commutative ring with unit element and M a module over A. The tensor
powers of M (over A) are denoted

T 0M = A; T 1A=M; T 2M =M ⊗M =M⊗2;

: : : ; T nM =M⊗n; : : : (2.1)

Consider the direct sum, the module of tensor polynomials,

TM =
∞⊕
n=0

TnM: (2.2)
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The elements of T sM =M⊗s are called (homogeneous) tensors of degree s. There are
natural isomorphisms for all n∈{0; 1; 2; 3; : : :}=N ∪ {0}

 k; l :TnM → TkM ⊗ T lM; k; l∈N ∪ {0}; k + l= n (2.3)

and using these, de�ne a comultiplication on TM by assigning to a (homogeneous)
tensor t ∈TnM , the element

�(t) =
n∑

k=0

 k;n−k(t)∈
n⊕

k=0

TkM ⊗ Tn−kM ⊂ TM ⊗ TM (2.4)

and extending linearly. Together with the natural projection on the zeroth factor of
(2.2), the tensors of degree zero,

� :TM → A (2.5)

as a counit, this de�nes a coalgebra structure (over A) on TM , the tensor coalgebra.
There is, of course, also an algebra structure on TM

m :TM ⊗ TM → TM; e :A → TM (2.6)

determined by assigning to t ∈TkM and s∈T lM the element m(t; s)= −1
k; l (t⊗s)∈Tk+lM

and taking for e the natural inclusion A ⊂ TM of A as the zeroth summand of TM .
This is the tensor algebra of M over A. (However, (2.4), (2.5), (2.6) do not combine
to de�ne a bialgebra structure.)
We also consider the completion

T̂M =
∞∏
n=0

TnM (2.7)

of TM with product and unit element determined by (2.6). This is the algebra of tensor
power series of M over A, or the module of tensor power series when the multiplication
is not being considered.
Let

M∗ =ModA(M;A) and 〈 ; 〉 :M ×M∗ → A (2.8)

be the linear dual of M together with the canonical pairing 〈x; ’〉=’(x); x∈M; ’∈M∗.
The elements of T̂M de�ne functionals on T (M∗)

〈f;’〉=
∑

〈fi; ’i〉; (2.9)

where the fi ∈T iM and ’j ∈T j(M∗) are the homogeneous components of f and ’,
and the pairings are de�ned by

T jM×T j(M∗)→A; 〈x1⊗ · · · ⊗xj; y1⊗ · · · ⊗yj〉= 〈x1; y1〉 · · · 〈xj; yj〉 (2.10)

(which is well de�ned). The sum in (2.9) is well de�ned because only �nitely many
of the homogeneous components of ’ are nonzero. In case M is free (but also in other
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suitable cases) the functional de�ned by an element of T̂M uniquely determines that
element.
If M is free and �nitely generated, say with basis X1; : : : ; Xm, the tensor power

series algebra naturally identi�es with the algebra of noncommutative power series in
the X1; : : : ; Xm over A and T (M∗) is the algebra with as underlying module the free
module with as basis all words �= [a1; : : : ; an] over the alphabet {1; : : : ; m} (including
the empty word) and concatenation of words as product. For a word �= [a1; : : : ; an]
write Xa=Xa1 ; : : : Xan and X[ ] = 1. Then, for an element

f∈ T̂M = A〈〈X1; : : : ; Xm〉〉; f =
∑
�

c�X� (2.11)

and a basis element � = [b1; : : : ; br]∈T (M∗)

〈f; �〉= c�: (2.12)

Finally, consider the completed tensor product

T̂M ⊗̂T̂M =
∏
i; j

T iM ⊗ T jM: (2.13)

The coassociative comultiplication � de�ned by (2.4) uniquely extends to a morphism

� : T̂M → T̂M ⊗̂T̂M; (2.14)

but this does not de�ne a coalgebra structure on T̂M because for most tensor power
series f; �(f) does not lie in T̂M ⊗ T̂M (but only in T̂M ⊗̂T̂M).
The bihomogeneous components of T̂M ⊗̂T̂M are indexed by pairs of nonnegative

integers, and thus an element of T̂M ⊗̂T̂M is conveniently represented as a bi-in�nite
matrix:

a=




a00 a01 a02 : : :

a10 a11 a12 : : :

a20 a21 a22 : : :

...
...

...


 ; aij ∈T iM ⊗ T jM ⊂ T̂M ⊗̂T̂M: (2.15)

With this notation, the element �(f)∈ T̂M ⊗̂T̂M; f = (f0; f1; f2; : : :), fi ∈T iM is
equal to the Hankel-like matrix

�(f) =




f0 f1 f2 · · ·
f1 f2 f3 · · ·
f2 f3 f4 · · ·
...

...
...


 : (2.16)
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3. Representative tensor power series and cofree coalgebras over free modules

A tensor power series f∈ T̂M is called representative if for some �nite k there are
tensor power series g1; : : : ; gk ; h1; : : : ; hk in T̂M such that

�(f) =
k∑

i=1

gi ⊗ hi: (3.1)

Written out in the in�nite matrix notation of Section 2 this becomes


g01 g02 · · · g0k

g11 g21 · · · g1k

g21 g22 · · · g2k
...

... · · · ...


⊗




h01 h11 h21 · · ·
h02 h12 h22 · · ·
...

...
...

...

h0k h1k h2k · · ·


=




f0 f1 f2 · · ·
f1 f2 f3 · · ·
f2 f3 f4 · · ·
...

...
...


 (3.2)

(where fi is the degree i component of f, etc.).
If the module M is free, we can interpret an element f∈ T̂M as a functional on

T (M∗) and then (3.1) or (3.2) is equivalent to

f(ab) =
k∑

i=1

gi(a)hi(b) for all a; b∈T (M∗): (3.3)

Here on the left ab is the tensor algebra multiplication of a; b∈T (M∗).
The terminology ‘representative’ comes from representation theory. If S is a semi-

group and � : s 
→ A(s) is a �nite dimensional matrix representation of S, then the
matrix entries, seen as functions on S, are representative. Indeed by the de�nition of
the notion of a representation

aij(ss′) =
∑
k

aik(s)akj(s′):

For all b∈T (M∗) and f∈ T̂M de�ne the right translate Rbf of f as the functional

Rbf(a) = f(ab): (3.4)

It is instructive to �gure out to what element of T̂M the functional Rbf corresponds; it
is also somewhat necessary to do this, because in the case that M is not of �nite rank
it is not a priori totally clear that Rbf is a functional that comes from some element
in T̂M . Let {Xj: j∈ J} be a basis of M . Write the element f of T̂M more precisely
as

f =
∞∑
k=0

¡∞∑
lg(�)=k

c�X�; (3.5)

where � = [a1; : : : ; ak ], ai ∈ J , is a word of length k over the alphabet J . Note that
the outer sum in (3.5) can be in�nite but that the inner sums in (3.5) must be �nite
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(as has been indicated by the upper limit ‘¡∞’ in the notation for the inner sum).
In other words, for each length k there are only �nitely many � of length k for which
c� �= 0. An element b∈T (M∗) can be written as a sum:

b=
¡∞∑
k

∑
lg(�)=k

c��: (3.6)

This time the outer sum is �nite (as indicated) but the inner sums may well be in�nite
(if the module M is of in�nite rank). For instance∑

j∈J

[j]

is a perfectly good element of M∗. But for k¿ 2 only certain in�nite sums are actually
elements of (M∗)⊗k . For instance a sum∑

i; j∈J

cij[i; j]

is in (M∗)⊗2 if and only if the matrix of coe�cients

(cij)i; j∈J

has �nite rank (assuming A to be an integral domain so that the notion of rank is well
de�ned). For higher k similar conditions can be formulated (see Theorem 6.25). As
it turns out, this does not matter much and Rbf is well de�ned and a functional that
comes from an element of T̂M for all b of the form (3.6).
Write

f =
∑
k

∑
lg(�)=k

a�X�; b=
r∑

k=0

∑
lg(�)=k

b��; Rbf =
∑
�

c�X�: (3.7)

Then

c� = Rbf(�) = f(�b) =
r∑

k=0

∑
�

a��b�; (3.8)

where �� is the concatenation of the words � and �. Now consider the set

{��: a��b� �= 0}:
For � varying but of a �xed length l and � varying arbitrarily this is a �nite set.
Indeed if lg(�)¿r, then b� = 0. Thus all the �� have length 6 l + r and there are
only �nitely many a� of length 6 l+ r that are di�erent from zero. Thus, �rst of all,
the sum (3.8) is �nite so that c� is well de�ned and, second, for each length l there
are only �nitely many � of that length that are nonzero.
Consider, in particular, the case that b consists of a single word, b= �. Then

R�f =
∑
�

a��X� (3.9)
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and

f = (R�f)X� +
∑
�′

a�′X�′ ; (3.10)

where the sum on the right-hand side of (3.10) is over all words �′ that do not have
� as a tail. (The tails of a word � = [a1; : : : ; an] are the words [ai; ai+1; : : : ; an]; i =
1; 2; : : : ; n + 1; the empty word occurring for i = n + 1.) Thus, R�f is obtained by
dividing f on the right by X� ‘as best as possible’ and a possible suggestive notation
could be R�f = [fX−1

� ] with the square brackets indicating taking the nonnegative
degree part in the ring of noncommutative Laurent series over A in the indeterminates
Xj.
(It is partly for this reason that in some parts of control theory recursive sequences

are often written as power series in an indeterminate t−1.)

3:11: De�nition. A torsion free A-module M over an integral domain is of �nite rank
if the vector space M ⊗A Q(A) over the quotient �eld Q(A) of A is �nite dimensional.

3:12: Theorem. Let M be a free module over a Noetherian integral domain A with
basis {Xj: j∈ J}, and let f∈ T̂M =A〈〈Xj: j∈ J 〉〉 be a noncommutative power series
in the Xj. The following conditions on f are equivalent:

(i) f is representative.
(ii) The A-module Rf = {Rbf: b∈TM∗} is of �nite rank.
(iii) The A-module RBf spanned by the R�f; �∈Word(J ) is of �nite rank.

Moreover, if f is representative �(f) can be written in the form

�(f) =
r∑

i=1

gi ⊗ hi (3.13)

with all the gi; hi representative.

For a free module M over a ring A, let TMrepr ⊂ T̂M be the module of all repre-
sentative tensor power series over A. Then, TMrepr is a coalgebra by 3.13 (with the
comultiplication induced by (2.14). Unless M =0, TMrepr is always strictly larger than
TM (and strictly smaller than T̂M). For instance, for M free of rank 1,

∑∞
i=0 X i is in

TMrepr \ TM .

3:14: Theorem (Generalized Block–Leroux theorem). For a free module M over a
Noetherian integral domain A, the coalgebra of representative tensor power series
TMrepr is the free coalgebra over M .

Proof of (Theorem 3.12). If f is representative, then as functionals (see (3.1), (3.3))

Rbf(a) = f(ab) =
r∑

i=1

gi(a)hi(b) (3.15)
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so that all the Rbf’s are linear combinations of the g1; : : : ; gr . The module RBf is a
submodule of Rf. This takes care of the implications (i) ⇒ (ii) ⇒ (iii). The �nal
implication (iii) ⇒ (i) needs a lemma.

3:16: Lemma. Let RBf be of �nite rank. Then for each k there are only �nitely many
words � of length k for which R�f �= 0.

