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GENERALIZED OVERLAPPING SHUFFLE ALGEBRAS 

Michiel Hazewinkel UDC 512.552.4 

This pa.per is mainly concerned with the Leibniz-Hopf algebra. over the integers and its graded dual, 
the overlapping shuffle algebra.. The Ditters conjecture states that this graded dual is a free commutative 
polynomial ring over the integers and it specifies a set of conjectured generators. The definition of the 
overlapping shuffle algebra. can be generalized to apply to any suitable partial semigroup {instead of the 
semigroup of natural numbers). The paper continues with investigations of these generalized overlapping 
shuffle algebras (GOSA's). 

1. Introduction 

The Leibniz-Hopf algebra over the integers is the free associative algebra Z = Z(Zi. Z2, ... ) over 
Z in countably many generators with comultiplication 

µ(Zn)= L Zi®Zj, Zo=l. 
i+j=n 

Its graded dual over the integers is denoted by M a.nd is called the overlapping shuffie algebra. Over the 
rationa.ls the Leibniz-Hopf algebra is isomorphic to the Hopf algebra 

u = Z(U1,U2, ... ), µ(Un)= 1 @Un+ Un® 1. 

Let .N be the graded dual of U over the integers. This is the so-called shuffie algebra. An important 
theorem, for example in the theory of free Lie algebras, states that the algebra .N ®z Q is commutative 
free polynomial in the Lyndon words. It is not true that .N is free polynomial over the integers. The 
Ditters conjecture states that the algebra M, on the contrary, is free polynomial commutative over the 
integers. This would make it a rather more beautiful version of N. In this paper, I first discuss what I 
know concerning the Ditters conjecture. 

The definition of the overlapping shuffle algebra can be generalized to any suitable partial semigroup. 
The case of the semigroup N of natural numbers corresponds to M. These generalized overlapping shuffle 
algebras (GOSA's) seem to be most interesting objects. The second half of the paper is devoted to their 
definition and continues with a number of first results on these (bi-)algebras. 

2. The Overlapping Shuffle Algebra 

To begin with, let us consider the overlapping shuffle algebra. It will be denoted M. In the 
notation below, it is GOSA(N), where GOSA stands for "generalized overlapping shuffle algebra," and 
it is probably the most important GOSA a.round. Understanding it will have many consequences. In 
particular, (a proof of) the "Differs conjecture," to be discussed below, is important for many things, 
e.g., the theory of noncommutative symmetrical functions [4], the combinatorics of permutations [5,6], 
and the theory of noncommutative formal groups [2, 3, 15]. 

As an Abelian group, i.e., as a Z-module, M is free with as basis all words on N = {1, 2, ... } 
including the empty word. Such a word will be denoted w = [a1,a2, ... ,an], a EN, e.g., [1, 1, 2]. The 
overlapping shuffle multiplication of two words w = [a1, a2, . .. , an] and v = [b1, b-i, ... , bm] is the sum 
of all words that can be obtained as follows. Take a word of length r with a.II its "spots" so far unfilled, 
max { m, n} :$ r $ n + m. Insert the symbols ~ of the word w into it in their original order with no two 
symbols going to the same spot. Do the same with the symbols b;. It is permitted that a symbol from 
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w and a symbol from v go to the same spot, in which case they are to be added. All available spots are 
to be filled. This multiplication will be denoted simply by juxtaposition. 

For example, 

[a, b] [c, d] = [a+ c, b + d] + [a+ c, b, d] + [a+ c, d, b] + [a, b + c, d] + [c, a+ d, b] + [a, c, b + d] 
+ [c,a,b+d] + [a,b,c,d] + [a,c,b,d] + [a,c,d,b] + [c,a,b,d] + [c,a,d,b] + [c,d,a,b], 

[2] [1, 3, 5] = [3, 3, 5] + [3, 5, 5] + [1, 3, 7] + [2, 1, 3, 5] + [1, 2, 3, 5] + [1, 3, 2, 5] + [1, 3, 5, 2], 
[1][1, 1, 1] = [2, 1, 1] + [1, 2, 1] + [1, 1, 2] + 4[1, 1, 1, 1]. 