Of course, the lemma says something nontrivial only in the case that the free module
M is of in�nite rank. This lemma is due to Block and Leroux [3]. The proof given
below is di�erent.

Proof (of Lemma 3.16). Take some total ordering on the in�nite index set J and order
the words X� by length �rst and lexicographic ordering thereafter. For each � for which
R�f �= 0, let �(�) be the �rst term of R�f with nonzero coe�cient. Take a k ∈N.
Suppose there are in�nitely many � of length k for which R�f is nonzero. There are
two possibilities:

(i) There is a natural number m such that there are in�nitely many �’s of length k
for which lg(�(�)) = m.

(ii) There is a sequence of �1; �2; �3; : : : ; lg(�i) = k for all i, such that lg(�(�))→ ∞
as i → ∞.

In the second case the rank of R�f is obviously in�nite. In the �rst case the coe�-
cients in f of the X�(�)X� for these �’s are all nonzero and that gives in�nitely many
di�erent monomials of length m + k in f with nonzero coe�cient contradicting that
f∈ T̂M . This proves the lemma.

3:17: Lemma. If M is a submodule of a module of the form AI =
∏

i∈I A over a
Noetherian integral domain A, and if M has �nite rank, i.e. dimK (M ⊗ K)¡∞,
where K is the quotient �eld of A, then M is �nitely generated.

This will be used below. A di�erent proof is in [20]. To see this result consider the
diagram

M −−−−−−−−−→ AI −−−−−→ An



M ⊗ K −−−−−−−→ KI −−−−−→ Kn

;

where the right-most horizontal arrows are natural projections onto a suitable �nite
subset of the coordinates. Because dimK (M ⊗K)¡∞, there is a �nite n such that the
composed lower morphism is injective. As M is torsion free, the composed morphism
from M along the upper edge and then down on the right is injective and, hence,
the composed morphism of the upper edge is injective. Thus M is isomorphic to a
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submodule of a �nitely generated A-module and hence is �nitely generated because A
is Noetherian.

Proof of Theorem 3.12 (continued). Now let RBf be of �nite rank and let g1; : : : ; gr

be a �nite generating set. Such a set exists by Lemma 3.17. For each word �, choose
coe�cients ai;� ∈A such that

R�f =
r∑

i=1

ai;�gi (3.18)

taking care to take ai;� = 0 for all �’s for which R�f = 0. Thus, for each length k,
there are only �nitely many ai;� �= 0 with � of length k. Now de�ne

hi =
∑
�

ai;�X�: (3.19)

By the remark just made hi ∈ T̂M . Further, for all words �; �∈Word(J )

f(��) = R�f(�) =
r∑

i=1

gi(�)ai;� =
r∑

i=1

gi(�)hi(�) (3.20)

proving that f is representative. This proves the implication (iii)⇒ (i) and the equiv-
alence of the three conditions (i), (ii), (iii).
As to the last statement of the theorem, so far it has been shown that if f is

representative, then there are tensor power series gi ∈RBf; i = 1; : : : ; r, and tensor
power series hi; i = 1; : : : ; r, given by (3.19) such that (3.20) holds. Consider the
matrix of coe�cients (ai;�). By (3.19), or rather the remarks just before that, the rows
of this matrix can be considered as the R�f and the columns as the elements hi. Let
K be the quotient �eld of A, and consider the matrix (ai;�) over K . Because row rank
is column rank, it follows that

dim

(∑
i

Kgi

)
= dim


∑

�

KR�f


= dim

(∑
i

Khi

)
= s: (3.21)

Now consider left translates of f de�ned by

Laf(b) = f(ab); L�f(�) = f(��)

and let LBf be the vector space spanned by the LBf. Reasoning as before, one �nds
that LBf has �nite rank and that there are h′i ∈LBf; i = 1; : : : ; r′ and g′i ; i = 1; : : : ; r′,
such that

f(��) =
r′∑
i=1

g′i(�)h
′
i(�) (3.22)

and that

dim

(∑
i

Kg′i

)
= dim

(∑
a

KL�f

)
= dim

(∑
i

Kh′i

)
= s′:
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Suppose that s′6 s. Then (3.22) says that each R�f and, in particular, the gi are linear
combinations of the g′j. Hence∑

i

Kgi ⊂
∑
j

Kg′j: (3.23)

Hence, s = s′ and the two spaces in (3.23) are equal. Thus, each g′j is a K-linear
combination of the gi. Now, R�(R�f) = R��f and thus, for some a∈A, RB(ag′j) is of
�nite rank and thus, RB(g′j) is of �nite rank making the g′j representative so that (3.22)
holds with all the g′j; h

′
j representative. If s

′¿ s, reason symmetrically using the h′j; hi

instead of the gi; g′j. This �nishes the proof of the theorem.

3:24: Remarks. In the case that A is a �eld or a principal ideal domain, one can thus
show that if f is representative then

�(f)∈RBf ⊗ LBf (3.25)

because in this case the RBf (resp. LBf) are free modules.

In general, the proof above does not quite give this. But introduce the pure closures
of these modules (see e.g. [11, p. 372] for the notion of a pure subgroup; this is a
natural analogue for modules),

�LBf = {f∈ T̂M : af∈LBf for some a∈A};
�RBf = {f∈ T̂M : af∈RBf for some a∈A}: (3.26)

Then the Proof of Theorem 3.12 shows that

�(f)∈ �RBf ⊗ �LBf (3.27)

and, of course, the elements of �RBf and �LBf are recursive and the ranks of these two
modules are the same as those of RBf and LBf.

Proof of Theorem 3.14. First of all, the theorem implies that TMrepr is a coalgebra
under the ‘comultiplication’ induced from T̂M . This is not entirely obvious because,
although Theorem 3.12 says that �(f) lands in the image of TMrepr ⊗TMrepr in T̂M ⊗
T̂M , if the tensor square of the inclusion TMrepr ⊂ T̂M were not injective, one would
not know what representatives to choose and the comultiplication would not be well
de�ned. And, of course, the tensor square of an inclusion need not be injective even in
very nice looking cases, such as me well-known example mentioned just below (9.3).
In the present case, there is no problem so to speak, because, the comultiplication is
�nitely de�ned, i.e. the homogeneous components �(f)n are completely determined by
the restriction of f to TnM .
More generally there is the following (trivial) lemma.

3:28: Lemma. Let N be a submodule of T̂M that contains TM . Then the tensor square
of the inclusion is injective.
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Proof. Let fi; gi be elements of N with homogeneous components fm
i ; g

m
i of degree m

(in T̂M and hence in TM and in N ). Suppose that
∑

i fi⊗gi �= 0 in N⊗N . Then there
is a �nite k such that

∑
s+t=k; i f

s
i ⊗ gt

i �= 0, these being the homogeneous components
of
∑

i fi ⊗ gi. But this homogeneous component of degree k is in TM ⊗ TM and the
tensor square of TM ⊂ T̂M is certainly injective.

Proof of Theorem 3.14 (continued). The main statement of the theorem means that for
every coalgebra with counit (C; �; �) over A and every A-module morphism C

’→M ,

there is a unique counit preserving morphism of coalgebras C
’̃→TMrepr such that

�’̃= ’.
De�ne inductively

�0 = � :M → A; �1 = id :M → M; �2 = � :M → M⊗2; : : : ;

�n+1 = (� ⊗ id⊗(n−1))�n :M → M⊗(n+1); : : : : (3.28)

Then the fact that ’̃ must be a counit preserving morphism of coalgebras immediately
gives that it must be given by the formula

’̃(c) = (�0(c) = �(c); ’(�1(c)) = ’(c); ’⊗2(�2(c)); : : : ; ’⊗n(�2(c)); : : :): (3.29)

It remains to show that the tensor power series (3.29) are representative. To see this,
let

�(c) =
∑
j

c1;j ⊗ c2;j:

Then, by the coassociativity of � and the counit property of �0 = �∑
j

�k(c1;j)⊗ �l(c2;j) = �k+l(c)

and it follows that

�(’̃(c)) =
∑
j

’̃(c1;j)⊗ ’̃(c2;j)

(where the left-hand side � is the one of TMrepr) so that �(’̃(c)) is a �nite sum of
tensor power series of the same type, thus proving that ’̃(c) is representative (and re-
con�rming that ’̃ is a morphism of coalgebras). This �nishes the proof of the theorem.

3:30: Remarks. Very little of the above makes sense in the case there is torsion present
in the module M . The de�nition of ‘representative’ still makes sense. However, there
seems to be no way to de�ne anything like the R�f which play such a crucial role in
the arguments above. To illustrate the point, consider the case that M =Z⊗Z=(n) over
the integers. Taking the generators X1 = (1; 0); X2 = (0; 1), it is still possible to view
the elements of T̂M as noncommutative power series in X1; X2 with the proviso that
if an X2 is present the coe�cient is only de�ned as modulo n. Now take a monomial
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of the form aX1X1 · · ·X1X2 and try to apply R[2] in the way of formula (3.10). This
gives the monomial aX1 · · ·X1, with, however, the coe�cient only determined modulo
n, while for these monomials we need coe�cients in Z.
Returning to the setting of Theorem 3.12, things should still work for more general

modules than free modules. In particular, Theorem 3.12 should remain true and its proof
work for, for instance, re�exive A-modules and the linear duals of free A-modules. This
latter case is dealt with in Section 6. See Section 8 for the notion of re�exive A-modules
and examples of those. It also should work in all cases where the functionals on the
dual module of M su�ce to distinguish the points in M ; i.e. when the canonical
morphism M → M∗∗ is injective.

4. Recursive tensor power series

Let f∈ T̂M with its homogeneous component weight n denoted fn. A natural
possible de�nition of left (simply polynomial) recursiveness could be as follows:
There is a �nite set of monomials ciX�i ; i = 1; : : : ; l; lg(�i)¿ 1 such that for large
enough n

fn =
l∑

i=1

ciX�if
n−lg(�i) (4.1)

and it is right (simply polynomial) recursive if there is a �nite set of monomials
diX�i ; i = 1; : : : ; r, such that for large enough n

fn =
r∑

i=1

fn−lg(�i)diX�i : (4.2)

And f is (simply polynomial) recursive if it is both left and right (simply polynomial)
recursive in the sense of formulas (4.1) and (4.2). This is probably the �rst guess
one would make at a de�nition of recursiveness in the multivariable (noncommutative)
case. As it turns out, this is not a general enough notion of recursiveness for the present
purposes. To distinguish this possible notion from the more general one below, I shall
call this simply polynomial recursiveness (as already indicated). It will be discussed a
little more in Section 7.
The right notion of recursiveness that �ts with cofree algebras over free modules is

as follows.

4:3: De�nition. A tensor power series f over a free module M with basis {Xj: j∈ J}
over A is left recursive if there is a �nite set of monomials X�i ; i=1; : : : ; l, and for some
�xed s¿max{lg(�i); i=1; : : : ; l}, there are coe�cients c�; i ∈A, for each i∈{1; : : : ; l}
and word �∈Word(J ) of length s, such that for n¿ s for each �∈Word(J ) of
length n

f(�) =
l∑

i=1

c�pre(s) ;if(�i�suf ); (4.4)
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where if �; � are two words over J , �� is the concatenation of them and where for a
word � of length ¿ s, �pre(s) is the pre�x of � of length s and �suf is the corresponding
su�x (or tail), so that �= �pre(s)�suf .
The tensor power series f is right recursive if there is a �nite set of monomials

X�i ; i=1; : : : ; r, and for some �xed t ¿max{lg(�i); i=1; : : : ; r}, there are coe�cients
d�; i ∈A, for each i∈{1; : : : ; r} and word �∈Word(J ) of length t, such that for n¿ t
for each �∈Word(J ) of length n

f(�) =
l∑

i=1

d�suf (t); if(�pre�i); (4.5)

where this time �suf (t) is the su�x (tail) of � of length t and �pre is the corresponding
pre�x (so that �= �pre�suf (t)).
The tensor power series f is left (resp. right) recursive with �niteness condition if

is left (resp. right) recursive and moreover the recursion coe�cient matrix (c�; i)lg(�)=s; i

(resp. (d�; i)lg(�)=s; i) has only �nitely many entries unequal to zero.
The tensor power series f is recursive if it is both left and right recursive in the

sense of formulas (4.4) and (4.5); it is recursive with �niteness condition if it is left
recursive with �niteness condition and right recursive with �niteness condition.
Of course, ‘with �niteness condition’ only gives something extra if there are an

in�nite number of indeterminates.
Note that these two formulas (4.4) and (4.5) exactly capture the idea of recursiveness

in the sense that a coe�cient f(�) for large enough lg(�) is (both from the left and
the right) a linear combination of coe�cients for words of lesser length in a uniform
manner (same coe�cients).
In the case of power series in one variable, this notion of recursiveness is the same

as simple polynomial recursiveness and the same as the usual notion of recursiveness
for sequences.
But even in the commutative case for more than one indeterminate, this notion of

recursiveness is more general than (simply) polynomial recursiveness.
As it turns out, these notions of recursiveness are closely related to a notion of

recursiveness de�ned by Sch�utzenberger, see (5.6). Indeed, for a �nite number of
noncommuting indeterminates, the notions turn out to be equivalent; for an in�nite
number of indeterminates there are important di�erences.

4:6: Theorem. A tensor power series over a free module is recursive with �niteness
condition if and only it is representative.

Proof. First assume that f is representative. Then by Theorem 3.12, more precisely
its proof, see (3.18), there are a �nite set of monomials X�i and tensor power series
hi such that for all �; �∈Word(J )

f(��) =
r∑

i=1

R�if(�)hi(�): (4.7)
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Now take t = 1 +max{lg(�i) and for each � of length ¿ t take

�= �suf (t); � = �pre; �= �pre�suf (t)

in formula (4.7) and observe that (4.5) holds with the monomials X�i for the �i that
occur in (4.7) and di;�=hi(�) for all � of length t (because R�if(�)=f(��i)). Note that
only �nitely many of the di;�=hi(�) are nonzero because the hi are tensor power series
and there are only �nitely many of them. This gives right recursiveness with �niteness
condition of f. Similarly, left recursiveness with �niteness condition follows from the
fact (see (3.22)) that there are tensor power series g′j; j=1; : : : ; l, and monomials X�j
such that

f(��) =
l∑

j=1

g′j(�)L�jf(�): (4.8)

This proves that f is recursive with �niteness condition if it is representative.
Inversely, suppose that f is recursive, so that (4.4) and (4.5) hold. Take n =

max{s; t}. Working in the completed tensor algebra T̂M it is easy to �nd polyno-
mial tensors gi; hi; i = 1; : : : ; r, such that (for any �xed s; r depending on s)


g01 g02 · · · g0r

g11 g12 · · · g12

...
...

...

gs
1 gs

2 · · · gs
r




⊗




h01 h11 · · · hs
1

h02 h12 · · · hs
2

...
...

...

h0r h1r · · · hs
r



=




f0 f1 · · · fs

f1 f2 · · · fs+1

...
...

...

f0s fs+ 1 · · · f2s




:

(4.9)

The idea is to use lots of zeros and ones. Here is the start. Let

f2 =
m∑

j=1

b12j ⊗ c12j ; b12j ; c12j ∈M;

f3 =
m∑

j=1

b13j ⊗ c23j =
m∑

j=1

b23j ⊗ c13j ; b13j ; c13j ∈M; b23j ; c23j ∈M⊗2;

f4 =
m∑

j=1

b14j ⊗ c34j =
m∑

j=1

b24j ⊗ c24j =
m∑

j=1

b34j ⊗ c14j ; b14j ; c14j ∈M⊗i ;

... (4.10)
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(There is no loss of generality in taking the same m everywhere as long as only �nitely
many fi are considered.) Then for t = 3 in (4.9)




f0 1 0 0 0 0 0 0 0 0 0

f1 0 b12 b13 b14 0 0 0 0 0 0

f2 0 0 0 0 b23 b24 b25 0 0 0

f3 0 0 0 0 0 0 0 b34 b35 b36




⊗




1 0 0 0

0 f1 f2 f3

0 c12 0 0

0 0 c23 0

0 0 0 c34

0 c13 0 0

0 0 c24 0

0 0 0 c35

0 c14 0 0

0 0 c25 0

0 0 0 c36




=




f0 f1 f2 f3

f1
∑
j

b12j c12j
∑
j

b13j c23j
∑
j

b14j c34j

f2
∑
j

b23j c13j
∑
j

b24j c24j
∑
j

b25j c35j

f3
∑
j

b34j c14j
∑
j

b35j c25j
∑
j

b36j c36j



=




f0 f1 f2 f3

f1 f2 f3 f4

f2 f3 f4 f5

f3 f4 f5 f6


 ;

where bij is the row vector (bij
1 ; : : : ; b

ij
m) and cij is the column vector (cij1 ; : : : ; c

ij
m)t . From

this the general pattern is clear.
Now extend the g1; : : : ; gr in (4.9) by the left recursion recipe for f, and extend the

h1; : : : ; hr in (4.9) by the right recursion recipe for f. Then


g01 g02 · · · g0r

g11 g12 · · · g1r
...

...
...

gs
1 gs

2 · · · gs
r

...
...

...




⊗




h01 h11 · · · hs
1 · · ·

h02 h12 · · · hs
2 · · ·

...
...

...

h0r h1r · · · hs
r · · ·


=




f0 f1 · · · fs · · ·
f1 f2 · · · fs+1 · · ·
...

...
...

fs fs+1 · · · f2s · · ·
...

...
...




so that f is representative.

5. Recognizable tensor power series over free modules of �nite rank

In this section we consider noncommutative power series in a �nite number of
indeterminates X1; X2; : : : ; Xn, over a commutative ring with unit A, i.e. expressions of
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the form

f=
∑
�∈W

c�X�; �= [a1; a2; : : : ; am]; m∈{0; 1; 2; : : :};

ai ∈{1; 2; : : :}; c� ∈A; (5.1)

where W is the free monoid of all words in the alphabet {1; 2; : : : ; n}, and
X� = Xa1Xa2 · · ·Xam : (5.2)

The coe�cient of X� in f is variously denoted c� (as in (5.1)) or f(�), or f�. Or,
equivalently, we consider elements of the tensor power series algebra T̂M , where M
is the free module over A with basis X1; X2; : : : ; Xn. We also write A〈〈X1; : : : ; Xn〉〉 for
T̂M .
A noncommutative power series (5.1) is said to be recognizable if there exists a

natural number r and r × r matrices �(Xi); i = 1; 2; : : : ; n, an r × 1 matrix b (i.e. a
column vector) and a 1× r matrix c (i.e. a row vector) such that for all �∈W

f� = c�(X�)b; (5.3)

where

�(X�) = �(Xa1 ) · · · �(Xam); (5.4)

i.e. � is the representation of the free monoid X ∗ de�ned by the n matrices �(Xi); i=
1; 2; : : : ; n. In the control theory world this is usually called realizable. There are two
slightly di�erent interpretations of (5.3).
Consider a discrete time automaton with state space Ar and initial state b∈Ar . When

the automaton is in state x∈Ar at time t and is fed the input Xi, it moves to state
�(Xi)x and outputs the scalar cx; if it is fed nothing, i.e. the empty word, it stays in
the same state and outputs cx. Then, if the automaton starts in the initial state b at
time zero and is fed successively the inputs Xam ; Xam−1 ; : : : ; Xa1 , i.e. it is fed the word
X�; �= [a1; a2; : : : ; am] (from right to left), then the output sequence is

cb; c�(Xam)b; c�(Xam−1Xam)b; : : : ; c�(X�)b= f�; f�; : : : ; f�; : : : ; (5.5)

i.e. feeding in a word � produces the corresponding coe�cient f� of f.
A slightly di�erent interpretation, much closer to the setting of the original paper

[18] of Sch�utzenberger is that of a ‘transition system’ with r nodes q1; : : : ; qr each of
which can hold an element of A〈〈X1; : : : ; Xn〉〉 in its memory. There is an arrow form
node qi to node qj for each k ∈{1; : : : ; n} for which �(Xk)i; j �= 0 and that node is
labelled �(Xk)i; jXk . The transition system works as follows. It starts at time zero with
memory state bi for node qi and outputs cb. If at time t the memory states are yi, then
it outputs

c




y1

...

yn
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and the memory states at time t + 1 are

yj(t + 1) =
∑

�(Xk)i; jXkyi;

i.e. the sums of the labels of all the incoming arrows multiplied with the memory
states from which they come. Then, (5.3) means that this transition system successively
produces the components fi of f at time i.

A noncommutative power series in a �nite or in�nite number of indeterminates (5.1)
is left Sch�utzenberger recursive if and only if there is a �nite nonempty set of words
S closed under taking pre�xes (so that in any case the empty word is in S) such that
for all words �∈T = SX \ S there are coe�cients ��;�, �∈ S, �∈T such that for all
words �

f�� =
∑
�∈S

a�;�f��: (5.6)

At �rst sight this does not look all that recursive. For one thing, the words �� occurring
on the right-hand side of (5.6) may very well have longer lengths than the word ��.
However, for each word ! let � be the longest pre�x of ! that is in S, and write
!= �!′. Then (5.6) is recursive with respect to the length of !′.
It is left Sch�utzenberger recursive with �niteness condition if there are only �nitely

many nonzero coe�cients in the recursion matrix (a�;�)�∈T;�∈S .
There are obvious corresponding notions of right Sch�utzenberger recursive which

work with su�xes instead of pre�xes. A noncommutative power seriesf∈A〈〈X1; : : : ; Xn〉〉
is Sch�utzenberger recursive if it is both right and left Sch�utzenberger recursive.

It will turn out that for a �nite number of indeterminates the notions of recursiveness
and left right recursiveness are equivalent to Sch�utzenberger recursiveness. In the case
of an in�nite number of indeterminates there are important di�erences. As will appear
later, in the case of tensor power series over the dual of an in�nite rank free module,
it is the notion of recursiveness as in Section 4 that is the appropriate one.
The main point is that in the Sch�utzenberger case, the power series is entirely de-

termined by the recursion matrix and a �nite number of initial conditions, viz. the
coe�cients of the X�; �∈ S, while in the recursive case there are potentially in�nitely
many initial conditions, viz. the coe�cients of the X�; lg(�)¡s.
As an example, the power series in an in�nite number of variables∑

j∈J

X 2
j

is recursive but not (left or right) Sch�utzenberger recursive. Another example is∑
j∈J

rjXj; rj ∈A:

This is always recursive. But it is left (or right) Sch�utzenberger recursive if and only
if the ideal in A generated by the rj is �nitely generated. This is even a little disturb-
ing because one does not intuitively expect a notion like recursiveness to depend on
properties of the underlying ring of coe�cients.
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For a noncommutative power series (5.1) (in a �nite or in�nite number of indeter-
minates) the associated Hankel matrix H (f) is an in�nity by in�nity matrix whose
columns and rows are indexed by the free monoid W and whose entry in row � and
column � is the coe�cient of X�X� = X�� in f. This is not to be confused with the
Hankel-like matrix (2.16), though of course the two are far from unrelated. Let A be
an integral domain with quotient �eld Q(A). Then f∈A〈〈W 〉〉 is said to be of �nite
Hankel rank if the rank of the matrix H (f) over Q(A) is �nite.
It is simple but important to note that the entries in the column labelled � are the

coe�cients of the R�f and the entries in the row labelled � are the coe�cients of L�f.