A good way of thinking about this multiplication is the so-called rifle shuffle from card-playing. 
Imagine the two words as two stacks of cards. Perform a rifle shuffle where it can happen that two cards, 
one from the left stack and one from the right one, stick together; then their values are to be added. 

With this multiplication the Abelian group M obviously becomes an associative commutative al­
gebra over Z with unit element (the empty word), i.e., an associative and commutative ring with unit 
element. 

3. Lyndon Words 

Let the elements of N*, i.e., the words over N, be ordered lexicographically, where any symbol is 
larger than nothing. Thus [ai, a2, ... , an] > [b1, b2, ... , bm] if and only if there is an i such that a1 = b1, 
... , ai-1 =bi-I, ai >bi (with, necessarily, 1::::; i :'.S min{m,n}), or n > m and a1 =bi, ... , am= bm. 

A proper tail of a word [a1 , ... , an] is a word of the form [lli, ... , an] with 1 < i ::::; n. (The empty 
word and one-symbol words have no proper tails.) 

A word is Lyndon if all its proper tails are larger than the word itself. For example, the words 
[1, 1, 3], [1, 2, 1, 3], [2, 2, 3, 2, 4] are all Lyndon and the words [2, 1], [1, 2, 1, 1, 2], [1, 3, 1, 3] are not Lyndon. 
The set of Lyndon words is denoted by Lyn. 

Obviously, these definitions make sense for any totally ordered set and not just for the set of natural 
numbers. 

Now consider N* a semigroup under the concatenation product (which is, of course, very different 
from the overlapping shuffle product on M). 

Theorem (Chen-Fox-Lyndon factorization, [1, 12]). Every word w in N* factors uniquely into a de­
creasing concatenation product of Lyndon words: 

w = v1 * v2 * · · · * vk, Vi E Lyn, v1 2'.: v2 2'.: · • · 2'.: Vk· 

For example, 
[2, 3, 1, 3, 1, 4, 1, 3, 1, 1] = [2, 3] * [1, 3, 1, 4] * [1, 3] * [1] * [1]. 

One efficient algorithm for finding the Chen-Fox-Lyndon factorization of a word is the block decompo­
sition algorithm from [15]. 

4. The Ditters Conjecture 

The Lyndon words are the right kind of thing for the shuffle algebra over the rational numbers Q 
and also for the overlapping shuffle algebra over Q. Indeed, both these algebras are free polynomial over 
Q with as generators the words from Lyn (see Sees. 9 and 10 below for more details). However, over 
the integers Lyn most definitely is not a free generating set for the overlapping shuffle algebra (see also 
Sec. 9 below). 

A word w = [a1 , a2, ... , an] E N* is called elementary if the greatest common divisor of its symbols 
is 1, gcd { a1, a2, . . . , an} = 1. A concatenation power of w (or star power) is a word of the form 

w*m = w * w * · · · * w . 
m times 
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Let ESL denote the set of words which are star powers of elementary Lyndon words. For instance, the 
words [1, 1, 1, 1], [1, 2, 1, 2], and [1, 2, 1, 4] are in ESL (but the first two are not Lyndon), and the words 
[4], [2, 4] are not in ESL but are in Lyn. 

The Ditters conjecture now states that the elements of ESL form a free (communicating) generating 
set for the overlapping shuffle algebra M over the integers. 

Let the weight of a word w = [a1, a2, ... , an] be equal to a1 + a2 +···+an. The elements of ESL 
of weight ~6 are: 

[1]; 
[1, 1]; 
[1,1,1], [1,2]; 
[1,1,1,1], [1,1,2], [1,3]; 
[1,1,1,1,1], [1,1,1,2], [1,1,3], [1,2,2], [1,4], [2,3]; 
[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 1, 3], [1, 1, 2, 2], [1, 1, 4], [1, 2, 1, 2], [1, 2, 3], [1, 3, 2], [1, 5]. 