5:7: Theorem. Let f∈A〈〈X1; : : : ; Xn〉〉 be a noncommutative power series in �nitely
many variables over a Noetherian integral domain A. Then the following are equi-
valent:

(i) f is left recursive,
(ii) f is right recursive,
(iii) f is recursive,
(iv) f is left Sch�utzenberger recursive,
(v) f is right Sch�utzenberger recursive,
(vi) f is Sch�utzenberger recursive,
(vii) f has �nite Hankel rank,
(viii) f is recognizable (= realizable),
(ix) f is representative.

5:8: Comments. Over a �eld the equivalence (iv)↔ (v) is basically due to Sch�utzen-
berger, [18]. However, the two basic constructions work just as well over an integral
domain A, see [2].
The equivalence (v)↔ (vi) for A, a �eld, is due to Fliess [8].

A noncommutative power series f is invertible if and only if its constant term is
invertible in A. The rational power series are the ones that are contained in the minimal
submodule of A〈〈X1; : : : ; Xn〉〉 over A that contains A〈X1; : : : ; Xn〉 and is closed under
inversion (when applicable), sums and products. The celebrated theorem of Kleene–
Sch�utzenberger says that the rational noncommutative power series are precisely the
recognizable ones, see [9].
Theorem 5.7, of course, subsumes Theorem 4.6 (for the case of �nitely many indeter-

minates). However, the proof is more roundabout and does not show very directly the
narrow connection between recursive and representative as in the Proof of Theorem 4.6.

5:9: Corollary. For a �nite rank free module M over a Noetherian integral domain,
the cofree coalgebra over M is TMrepr = TMreal, the module of realizable noncommu-
tative power series in the X1; : : : ; Xn.

Proof. It follows directly from the realizability property that TMrepr =TMreal is a coal-
gebra. The remainder of the proof is as in the proof of Theorem 3.14.



M. Hazewinkel / Journal of Pure and Applied Algebra 183 (2003) 61–103 79

Proof of Theorem 5.7. (i) ⇒ (iv). This is almost immediate. Let f be left recursive
in the sense of (4.4). Take S to be the set of all words of length 6 s. Then T is the
set of words of length precisely s+ 1. Now take for �∈ S, �∈T

a�;� =

{
c�pre(s); i if �= �i;

0 otherwise;
(5.10)

to see that f is left Sch�utzenberger recursive.
(iv) ⇒ (vii). Let f be left Sch�utzenberger recursive. Then by induction on the

length of !′ where ! = �!′ with � the longest pre�x of ! that is in S, we see that
the rows of the matrix H (f) are linearly dependent on the rows with index in S. This
proves (vii).
(vii) ⇒ (viii). This is the heart of the proof of the theorem. The proof of this

bit is a rather straightforward adaptation of the proof of Fliess in the case of a �eld
[8], combined with the observation of Rouchaleou in the case of one variable (which
means linear system theory), that Noetherianness is precisely what is needed to prove
realization theorems given �nite Hankel rank, see [17].
So suppose that f is of �nite Hankel rank. Let the rows of H (f) be denoted

r!, !∈W and let the entry indexed by !′ of r!, i.e. f!!′ = f(!!′) be denoted
r!(!′). Let !0 be the empty word. Because rk(H (f))¡∞, there are by Lemma 3.17
�nitely many !0; !1; !2; : : : ; !t such that each r! is an A-linear combination of the
r!0 ; r!1 ; : : : ; r!t . Note that the row indexed by the empty word is included in the set of
chosen generators (whether really needed or not).
Now de�ne a representation � of the monoid X ∗ in the (t + 1) × (t + 1) matrices

by �(X!0 ) = �(1) = Id, and

r!j[i] =
t∑

k=0

�(Xi)j; k r!k ; (5.11)

where, of course, !j[i] is the concatenation of the word !j with the length one word
[i]. There is choice involved here of the �(Xi), but that does not matter; any matrix
such that (5.11) holds will do.

Claim.

r!j� =
t∑

k=0

�(X�)j; k r!k ∀�∈W; ∀j = 0; 1; 2; : : : ; t: (5.12)

Because �(X!0 ) = Id, using (5.11), one sees this holds for lg(�)6 1. So assume with
induction that (5.12) has been proved for lg(�)6 s. Consider an ! of length s + 1.
Then there is an i such that != [i]!′, lg(!′) = s. Now note that

r!!′(!′′) = r!(!′!′′): (5.13)

So

r!j�(!
′) = r!j[i]�′(!

′) = r!j[i](�
′!′) (by (5:13))

=
∑
k

�(Xi)j; k r!k (�
′!′) (by (5:11))
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=
∑
k

�(Xi)j; k r!k�′(!
′) (by (5:13))

=
∑
k;l

�(Xi)j; k�(X�′)k; lr!l (induction hypothesis)

=
∑
l

�(XiX�′)j; lr!l (matrix multiplication)

=
∑
l

�(X�)j; lr!l

proving the claim.
Now in (5.12) substitute j = 0 and take the value at !0. This gives

r�(!0) =
∑
k

�(X�)kr!k (!0): (5.14)

Now take

b=




r!0 (!0)

r!1 (!0)

...

r!t (!0)


 ; c = (1; 0; : : : ; 0︸ ︷︷ ︸

t

);

then c�(X�) = (�(X�)0;0; : : : ; �(X�)0; t) and hence from (5.14)

f� = r�(!0) = c�(X�)b (5.15)

proving this implication.
(viii) ⇒ (ix). Now suppose that f is recognizable (= realizable) so that (5.15)

holds. Then, by the de�nition of the representation �

f�� = c�(X��)b= c�(X�)�(X�)b: (5.16)

Now de�ne gi, i = 0; 1; : : : ; t, as the column vector indexed by W whose entry at �
is c�(X�)(i)X�, where c�(X�)(i) is the ith entry of the row vector c�(X�), and de�ne
hi, i = 0; 1; 2; : : : ; t, as the row vector indexed by W whose entry at � is �(X�)b(i)X�,
where �(X�)b(i) is the ith entry of the row vector �(X�)b. Then (5.16) precisely says
that

�(f) =
∑

i

gi ⊗ hi

showing that f is representative.
(ix) ⇒ (i), (ii). This is Part of Theorem 4.6.
This proves that (i), (iv), (vii), (viii), and (ix) are equivalent and that any of them

implies (ii). Similarly, working with the corresponding right concepts, one shows that
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(ii), (v), (vii), (viii), (ix) are equivalent and that any of them implies (i). This proves
the theorem.

6. Cofree coalgebras over in�nite rank free modules and over the duals of free
modules

Now consider the case of an in�nity of indeterminates

X = {Xj: j∈ J}: (6.1)

In this case, there are three di�erent notions of noncommutative power series in the
in�nite set of indeterminates X , viz.

T̂M ⊂ T̂N ⊂ A〈〈W 〉〉: (6.2)

Here, M is the in�nite rank free module

M =
⊕
j∈J

AXj (6.3)

with basis {Xj: j∈ J}, N is the module

N =
∏
j∈J

AXj;

the linear dual of M , and A〈〈W 〉〉 is the module of all formal sums of monomials in
the Xj

A〈〈W 〉〉=
{∑

�∈W

f�X�: f� ∈A

}
= AW ; (6.4)

which is also the A-module of all functions on W to A. Note that if

f∈ T̂M; f =
∑
�∈W

f�X�; (6.5)

then for each length k there are only �nitely many � of that length for which the
coe�cient f� = f(�) is nonzero.
Note also that the (Cauchy) product is still well de�ned on A〈〈W 〉〉. The coe�cient

at � of the product of two elements g; h∈A〈〈W 〉〉 is equal to
(fg)� =

∑
��=�

g�h�; (6.6)

which is a �nite sum. The two inclusions in (6.2) are both strict. For instance, any
element of the form∑

j∈J

ajXj (6.7)
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with in�nitely many of the aj �= 0 is in T̂N but not in T̂M , and any element of the
form ∑

j∈J

ajX 2
j (6.8)

with in�nitely many of the aj �= 0 is in A〈〈W 〉〉 but not in T̂N .
In the case of a �nite set of indeterminates all three modules in (6.2) coincide.
Note that the elements of TM are polynomials in the Xj in the most usual sense of

the word; that is they are sums
∑

�∈W a�X� for which only �nitely many of the a� are
nonzero. Note, however, that polynomials in an in�nite set of variables are not always
de�ned this way. In the theory of symmetric functions and quasisymmetric functions
one works with an in�nite set of commuting variables and polynomials in these are
de�ned as power series of bounded degree, see, e.g. [13,15]. In the symmetric functions
case these are then precisely the polynomials in the elementary symmetric functions
in the sense that only �nitely many coe�cients are nonzero. The elements of TN are
neither polynomials in the sense of �nitely many coe�cients nonzero, see (6.7), nor
do they coincide with power series of bounded degree, see (6.8).
Corresponding to the three di�erent algebras of (6.2), in the case of an in�nite set of

indeterminates, there are several di�erent versions of the recursiveness Theorem (5.7)
and there are di�erent associated Kleene–Sch�utzenberger type theorems.

6:9: Theorem. Let f∈ T̂M . Then the following are equivalent:

(i) f is left recursive with �niteness condition.
(ii) f is right recursive with �niteness condition.
(iii) f is left Sch�utzenberger recursive with �niteness condition.
(iv) f is right Sch�utzenberger recursive with �niteness condition.
(v) f has �nite Hankel rank.
(vi) f is realizable with a representation � for which �(Xi) = 0 for all but �nitely

many i.
(vii) f is representative (with the gi and hi in T̂M).

The �rst step in proving this is to realize that in these circumstances one is really
only dealing with �nitely many variables as recorded in the next two propositions.

6:10: Proposition. Let f∈ T̂M and let f be recursive with �niteness condition. Then
there are only �nitely many variables involved in f.

The latter statement means the following. There is a �nite subset J0 of the set of
indices of variables J , such that if j∈ J \ J0 occurs in a word � over the alphabet J ,
then the coe�cient of X� in f is zero.

Proof of Proposition 6.10. Let s and �i be as in De�nition (4.4). Because f is in T̂M
there are only �nitely many monomials of length 6 s that have nonzero coe�cient in
f and so these involve only �nitely many variables. There are also only �nitely many
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�i and for each i only �nitely many c!; i �= 0 and these also involve only �nitely many
variables. Let J0 ⊂ J be the �nite subset of all these variables. Then by formula (4.4)
for lg(�)¿s

f(�) =
l∑

i=1

c�pre(s) ;if(�i�suf ): (6.11)

For a word � over the index set J , let varsupp(�) = {j∈ J : j occurs in �} and for an
f in A〈〈W 〉〉 let

varsupp(f) =
⋃

f(�)�=0
varsupp(�): (6.12)

Thus

J0 =
⋃
n6s

varsupp(fn) ∪
⋃

i;lg(!)=s
c!; i �=0

varsupp(!): (6.13)

By induction we can assume that varsupp(fi) ⊂ J0 for i6m¿ s. Let lg(�) = m + 1
and suppose that varsupp(�) �⊂ J0. Then one of the following holds (or both):

(i) varsupp(�pre(s)) �⊂ J0,
(ii) varsupp(�suf ) �⊂ J0.

In the �rst case c�pre(s) ;i = 0 for all i, and in the second case f(�i�suf ) = 0 by the
induction hypothesis.

6:14: Proposition. Let f∈ T̂M be left (or right) Sch�utzenberger recursive with �nite-
ness conditions. Then varsupp(f) is �nite.

Proof. This time let

J0 =
⋃

there is an �
with a�� �=0

varsupp(�) ∪
⋃
�∈S

varsupp(�) (6.15)

and prove (in the same way) with induction on the length of !′, starting with 0, that
the coe�cient of X! in f is zero unless varsupp(!) ⊂ J0. Here, !′ is determined by
!= �!′ with �∈ S of maximal length.

Proof of Theorem 6.9. (i) ⇒ (iii). By Proposition 6.10, there are only �nitely many
variables involved in f. Thus by Theorem 5.7, f is left Sch�utzenberger recursive in
these �nitely many variables, proving (iii).
(iii) ⇒ (v). By Proposition 6.14, only �nitely many variables are involved. So this

follows from Theorem 5.7.
(v) ⇒ f is realizable. The proof of Theorem 5.7 works unchanged. But this does

not yet imply that the extra �niteness condition: �(Xk) = 0 for all but �nitely many k
holds.
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f is realizable ⇒ f is representable. As in the proof of Theorem 5.7, this comes
directly from the realization formula f(�) = c�(X�)b so that f(��) = c�(X�)�(X�)b.

f is representable (and f∈ T̂M)⇒ (iii). By Theorem 3.12

f(��) =
n∑

i=1

gi(�)hi(�) (6.16)

with each gi, equal to some R�f and hence in T̂M . Consider a word of length k.
Because the gi in (6.16) are in T̂M , there are only �nitely many words � of length k
such that f(�!) �= 0 for any !. On the other hand by Theorem 3.12, the rank of H (f)
is �nite, because the columns of H (f) are the coe�cients of the R�f. Thus f is left
(or right) Sch�utzenberger recursive, so that there are coe�cients c��, �∈T = SX \ S,
�∈ S, S a �nite set of words, such that for all !

f(�!) =
∑
�∈S

a��f(�!): (6.17)

The length of the �∈T is bounded because S is �nite. Thus for all but �nitely many
� in (6.17) we can choose the a�� to be zero. This then establishes that f is left
Sch�utzenberger recursive with the extra �niteness condition on the recursion matrix.
Thus f involves only �nitely many variables (by Proposition 6.14), and Theorem
5.17 establishes that f is left recursive (and right recursive). This proves the theorem.
Alternatively use Theorem 4.6.

6:18: Remark. Another way to get from (iii) to (vi) in Theorem 6.9 is to use the
standard construction as given in [2].

6:19: Corollary. If f∈ T̂M for an in�nite rank free module M over a Noetherian in-
tegral domain, then, actually, f is in T̂M ′ for some �nitely generated free submodule
M ′ of M .

6:20: Corollary. The cofree coalgebra over an in�nite rank free module over a Noethe-
rian integral domain is the union (more precisely the inductive limit) of the cofree
coalgebras over the �nite rank free submodules.

The proof is the same as above in Sections 4 and 5.

6:21: Remark. This last observation before Corollary 6.20 �ts very well with the main
theorem of coalgebras as discussed in Section 8.

The celebrated Kleene–Sch�utzenberger theorem for noncommutative power series in
a �nite number of variables over a Noetherian integral domain says that the rational
closure of the polynomials is the algebra of realizable (= recognizable) power series.
Here the rational closure means the following. Let P ⊂ A〈〈W 〉〉 be a subalgebra. An
element of A〈〈W 〉〉 is invertible if and only if its constant term is a unit. The rational
closure, Prat, of P is the smallest subalgebra containing P that is closed under inversion
(when applicable).
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In the case of �nitely many variables the classical Kleene–Sch�utzenberger theorem
says

TMrepr = TMreal = TMrat ; (6.22)

where TMreal is the set of realizable power series. It is easy to see that this is indeed a
subalgebra: use the direct sum and (tensor) product of representations (see below for
details). The �rst equality in (6.22) then comes from Theorem 5.12 and the second is
the classical theorem itself.
Here is a version for in�nitely many variables.

6:23: Theorem (Kleene–Sch�utzenberger theorem for free modules of in�nite rank). Let
M be a free module over a Noetherian integral domain (of any rank). Then

TMrat = TMreal = TMrepr : (6.24)

Here TMreal is the module of realizable noncommutative power series in the Xj; j∈ J ,
a basis of M , that is those power series f in T̂M that can be realized (= recognized)
by a triple (�; b; c) consisting of a �nite dimensional representation � of X ∗, say of
dimension n, an n× 1 vector b and a 1× n vector c such that f(�) = c�(X�)b.

Proof. The second equality of (6.24) is part of Theorem 6.9. This theorem also says
that if f∈TMrepr then it involves only a �nite number of variables, and thus by the
classical Kleene–Sch�utzenberger theorem it is a rational power series in those �nite
number of variables and thus in TMrat. That TMrat is part of TMreal is established just
like in the case of the classical theorem. The details will be given below (in a more
general setting) because in the case of the dual of a free module the corresponding
Kleene–Sch�utzenberger theorem does not immediately follow from the classical one.

The next step is to examine the rational, representative, and realizable closures of
TN in T̂N and in A〈〈W 〉〉 where N =

∏
j∈J AXj and W is the free monoid on the

in�nite alphabet J .
A �rst step is to characterize the elements of TN and T̂N in A〈〈W 〉〉.

6:25: Theorem. An element f∈A〈〈W 〉〉 is in T̂N if and only if each homogeneous
component fn has �nite Hankel rank; it is in TN if and only if it is of bounded
degree and has �nite Hankel rank.

Here ‘bounded degree’ means that f is of the form
∑

lg(!)6n a!X! for some n.

Proof. Let f∈N⊗m. Then f is of the form

f =
¡∞∑

i

g1; i ⊗ gi;2 ⊗ · · · ⊗ gm; i: (6.26)

The Hankel matrix of each one of the summands g1; i ⊗ gi;2 ⊗ · · · ⊗ gm; i consists of
blocks of zeros and a �nite number of blocks, viz. m+1, of rank 1 and thus is of �nite
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rank. And thus the Hankel rank of the �nite sum (6.26) is �nite as the Hankel matrix
of f is a sum of the �nite number of Hankel matrices of the summands of (6.26).
This proves that if f∈TN then it has �nite Hankel rank. Inversely, let f∈A〈〈W 〉〉 be
homogeneous of degree m and of �nite Hankel rank:

f =
∑

j1 ; j2 ;:::; jm∈J

aj1 ;j2 ;:::;jmXj1Xj2 · · ·Xjm : (6.27)

The claim is that then f∈N⊗m. If m=1, then there is nothing to prove. So let m¿ 1.
Then the part of the Hankel matrix of f consisting of the rows indexed by elements
of J , i.e. the words of length one, is also of �nite rank. So there are a �nite number
of indices j1; : : : ; jr so that each row of H (f) indexed by a word of length one is
dependent on these r rows. So, in particular, there are coe�cients cji ;k such that

ak;l2 ;:::;lm =
r∑

i=1

cji ;kaji ;l2 ;:::;lm for all l2; : : : ; lm: (6.28)

Now let

gi =
∑
k

cji ;kXk (6.29)

and let

hi =
∑

l2 ;l3 ;:::;lm

aji ;l2 ;l3 ;:::;lmXl2 · · ·Xlm : (6.30)

Then by (6.28)

f =
r∑

i=1

gi ⊗ hi: (6.31)

Now the Hankel matrices of the hi are parts of the Hankel matrix of f, viz. the parts
consisting of the rows indexed by words with length 1 pre�x [i]. Thus these are of
�nite rank and with induction hi ∈N⊗(m−1) and hence by (6.31) f∈N⊗m.
Now let f∈A〈〈W 〉〉 be of bounded degree n and �nite Hankel rank. Let fs be the

homogeneous part of f of degree s6 n. Then the Hankel matrix of fs consists of
zero blocks and a �nite number of blocks of the Hankel matrix of f, viz. the blocks
indexed by rows indexed by words of length k and columns indexed by words of
length l, l + k = s. Thus the Hankel matrix of each of the fs is of �nite rank and
hence in N⊗s. This proves the theorem.

The remainder of this section is about recursiveness, etc. for the duals of free modules
over Noetherian integral domains A. When A is a �eld K , and N is the dual of a free
module M over K , i.e. a vector space, then N is again free, with, if the rank of M
is in�nite, usually a basis of larger cardinality than that of a basis of M . So in the
case that A is a �eld there is nothing new. However, if A is an integral domain the
dual of a free module is not necessarily free. Indeed, often it is not. For instance,
if M is the free module of countable in�nite rank over the integers, then its double
dual is isomorphic to M , and so the dual M∗ cannot be free because otherwise its
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dual M∗∗ would have larger cardinality than M∗ which has larger cardinality than M .
This happens quite frequently. For instance the double dual of a free module M over
the integers is isomorphic to that module (i.e. that module is re�exive) if and only if
the cardinality of a basis of it is a non-!-measurable cardinal. The countably in�nite
cardinal is non-!-measurable. For details see [6,7].

6:32: Theorem. Let f∈A〈〈W 〉〉, where W is the free monoid on the in�nite alphabet
{Xj: j∈ J}. Then the following are equivalent:

(i) f is left Sch�utzenberger recursive.
(ii) f is right Sch�utzenberger recursive.
(iii) f has �nite Hankel rank.
(iv) f is realizable (= recognizable).
(v) f is in T̂N and representative (in T̂N ).
(vi) f is representative in A〈〈W 〉〉.

Moreover, if f∈ T̂N these conditions are equivalent to both
(vii) f is left recursive.
(viii) f is right recursive.

6:33: Corollary. The cofree coalgebra over the dual of a free module N =
∏

j∈J AXj

is TNrepr = TNreal.

The proof of the corollary is the same as in the case of free modules, see above. The
important thing is that the realizability property (iv) immediately implies that TNreal is
a coalgebra.