The Ditters conjecture dates from around 1972 (see [2, 3]), and the publications quoted contain proofs, 
which, however, contain errors. The latest proof attempt that I know of is in [15], and until August 
1997 I thought this proof to be correct. However, it is not. The error occurs in the second paragraph of 
p. 74. (There is no guarantee that the length'l "separable products" occurring there are lexicographically 
smaller than the element w(k) under consideration at that time, and indeed if the calculations are done 
explicitly this turns out not to be the case; in fact one can show from low weight examples that no such 
"triangular proof" based on an induction with respect to some ordering of words will work directly.) 

Thus, at this time the conjecture is again open (contrary to what I wrote in [9]). 
The positive evidence in favor of the Ditters conjecture is rather strong though and I definitely 

think that the conjecture is true. I will now try to summarize this positive evidence. 

1. The number of conjectured generators for each weight is exactly right. This can be formulated more 
precisely as follows. The overlapping shuffle algebra M is graded by the weight of words as defined above. 
Now consider the free commutative algebra over the integers, Z[ESL], in the "variables" from ESL with 
each variable given its weight as a word and with the weight of a monomial equal to the product of the 
weights of its factors. The inclusion ESL E M induces a graded homomorphism of Z-algebras 

cp : Z[ESL] ---+ M 

and the ranks of the homogeneous parts of weight n of the two algebras are equal: 

Z[ESL]n =Mn. 

This is seen as follows. First, there are just as many Lyndon words of weight n as there are elements of 
ESL of weight n. The bijective correspondence is given by the assignment 

L ESL [ l [d-1 d-1 d-1 ]*d a: yn---+ , ai,a2, ... ,an i-+ a1, a2, ... , an , 

where d = gcd{ a1, a2, ... , an}· Second, the overlapping shuffle algebra over Q is isomorphic to Q[Lyn], 
via the homogeneous morphism induced by the inclusion Lyn c M (see below in Sec. 10). 

It follows immediately that to prove that cp is an isomorphism, it suffices to prove that it is surjective. 

2. 'Pn: Z[ESL]n---+ Mn is an isomorphism for n::; 10 (by ad hoe and rather messy hand calculations). 

3. A natural p-adic analogue of the Ditters conjecture is true (see Sec. 11 below). 
For the next bit of evidence it is necessary to know that the overlapping shuffle algebra is naturally 

isomorphic to the algebra of quasi-symmetrical functions (see Sec. 5 for details). 
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4. The subalgebra of the symmetrical functions Symz(X) c Qsymz(X) = M is in the image of <.p. 
Indeed, it is generated by the words~' which correspond to the elementary symmetrical func-

n 
tions. The Lyndon words [n], n = 1, 2, ... , correspond to the power sums, and they are generators over 
Q for the symmetrical functions, but not over Z. 

5. Let Jn be the submodule of M spanned by the words of length ;:::n. This is an ideal in M. To prove 
that <.p is surjective, it suffices to aprove that the composed maps 

<.p : Z[ESL] -+ M -+ M/ Jn 

are surjective for every n, i.e., that <.p is surjective modulo Jn for every n = 2, 3,.. . . In the appendix 
below this is proved for n = 2, 3, 4, 5. There is some extra interest in that things go fine modulo words 
of length ;:::s, because it is at length 4 that the "second-generation" Lyndon words first appear. (A 
"first-generation" Lyndon word is one of the form [1, 1, ... , 1, a,1, a2, ... , am], ai ;::: 2; [1, 2, 1, 3] is a 
"second-generation" Lyndon word.) 