Proof of Theorem 6.32. The proofs of (i) ⇒ (iii) ⇒ (iv) are as before. Now suppose
that f is realizable. Then there is a formula f(�) = c�(X�)b for the coe�cients of f.
Explicitly the homogeneous component of degree m of f is given by the formula

fm =
∑

j1 ;:::; jm; k1 ;:::; km

cj1�(Xk1 )j1 ;j2 · · · �(Xkm)jm−1 ;jmbjmXj1 · · ·Xjm

showing that it is a �nite linear combination of the entries of the �nite dimensional
matrix∑

k1 ;:::; km

�(Xk1 ) · · · �(Xkm)Xk1 · · ·Xkm =

(∑
k

�(Xk)Xk

)m

and hence an element of N⊗m. This proves that f∈ T̂N . Also because f(��) =
c�(�)�(�)b it follows that f is representative in T̂N . Trivially, (v) implies (vi). But
if (vi) holds

f(��) =
n∑

i=1

gi(�)hi(�)

showing that the Hankel matrix of f is of �nite rank, the rows depending on the �nite
number of rows of the coe�cients of the gi. Thus (vi) implies (iii) which trivially
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implies (i) and (iii). Thus going around once more using right notions instead of left
ones we have the equivalence of (i)–(vi).
Finally if (iii) holds than certainly f is left recursive. Inversely, if f is left recursive

and it is in T̂N , then by Theorem 6.25 its �nite degree parts are in TN and of �nite
Hankel rank and hence the left recursiveness says that the Hankel rank of f is �nite,
proving (iii). Similarly, (viii) is equivalent to (iii). This concludes the proof of Theorem
6.32.

Corresponding to Theorem 6.32 there is a Kleene–Sch�utzenberger type theorem as
follows.

6:34: Theorem. Let N =
∏

j∈J AXj be the dual of a free module over the Noetherian
integral domain A . Then

TNrat = TNreal = TNrepr : (6.35)

Proof. The rational power series in T̂N (or A〈〈W 〉〉 for that matter) are the ones that
can be obtained from TN by sums, scalar multiples, products, and inversions. They are
all in TNreal. This is seen as follows. If f∈TN , then it is of �nite Hankel rank (by
Theorem 6.25) and hence realizable by Theorem 6.32. If f and g are both realizable by,
say, (�; b; c) and (�′; b′; c′) then the scalar product af is realized by (�; b; ac), the sum

is realized by (�⊕�′;
(

b
b′

)
; (c; c′)) and the product is realized by (�⊗�′; b⊗b′; c⊗c′)

where the tensor product of an m × n matrix M and an m′ × n′ matrix M ′ is the
mm′ × nn′ matrix M ⊗M ′ whose entry at ((i; i′); (j; j′)) is mi;jm′

i′ ; j′ . Finally, let f be
invertible with inverse g. We can as well assume that the constant term of f (and g)
is 1. Then in [18,19], there is a construction that realizes g in one dimension more
than a realization of f. That can be adapted to the present case. Another way to see
that the inverse of a realizable element of A〈〈W 〉〉 is realizable is as follows. Let H (f)
be the Hankel matrix of f and de�ne the lower triangular W ×W matrix R(f) with
1’s on the main diagonal by

R(f)w;� =

{
0 if � is not a su�x of !;

f(�) if � is a su�x of !;with � determined by != ��:
(6.36)

Further, let H (g) be the Hankel matrix of g, the inverse of f, and de�ne the upper
triangular matrix Q(g) with ones on the main diagonal by

Q(g)�;!′ =

{
0 if � is not a pre�x of !′;

g(�) if � is a pre�x of !′with � determined by ��= !′:
(6.37)

Then

(R(f)H (g) + H (f)Q(g))!;!′ =
∑
�

R(f)!;�H (g)�;!′ +
∑
�

H (f)!;�Q(g)�;!′

=
∑

� a pre�x of !

f(�)g(�!′) with ��= !
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+
∑

� a su�x of !′
f(!�)g(�) with ��= !′

=
∑

� a pre�x of !!′
f(�)g(�′) with ��′ = !!′

=

{
1 if != !′ = [ ]

0 if lg(!!′)¿ 1;

because g is the inverse of f. This even works if the coe�cients of f and g do not
commute. And thus, because R(f) and Q(g) are invertible, the rank of the Hankel
matrix of f and its inverse g di�er at most by one. Thus, by Theorem 6.32, if f is
realizable and invertible so is it inverse g. This shows that TNrat ⊂ TNreal.
To prove the reverse inclusion �rst consider an n × n matrix S with entries from

A〈〈W 〉〉 with zero constant terms. Then the in�nite sum
In + S + S2 + S3 + · · ·

is well de�ned and equal to the inverse (In−S)−1. If the entries of S were commuting,
of course, the entries of (In − S)−1 would be rational functions in the entries of S. It
is a fundamental insight of Sch�utzenberger [18] that this is still true if the entries of
S do not necessarily commute. This can be seen as follows. If n= 1 there is nothing
to prove. If n= 2 the inverse

U =

(
u11 u12

u21 u22

)

of (
1− s11 −s12

−s21 1− s22

)

is given by

u11 = (1− s11 − s12(1− s22)−1s12)−1;

u12 = (1− s11 − s12(1− s22)−1s21)−1s12(1− s22)−1 = u11s12(1− s22)−1

u22 = (1− s22 − s21(1− s11)−1s12)−1;

u21 = (1− s22 − s21(1− s11)−1s12)−1s21(1− s11)−1 = u22s21(1− s11)−1:

These formulas still work if s22 is an (n − 1) × (n − 1) matrix, s12 is a 1 × (n − 1)
matrix (= row vector), and s21 is an (n − 1) × 1 matrix (= column vector), all with
constant terms equal to zero. This proves the statement (with induction on n). (NB:
This treatment is a bit di�erent from the one in [18], which uses quasi-inverses instead
and anyway I could not make the formulas in [18] work out right.)
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Now if f is realized by (�; b; c), de�ne

S =
∑
k

�(Xk)Xk: (6.38)

Then

f = c(In − S)−1b (6.39)

proving that f is rational. This �nishes the proof of Theorem 6.34.

Note that formula (6.39) is almost identical with the formula for the transfer matrix
of a linear dynamical input–output system (which corresponds to the case of power
series in a single variable).
There should be a third Kleene–Sch�utzenberger-type theorem, namely one that de-

scribes the rational closure of the subalgebra A〈〈W 〉〉bd of noncommutative power series
in an in�nite set of indeterminates of bounded degree. Quite likely this is the module
of elements of A〈〈W 〉〉 that are recursive in the sense of Section 4 (see De�nition 4.3).

7. Polynomial recursiveness

Simply polynomial recursiveness has already been de�ned in a previous section (for-
mulas (4.1) and (4.2)). A sum of two simply polynomially recursive power series need
not be simply polynomially recursive, so de�ne a power series to be polynomially re-
cursive if it is a �nite sum of simply polynomially recursive power series. Such a
power series is rational. Indeed, formula (4.1) says that f= (1−∑l

i=1 ciX�i)
−1(f0 +

f1 + · · ·+ fm), where m is some �xed number larger or equal to max{lg(�i)}. Thus
f is rational and by the appropriate Kleene–Sch�utzenberger theorem it is realizable
and thus left and right recursive. (I know of no way to see this directly, just as
there seems to be no simple direct way to translate recursiveness of Sch�utzenberger
type into rationality.) Thus f is representative and there is a formula (see 4.24
above)

f(��) =
r∑

i=1

gi(�)hi(�); gi ∈ �Lf; hi ∈ �Rf (7.1)

such that the gi; hi are representative and recursive. It is easy to see that the R�f
(resp. L�f) are still left (resp. right) simply polynomially recursive. The matter of
right polynomial recursiveness for the right ‘translates’ R�f is more complicated. Be-
cause R�(R�f) = R��f it su�ces to examine the matter in the case � has length one.
So take the case R[1]f. As an example, consider the right recursive power series in
three variables, with starting term 1, and recursion monomials X3; X2X1, so that

fn =
∑

�i∈{[2;1];[3]}∑
lg(�i)=n

X�1 · · ·X�m (7.2)
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and

(R[1]f)n =
∑

�i∈{[2;1];[3]}∑
lg(�i) = n−1

X�1 · · ·X�mX2: (7.3)

This is certainly still right recursive in some sense; otherwise a nice simple formula
like (7.3) could not be written. But the recursion now involves an in�nite number
of starting terms and an in�nite number of recursion monomials, viz. starting terms
X j
3X2; j = 0; 1; 2; : : : ; and recursion monomials X1X

j
3X2; j = 0; 1; 2; : : : : And both the

starting terms and the recursion monomials, and the corresponding coe�cients have
themselves a recursive structure.
To illustrate things here is R[1]f up to and including the terms of degree 6.

R[1]f= X2 + X3X2 + X2X1X2 + X 2
3 X2 + X3X2X1X2 + X2X1X3X2 + X 3

3 X2

+X2X1X2X1X2 + X 2
3 X2X1X2 + X3X2X1X3X2 + X2X1X 2

3 X2 + X 4
3 X2

+X3X2X1X2X1X2 + X2X1X3X2X1X2 + X 3
3 X2X1X2 + X2X1X2X1X3X2

+X 2
3 X2X1X3X2 + X3X2X1X 2

3 X2 + X2X1X 3
3 X2 + X 4

3 X2 + · · · :

This type of ‘in�nite recursive recursiveness’ seems to be getting somewhat close to
the right notion of recursiveness as discussed in the previous sections. The reason for
the interest in some polynomial versions is that those would make sense for general
tensor algebras T̂M with M not necessarily torsion free. In [10, p. 196] there is an
attempt to de�ne such a notion. However, the condition as stated there is empty as is
easily seen by introducing super�uous extra terms like (f+ g)⊗ h−f⊗ h− g⊗ h in
the tensor sums (or much more complicated zero terms in the case of the presence of
torsion).
Much remains to be examined as regards polynomial types of recursiveness.
Another idea to get at a suitable notion of recursiveness in the presence of torsion

could be as follows. For an arbitrary A-module M let M̃ �→M be a covering with M̃
free. Then de�ne f∈ T̂M to be recursive if there is a recursive lift in T̂ M̃ . This also
has drawbacks (so far). A few words on this are in the �nal section.

8. The main theorem of coalgebras over rings

The (so-called) main (or fundamental) theorem for coalgebras over a �eld says the
following. If C is a coalgebra with counit over a �eld K and c∈C is an element of
C, then there is a �nite dimensional subcoalgebra C′ of C that contains c. See e.g.
[22, Section 2.2, p. 45�]. A short and elegant proof of this (of which I do not know
the provenance) is in [5, p. 25].
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Using Lemma 8.5 these arguments can be extended to the case of principal ideal
domains. However, these arguments are not strong enough to establish the main theorem
for the cofree algebras over free modules and their duals over general Noetherian
integral domains (see Theorem 8.10).
There is a natural analogous property that can be considered for coalgebras with

counit over an arbitrary ring A (commutative and with unit element). Such a coalgebra
C satis�es the ‘main theorem property’ if for every element c∈C there is a �nitely
generated (as a module) subcoalgebra over A containing the element c.
This is not always true as the following example shows [12].

8:1: Example. Consider the Abelian group

C = ZX1 ⊕
( ∞⊕

n=2

Z=(n)Xn

)
= ZX1 ⊕ Z=(2)X2 ⊕ Z=(3)X3 ⊕ · · · (8.2)

and consider the comultiplication

� :Xn 
→ 1⊗ Xn + Xn ⊗ 1 + nXn2 ⊗ Xn2 ; n¿ 2; X1 
→ X1 ⊗ X1; 1 = X1 (8.3)

and the counit which is projection onto the �rst factor. This is a coassociative comul-
tiplication (because Z=(n2) ⊗ Z=(n2) ⊗ Z=(n) � Z=(n)) and the counit does what it
is supposed to do. It is easy to show, because of the term nXn2 ⊗ Xn2 in (8.3), that
there are no subgroups of C other than subgroups of the �rst summand that are sta-
ble under the comultiplication. Thus, this coalgebra does not have the main theorem
property.