5. Quasi-Symmetrical Functions 

Let X be a finite subset of an infinite set (of variables) and consider the ring of polynomials R[X] 
and the ring of power series R[[X]] over a commutative ring R with unit element in the commuting 
variables from X. A polynomial or power series f (X) E R[[X]] is called symmetrical if for any two finite 
sequences of indeterminates X1, X2, ... , Xn and Yi, }2, ... , Yn from X and any sequence of exponents 
ii, i2, ... , in EN, the coefficients in f(X) of X11 X~2 • • • X~n and Y1i1 Y;i2 · • • Y~n are the same. 

The quasi-symmetrical formal power series are a generalization introduced by Gessel [5] in connec­
tion with the combinatorics of plane partitions. This time one takes a totally ordered set of indetermi­
nates, e.g. V = {Vi, V2, ... } , with the ordering that of the natural numbers, and the condition is that the 
coefficients of X~1 X~2 · · • X~n and Y1i 1 YJ2 • • • Y~n are equal for all totally ordered sets of indeterminates 
X1 < X2 < · · · < Xn and Y1 < Y2 < · · · < Yn. Thus, for example, 

X1X~ + X2Xj + X1Xj 

is a quasi-symmetrical polynomial in three variables that is not symmetrical. 
Products and sums of quasi-symmetrical polynomials and power series are obviously again quasi­

symmetrical, and thus one has, for example, the ring of quasi-symmetrical power series Qsymz(X)v in 
countably many commuting variables over the integers and its subring Qsymz(X) of quasi-symmetrical 
polynomials in finite or countably many indeterminates, which are the quasi-symmetrical power series 
of bounded degree. 

Given a word w = [a1 , a2, ... , an] over N, also called a composition in this context, consider the 
quasi-monomial function 

Mw= 

defined by w. These form a basis over the integers of Qsymz(X). 

Proposition. The assignment w -+ Mw defines a homogeneous isomorphism of the overlapping shuffle 
algebra M with Qsymz(X). 

The proof is immediate. 

6. The Leibniz-Hopf algebra 

Consider the free associative algebra in countably many (noncommuting) indeterminates over the 
integers: 
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This ring is given a Hopf algebra structure by means of the comultiplication defined by 

µ(Zn)= L Zi®Zj, Zo=l, 
i+j=n 

i,jENU{O} 

the augmentation 
c(Zn) = 0, n = 1,2, ... , 

and the antipode 

i1 +i2+-··+ik=n 

where the last sum is over all sequences (i1,i2,··· ,ik), ij EN, that sum ton. This is the Leibniz-Hopf 
algebra. If each Zn is given weight n, the comultiplication and antipode are weight preserving. Thus the 
graded dual of Z is a graded algebra over the integers. A basis of Z over the integers is given by the 
monomials in the indeterminates. Thus a basis of the dual module is constituted by the words over N, 
with the duality given by 

(w, Zv) = 8w,v, 
where 8 is the Kronecker symbol and Zv = Zb1 Zb2 • • • Zb'"' for v = [bi, ... , bm]. The multiplication on 
the dual is determined by 

(wv, Zu) = (w ® v, µ(Zu)). 
It is now a simple calculation to verify that this multiplication of words is precisely the overlapping 
shuffle multiplication. 

Thus the overlapping shuffle algebra M is the graded dual over the integers of the Leibniz-Hopf 
algebra Z. 

1. The Representative Ring of the Big Witt Vectors 

The maximal commutative quotient of the Leibniz-Hopf algebra is the algebra 

'R = Z[X1, X2, ... ] 

of polynomials in countably many commuting indeterminates over the integers with the same comulti­
plication. This is the representative ring of the big Witt vectors [7]: 

Ring('R.,A) = W(A) 

for any ring A, where Ring is the category of commutative rings with unit element and W is the functor 
of big Witt vectors. 

The ring 'R plays a crucial role in the classification theory of commutative formal groups [7]. It 
is natural to examine the possible roles of the noncommutative lift Z for the classification theory of 
noncommutative formal groups. It is in this connection that the Ditters conjecture came up. 