On the other hand, there is the following theorem.

8:4: Theorem. Let C be a coalgebra with counit over a principal ideal domain A
whose underlying module is a free A-module. Then C has the main theorem
property.

The (present) proof of this requires a lemma.

8:5: Lemma. Let A be a principal ideal domain, and let M = A′ be a free module
over A. Let V be a �nite dimensional subvector space of W =M ⊗K , where K is the
quotient �eld of A. Then

(M ⊗M) ∩ (V ⊗ V ) = (M ∩ V )⊗ (M ∩ V ): (8.6)

Proof. Take a basis of V whose elements are in M . These basis elements,
written as column vectors form an ∞ × r matrix (more precisely an I × r
matrix) with entries from A. A slight extension of the standard arguments concern-
ing Smith canonical form (see e.g. [14, p. 337�]), shows that there is another
basis of M = AI such that suitable linear combinations of the chosen basis of V
form a basis that takes the form (as a matrix whose columns are the basis
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elements)


d1 0 0 : : : 0

0 d2 0 : : : 0

0
. . .

. . .
...

...
...

. . . dr−1 0

0 dr

0 0 : : : 0 0

...
...

...
...




:

It follows that the columns of the matrix


1 0 0 : : : 0

0 1 0 : : : 0

0
. . .

. . .
...

...
...

. . . 1 0

0 1

0 0 : : : 0 0

...
...

...
...




form (in this new basis of M) a basis of M ∩ V . The statement of the lemma now
follows immediately.

8:7: Example. Formula (8.6) is most de�nitely not true in general. Consider the ring
A of all integer linear combinations of 1 and

√−5 inside the complex numbers, A =
Z + Z

√−5 and let M be the free module M = A2. Let K be the quotient �eld of A
and let V be the one-dimensional vector space generated by the vector (2; 1−√−5)t .
Then, because there is no nonunit element u of A such that u−1(2; 1 − √−5)t is in
M; M ∩ V = A(2; 1−√−5), and written in terms of matrices

(M ∩ V )⊗ (M ∩ V ) = A

(
4 2− 2√−5

2− 2√−5 −4− 2√−5

)
: (8.8)

On the other hand, the element of K2 ⊗ K2 represented by the matrix(
2 1−√−5

1−√−5 2−√−5

)

is in (M ⊗M) ∩ (V ⊗ V ) and it is not in the set (8.8).
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The reason that things fail here is that the ring A is not an UFD. For V one-dimensional
and M a free module over an UFD, formula (8.7) holds. Besides the case of PIDs
(Lemma 8.5) this is the only general case that I know of where formula (8.7) is true.
The general question of when formula (8.7) holds is clearly a matter that needs more
investigation.

Proof of Theorem 8.4. Let c be an element of C. Then, by the main theorem of coal-
gebras over �elds (of which another new proof is given below; see Corollary 8.11),
there is a �nite dimensional subvector space V of C⊗K; K the quotient �eld of A, that
contains c and is a subcoalgebra of C⊗K . Let C′=V ∩C (in C⊗K). Then by Lemma
8.5 the submodule C′ is stable under the comultiplication, and hence does the job.

There is a (large) other class of coalgebras for which the ‘main theorem property’
of coalgebras holds.
Let M be a module over a ring A. The module M is called re�exive if the canonical

morphism ’ :M → M∗∗; ’(x)(f)=f(x), is an isomorphism. This looks, at �rst sight,
an unusual property. For instance if A is a �eld K and M is an in�nite dimensional
vector space over K , it is never true. But, for instance if A=Z and M is a free Abelian
group with in�nite but countable basis, it is true.
Quite generally, it is a fairly straightforward matter to prove the following theorem,

[4].

8:9: Theorem. Let C be a coalgebra over a ring A whose underlying module is re-
�exive. Then the coalgebra C has the main theorem property.

The proof of this makes serious use of duality (like the original proof of the main
theorem over �elds in [22]).

The matter of when a module over a ring A is re�exive is a delicate one involving
higher set theoretic notions. In the case of A= Z the answer is as follows. Let M be
a free Abelian group. Then M is re�exive if and only if the cardinality of (a basis of)
M is non-!-measurable. (A set is !-measurable if and only if it has a nonprincipal
ultra�lter D such that for all countable sets of elements Di; i∈N; Di ∈D;

⋂
i Di ∈D.

It is easy to see that N is non-!-measurable.) The re�exivity of free Abelian groups
with countable basis was established by Specker in 1950, [21]. For results on higher
cardinals see [1], and for a general survey of these matters see [7, Chapter 3] or [6].

An A-module M is slender i� for every morphism
∏

i∈N A �→M; �(e∗n ) = 0 for all
but �nitely many n. Here the e∗n are the dual ‘basis’ to the standard basis of

⊕
i∈N A.

A ring A is slender if and only if it is slender as an A-module. It turns out that a PID
is slender i� A is not a �eld or a discrete complete valuation ring. So from the point
of view of re�exivity properties of modules over a ring, �elds and complete discrete
valuation rings are exactly the wrong thing to look at.

It is a general (ununderstood) phenomenon that the universal objects of some kind
tend to be rather nicer than one has any reason to expect. A manifestation of this is
the following theorem.
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8:10: Theorem. The cofree coalgebras TMrepr and TM∗
repr for M a free module over a

Noetherian integral domain A have the main theorem property.

Proof. Let f be representative. Consider LB(RBf). This is a �nitely generated sub-
module. Also RB(LBf)=LB(RBf). Let �L �RBf be the pure closure of LBRBf (see 4.24).
Then �L �RBf is �nitely generated (because it is �nite rank, see 4.28) and

�( �L �RBf) ⊂ �L �RBf ⊗ �L �RBf

proving the theorem for TMrepr. Alternatively, use Theorem 6.9 and the realizability
property. If � is a representation involved in realizing f, and has dimension n, then
the n2 elements of TMrepr = TMreal de�ned by the matrix entries �i; j of �

�i; j =
∞∑
k=0

(Sk)i; j ; S
∑
j∈J

�(Xj)Xj (8.11)

form a �nite rank subcoalgebra that contains f. For the case TM∗
repr use Theorem 6.32

instead.

8:12: Corollary (Main theorem of coalgebras over a �eld). Let C be a coalgebra over
a �eld and c an element of C. Then there is a �nite dimensional subcoalgebra of C
containing c.

Proof. Consider the free coalgebra TCrepr over the module C. The identity morphism

C id→C induces an imbedding of coalgebras C → TCrepr. There is a �nite dimensional
subcoalgebra C′ of TCrepr that contains c. Then C ∩C′ is a �nite dimensional subcoal-
gebra of C containing c (because over a �eld the intersection of two coalgebras is a
coalgebra; this is not necessarily true over rings).

9. The ‘zero dual’ coalgebras of algebras over a ring

For algebras R over a �eld K the ‘zero dual’ coalgebra is de�ned as

R0 = {R f→A: Ker(f) contains an ideal of �nite codimension}: (9.1)

This vector space has a natural coalgebra structure dual to the algebra structure of R,
see e.g. [22]. It turns out to be exactly the right duality notion, a fact that has very
much to do with the main theorem property of coalgebras over �elds.
For algebras R over a ring A (where A is commutative with unit element) there is

an obvious analogue. De�ne

R0 = {R f→A: Ker(f) contains an ideal a of �nite corank}; (9.2)

where ‘�nite corank’ means that R=a is �nitely generated (as a module). Now de�ne
a comultiplication on R0 by requiring

�(f)(a⊗ b) = f(ab): (9.3)



96 M. Hazewinkel / Journal of Pure and Applied Algebra 183 (2003) 61–103

Then �(f), for f∈R0 lands in R0⊗R0 ⊂ R∗⊗R∗ ⊂ (R⊗R)∗ provided that the tensor
square of the inclusion R0 ⊂ R∗ is injective.
(This is a potentially tricky point because the tensor square of an inclusion is not

necessarily injective, even in the torsion free case, as the following well-known example
shows. Let A=K[X; Y ]; E=A; E0 =(X; Y ) ⊂ E the ideal generated by X and Y . Then
the tensor square of the inclusion takes the nonzero element X ⊗ Y − Y ⊗X ∈E0⊗E0
to zero. In the case considered below, where R is the tensor algebra over a free �nite
rank module over A (i.e. a free �nitely generated A-algebra) there is no problem. One
thing that calls for investigation in this context is when (for arbitrary A-algebras R)
the modules R∗ and R0 are �at).

9:4: Theorem. Let M be a free �nitely generated module over a Noetherian integral
domain A. Let R= TM be the free A-algebra over M. Then

R0 = (TM)0 = T (M∗)repr (9.5)

the free coalgebra over M∗.

(As it should be.)

Proof. Let f∈R0. Then �(f) is a �nite sum
∑

gi ⊗ hi with gi; hi ∈R0 ⊂ R∗. And so,
using the characterization (9.3),

�(f)(a⊗ b) = f(ab) =
r∑

i=1

gi(a)hi(b):

Thus f is representative. On the other hand, let f be representative. Then by the main
theorem property of T (M∗)repr (see Theorem 8.10) there is a �nitely generated sub-
coalgebra C of T (M∗)repr containing f. De�ne a= {a∈TM : g(a)= 0 for all g∈C}.
Then, a is an ideal of �nite corank (because C is �nitely generated as a module), and
a ⊂ Ker(f) so that f∈R0.

10. Representations of coalgebras

Let A be a Noetherian integral domain. Consider a (�nite dimensional) representation
� of the monoid W , i.e. a collection of n×n matrices {�(Xj): j∈ J}. Let N=∏j∈J AXj.
Now de�ne the subcoalgebra

Mn×n
coalg(�) ⊂ TNreal: (10.1)

As the one spanned by the n2 entries of � as in (8.11).
Let

Mn×n
coalg; �(ei; j) =

n∑
k=1

ei;k ⊗ ek; j (10.2)

be the standard matrix coalgebra over A. There is a natural surjective coalgebra homo-
morphism

’: Mn×n
coalg → Mn×n

coalg(�); ei; j 
→ �i; j: (10.3)
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Now let C be a coalgebra over a Noetherian integral domain A that is (as a module)
isomorphic to a submodule of a �nite rank free module N . By the universality prop-
erty of TNreal the inclusion C ⊂ N gives rise to an associated coalgebra morphism

C
 →TNreal that is of course injective. Now let c1; : : : ; cm be a �nite set of generators of

C (as a module over A). And let �i, be a representation that gives a realization of  (ci).
Let � be the direct sum of the representations �i. Then the coalgebra (10.1) contains all
the  (ci) so that C embeds as a coalgebra in one of the special coalgebras (10.1). So
as a �nal application of the cofree algebra constructions we get a faithful representation
theorem.

10:4: Theorem. Let C be a coalgebra over a Noetherian integral domain that is (as
a module) isomorphic to a submodule of a �nite rank free module. For instance, C
can be a �nite rank projective module. Then C is isomorphic to a subcoalgebra of a
matrix-like coalgebra Mn×n

coalg(�).

These coalgebras are called matrix like because Mn×n
coalg → Mn×n

coalg(�); ei;j 
→ �i;j (see
(8.11)) is a surjective (but not necessarily injective) coalgebra morphism.