8. The Solomon Descent Algebra and the Representations of Symmetrical Groups 

One of the (many) manifestations of the algebra 'R in various parts of mathematics is as the direct 
sum of the representation rings of the symmetrical groups: 

'R = E]) R(Sn), 
n 

where R(Sn) is the ring of complex representations of the symmetrical group on n letters Sn [11]. More 
precisely, 'R is self-dual [7], and this representation theoretic 'R. is the dual of the 'R of the previous section. 
The multiplication on 'R, however, is (obviously) not the usual (tensor) multiplication of representations. 
Instead, it is defined via the natural isomorphism 

R(Si) ® R(Sj) = R(Si x Sj) 
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as follows: 
I Si+i ( ) PCJ = nds; xSi p ® a ' 

where Ind stands for induction. Similarly, and dually, using the same natural isomorphism, we dafine 
the comultiplication by restriction: 

µ(T) = L Restxsi(T). 
i+j=n 

A great deal of the theory of representations of symmetrical groups, e.g., Ftobenius reciprocity, is encoded 
in the observation that 'R, = EB R(Sn) with multiplication and comultiplication thus defined is a Hopf 

n 
algebra, and that it is self-dual [7). 

The usual multiplications on the R(Sn) define a second multiplication on 'R, which is distributive 
over the first in the appropriate sense, making 'R, a ring in the category of coalgebras. 

The Solomon descent algebras D(Sn) [16] were invented as noncommutative analogues of the rings 
of characters of the symmetrical groups (and, more generally, Coxeter groups). These can also be "direct 
summed" to a larger object 

'D = EBD(Sn) 
n 

with a new multiplication over which the direct sum of the original multiplications is distributive. It turns 
out that 'D is naturally isomorphic to the Leibniz-Hopf algebra Z ([13]; see also [4]) and 'R, = EB R(Sn) 

n 
is the commutative quotient of 'Din the same way that 'R, = Z[X1, X2, ... ] is the commutative quotient 
of Z. 

The dual of Z is the overlapping shuffle algebra M which is the algebra of quasi-symmetrical 
functions Qsymz(X) which contains the algebra of symmetrical functions, Symz(X), which is the dual 
of 'R; thus everything fits perfectly, in the sense that the dual of the quotient situation Z --+ 'R, is the 
inclusion situation Symz(X) c Qsymz(X). 

9. The Shuffle Algebra 

There is a second Hopf algebra structure on the free associative algebra in countably many indeter­
minates over Z, i.e., a second way to make the ring Z(Z1 , Z2, ... ) into a Hopf algebra. This structure is 
actually rather better known and it plays a most important role in the theory of free Lie algebras and 
related matters. In order to avoid notational confusion, let 

be another copy of the free associative algebra in countably many variables over Z, and let the comulti­
plication be defined by 

µ(Un) = 1 ®Un+ Un® 1. 

Let N be the graded dual algebra of U. This is the shuffie algebra. The shuffle multiplication is the 
same as the overlapping shuffle multiplication except that overlaps are not allowed. Thus, for example, 

[a, b] Xsh [c, d] = [a, b, c, d] +[a, c, b, d] +[a, c, d, b] + [c, a, b, d] + [c, a, d, b] + [c, d, a, b] 

and 

[1] Xsh [1] = 2[1, 1), [1] Xsh [1] Xsh [1] = 6[1, 1, l]. 
A well known theorem says that over the rationals the shuffle algebra is free polynomial. More precisely, 
let Q[Lyn] be the free commutative polynomial ring over the set Lyn of Lyndon words; then (see, 
e.g., [14)) the following statement holds. 

Theorem (shuffle-algebra structure theorem). N ® Q = Q[Lyn]. 
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Note that nothing like this is true over the integers. Indeed, by the second examples of the shuffle 
multiplication above N 0 Z/(2) has nilpotents and therefore N cannot be a free algebra over Z. From 
this point of view, if, as seems likely, the Ditters conjecture is true, the overlapping shuffle algebra M is 
a rather nicer "version" of N. Here the word "version" refers to the fact that over the rational numbers, 
Q, Mand N become isomorphic (see Sec. 10 below). 