11. Coda: lifting coalgebras to coalgebras with free underlying module

In this last section I want to try to draw attention to the following problem that I
think is of some importance.
Let C be a coalgebra over a ring A. Does there exist a coalgebra C̃ whose underlying

module is free together with a surjective coalgebra morphism C̃ → C? If this were
true in general, then the suggestion made at the end of Section 7 would be perfectly
workable. That is, one could de�ne a tensor power series f in T̂M for an arbitrary
module M to be representative (resp. recursive) if and only if there is a representative
(resp. recursive) tensor power series f̂ in T̂ (M̃) that maps into f under T̂ � where M̃
is a free module together with a surjective A-module morphism M̃ �→M . Eventually,
one may also want to lift the ring A to an integral domain.
Unfortunately, the answer to this lifting question is not an unequivocal yes. Consider

the Example 8.1 of a coalgebra for which the ‘main theorem property’ does not hold.
If this one were liftable to a coalgebra (over Z) with free underlying Abelian group,
then that lift would satisfy the ‘main theorem property’ (by Theorem 8.4) and hence
so would the coalgebra of Example 8.1. Thus that coalgebra is not liftable.
I am inclined to think that for coalgebras over A whose underlying module is �nitely

generated the answer to the lifting question is yes.
The results of Section 10 seem to indicate that this may be true.
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that I take a good look at the work of the French school on noncommutative power
series.

Appendix A. The non-Noetherian case

In the case the ring A is not anymore Noetherian and not even necessarily a domain,
a number of the main results of the paper survive in some form. The formulations are
perhaps a little less elegant and some equivalences do not survive; the main victim
is the idea of �nite Hankel rank; another is that representative and realizable need no
longer coincide. Here is a short account.

A:1: Theorem. Consider a (�nite or in�nite) set of indeterminates {Xj: j∈ J} and
let M be one of the modules M =

⊕
j∈J AXj or M =

∏
j∈J AXj. Let f∈ T̂M be

a corresponding noncommutative power series. Consider the following proper-
ties:

(i) The module RBf is �nitely generated.
(ii) The module LBf is �nitely generated.
(iii) f is left Sch�utzenberger recursive.
(iv) f is right Sch�utzenberger recursive.
(v) f is left recursive.
(vi) f is right recursive.
(vii) f is realizable.
(viii) f is representative.

Then the following implications hold

(a) (i)⇔ (iii)⇒ (v)⇒ (vii)⇒ (viii).
(b) (ii)⇔ (iv)⇒ (vi)⇒ (vii)⇒ (viii).

If the module M is free then also

(c) (v)⇒ (iii).
(d) (vi)⇒ (iv).

If the set of indeterminates is �nite (so that in particular M is free), and A is an
integral domain, then also

(e) (vii)⇒ (i), (ii)

so that in this case (i)–(vii) are all equivalent.

Most of the proofs are rather similar to the ones in the main body of the paper. The
exception is (e). So suppose that the set of indeterminates is �nite and that f is realiz-
able, say, by (�; b; c). Because there are only �nitely many indeterminates involved, the
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�(Xj); b; c involve only a �nite number of entries from A. Thus, f is actually de�ned
over a subring of A generated by a �nite number of elements (as a ring), and that
subring is hence Noetherian.

Below are a number of examples that show that in the non-Noetherian case nothing
more than Theorem A.1 can be expected.
For instance, the argument that representative implies realizable, or, e.g. that RBf

is �nitely generated, breaks down. Representative just gives that there are a �nite
number of gi in T̂M such that each element of RBf is a linear combination of these
elements. It does not say that there are such g in RBf itself. This can actually happen.
Consider the ring over a �eld K of polynomials in in�nitely many commuting variables
A= K[yj: j∈ J ]. Let

f =
∑
j∈J

yjXj: (A.2)

Then

R�f =




y� if lg(�) = 1;

0 if lg(�)¿ 1;

f if � = [ ]

and thus all the R�f are A-linear combinations of two elements from T̂M but RBf
is not �nitely generated. The power series (A.2) is representative (because �(f) =
1⊗ f + f ⊗ 1 for this f) and also realizable, but it does not satisfy any of (i)–(iv).
But it does satisfy (v) and (vi).
Here is an example that shows that realizability does not necessarily imply either left

or right recursiveness and hence certainly not left or right Sch�utzenberger recursiveness.
Let A be as in example (A.2), and de�ne f by

f =
∑
�∈W

y�X�; (A.3)

where, as usual, W is the free monoid on the index set J , and y[ ] = X[ ] = 1. This f
is realizable by c= b= 1, �(Xj) = yj and hence representative; indeed �(f) = f⊗ f.
Suppose it were left recursive, then, there is a �nite number of words �1; �2; : : : ; �m

such that all rows of the Hankel matrix are linear combinations of the rows indexed
by these words. Take an index j that does not occur in any of the �’s; i.e.

j �∈ J0 =
m⋃
i=1

varsupp(�i): (A.4)

The �rst entry in the row indexed by [j] is yj; and so yj would be in the ideal
generated by the yi; i∈ J0, which is not the case by (A.4).
Finally, here is an example of a representative tensor power series in one variable that

is not realizable. Take three sets of commuting indeterminates xi; yi; zi; i = 0; 1; 2; : : : .
Let A be the ring of polynomials over a �eld K in these indeterminates subject to
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the relations yizj = xi+j; ∀i; j (so that the xm are really super�uous). A is an integral
domain. 1

Let f; g; h be the power series in one variable

f =
∞∑
m=0

xmX m; g=
∞∑
m=0

ymXm; h=
∞∑
m=0

zmX m: (A.5)

Then f is representative. Indeed �(f) = g ⊗ h. The rows of the Hankel matrix of
f indexed by the monomial X n (i.e. the word [1; 1; : : : ; 1︸ ︷︷ ︸

n

]) is (xn; xn+1; xn+2; : : :). So

if RBf were to be �nitely generated, there is an n such that row (n + 1) is linearly
dependent on rows 0; 1; 2; : : : ; n. Taking a look at the �rst entries means that there must
be a0; a1; : : : ; an ∈A such that

a0x0 + a1x1 + · · ·+ anxn = xn+1: (A.6)

Eliminating the xm the ring A is the ring of polynomials K[yi; zj: i; j∈N∪{0}] modulo
the ideal generated by the yizj−ykzl for i+j=k+l. These elements are homogeneous
of degree 2, so there is a well-de�ned notion of degree on A. So (A.6) can only hold
if there are constants a0i ∈K such that

a00x0 + a01x1 + · · ·+ a0nxn = xn+1: (A.7)

Now consider the ring of polynomials B=K[t]. There are a good many ring homomor-
phisms from A into B. For instance, the homomorphism ’ :yk 
→ tk ; zl 
→ tk . Applying
this to the relation (A.7) would give that the polynomial

a00 + a01t + · · ·+ a0nt
n − tn+1

is zero (which it is not). Thus, RBf is not �nitely generated. Now suppose that f
were realizable. Then there is a single matrix �(X ) with entries from A such that

f = c(I − X�(X ))−1b

which is of the form det(I − X�(X ))−1 (some polynomial in the single variable X ),
and which is therefore a recursive power series in a single variable and would have
RBf �nitely generated. Thus (A.7) is not realizable.

1 There are probably better ways to see this, but here is one. First show that y0 is not a zero divisor.
Then in the localized ring zi = z0y

−1
0 yi , and there are the relations z0yiyj = z0y0yi+j . Using these, every

monomial in the localized ring can be written in the form zr0y
s
0yt ; r ∈N ∪ {0}; s∈Z; t ∈N or zr0y

s
0. The

product of two monomials of the �rst type is zr1+r2
0 ys1+s2+1

0 yt1+t2 and the other products are obvious. It is
now easy to �nd an ordering on these monomials (e.g. lexicographic ordering) such that, the top term of
product of two sums of such monomials is the product of the two top terms of these sums.
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Appendix B. The strongly representative completion of the tensor coalgebra and the
cofree coalgebra over a module

Let M be module over A. Consider submodules T ⊂ T̂M such that

TM ⊂ T ⊂ T̂M and �(T ) ⊂ T ⊗ T: (B.1)

Then the tensor square of the injection T ⊂ T̂M is injective (Lemma 3.37), and thus
T is a coalgebra (with the comultiplication � of (2.14) restricted to T and with the
canonical projection onto the zeroth component T̂M → A restricted to T as counit. An
example of such a submodule is TM ⊂ T̂M . If T and T ′ are two submodules that
satisfy (B.1), then so does the sum T +T ′. Thus there is a largest such submodule that
contains all the others. This largest such submodule is denoted TMsrepr and is called
the strongly representative completion of TM . From what has been said just now it
is evident that it has a natural coalgebra structure. Its elements are called strongly
representative tensor power series.
Obviously, TM ⊂ TMsrepr, but TMsrepr is always larger (unless M =0). For instance,

if 0 �= x∈M , the non-terminating tensor power series

(1; x; x ⊗ x; x ⊗ x ⊗ x; : : :) (B.2)

is in TMsrepr. Indeed, using the notations of (2.15), (2.16)


1

x

x⊗2

...


⊗ (1 x x⊗2 · · ·) =




1 x x⊗2 · · ·
x x⊗2 x⊗3 · · ·

x⊗2 x⊗3 x⊗4 · · ·
...

...
...


 : (B.3)

(The element (B.2) is group like.)
To check for a given element f∈ T̂M whether it is in TMsrepr, potentially involves

an in�nity of conditions. Speci�cally, it means that for every �nite sequence i1; i2; : : : ; ik
of 1’s and 2’s there are a �nite number of tensor power series gi1 ;i2 ;:::;ik ;j1 ;j2 ;:::;jk such that

�(f) =
∑

g1;j ⊗ g2;j;

�(gi1 ;i2 ;:::;ik ;j1 ;j2 ;:::;jk ) =
∑
j

gi1 ;i2 ;:::;ik ;1;j1 ;j2 ;:::;jk ;j ⊗ gi1 ;i2 ;:::;ik ;2;j1 ;j2 ;:::;jk ;j (B.4)

B:5: Theorem. Let � : TMsrepr → M be the module morphism of projection onto the
�rst factor. Then � : TMsrepr → M is the cofree coalgebra with counit over M .

Proof. Exactly as in the proof of Theorem 3.14 it follows that the sought for morphism
’̃ associated to ’ : C → M must be given by the formula

’̃(c) = (�0(c) = �(c); ’(�1(c)) = ’(c); ’⊗2(�2(c)); : : : ; ’⊗n(�n(c)); : : :): (B.6)
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It remains to show that the tensor power series (B.6) is strongly representative. To see
this, let

�(c) =
∑
j

c1; j ⊗ c2; j :

Then, by the coassociativity of � and the counit property of �0 = �∑
j

�k(c1; j)⊗ �l(c2; j) = �k+l(c)

and it follows that

�(�̃(c)) =
∑
j

�̃(c1;j)⊗ �(c2; j)

(where the left-hand side � is the one of TMsrepr) so that �(�̃(c)) is a �nite sum of
tensor products of power series of the same type, thus proving that �̃(c) is strongly
representative (and recon�rming that �̃ is a morphism of coalgebras). This �nishes the
proof of the theorem.

B:7: Corollary. If A is a Noetherian integral domain and M is a free module or the
linear dual of a free module, then TMsrepr = TMrepr.
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