The proof of the shuffle-algebra structure theorem is a straightforward application of the following 
theorem concerning shuffle products in connection with the Chen-Fox-Lyndon factorization. 

Theorem. Let w E N* be a word on the natural numbers, and let w = v1 * v2 * · · · * Vm be its Chen­
Fox-Lyndon factorization. Then all words that occur with nonzero coefficient in the shuffle product 
v1 Xsh v2 Xsh • · · Xsh Vm are lexicographically less than or equal tow and w occurs with nonzero integer 
coefficient in this product. 

Given this result, the proof of the shuffle-algebra theorem proceeds as follows. Order all words 
lexicographically. Consider some nonempty word w. With induction. [1] being the smallest nonempty 
word, we can assume that all words lexicographically smaller than w have been written as polynomials 
in the elements of Lyn. Take the Chen-Fox-Lyndon factorization w = v1 * v2 * · · · * Vm of w and consider, 
using the Chen-Fox-Lyndon factorization theorem, 

V1 Xsh V2 Xsh · · · Xsh Vm = aw +(remainder). 

By that theorem, the coefficient a is nonzero and all the words in (remainder) are lexicographically 
smaller than w and hence EQ[Lyn]. It follows that also w E Q[Lyn]. This proves generation, i.e., 
surjectivity of the natural map Q[Lyn] --+ N. Injectivity follows by counting. The map is homogeneous, 
both algebras are graded and dimQ(Q[Lyn]n) = dimQ(Nn) (see, e.g., [14, 15] for details). 

10. The Overlapping Shuffle Algebra over the Rationals 

As was already stated, the overlapping shuffle algebra and the shuffle algebra become isomorphic 
over the rationals. Given that the shuffle algebra over the rationals is free polynomial there are of course 
very many possible algebra homomorphisms. There is a particularly nice one which comes from a Hopf 
algebra isomorphism between Z 0 Q and U 0 Q as follows. 

Consider the expression 

This gives an expression for each Zi in terms of U1 , ... , Ui and hence defines an algebra homomorphism 

Theorem. The algebra homomorphism f3 is an isomorphism of Hopf algebras and hence its dual defines 
an isomorphism of algebras /3*: N 0 Q--+ M 0 Q. 

For details, see, e.g., [8]. This proves of course that M 0 Q is free polynomial and gives a set of 
generators which is, however, neither the set Lyn nor the set ESL. 

It is also not difficult to adapt the proof that N 0 Q is free polynomial on Lyn to a proof that 
M 0 Q is free polynomial on Lyn. The only modification needed is to change a bit the ordering on words 
that is used. The ordering that works here is the following: 

{
length(w) > length(v) or 

w >- v -<====? 
length(w) = length(v) and w 2'.: v (lexicographically). 

I know of no proof at the moment to show that M 0 Q is free polynomial (over Q) on ESL. 
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11. A p-adic Analogue of the Ditters Conjecture 

There is a p-adic analogue of the Ditters conjecture, which, surprisingly, can be proved by a fairly 
straightforward modification of the argument which is used to prove the shuffle-algebra structure theorem. 
Surprising, because I do not believe that this is the right way to get at the Ditters conjecture itself. 

Let us start with the formulation. A word w = [a1 , ... , an] on N is p-elementary, where p is a 
prime number, if the gcd of a1, ... , an is not divisible by p. A p-star-power of a word is a word of the 
form 

W=V* .. ·*V. 
'----v----" 
p factors 

The set ESL(p) is the set of words which are p-star-powers of p-elementary Lyndon words. 

Theorem (p-adic analogue of the Ditters conjecture). 

M 0 Z(p) = Z(p)[ESL(p)], 

i.e., M 0 Z(p) is the free commutative algebra on ESL(p) over Z(p)" 

To prove this, we first need some information on binomial and multinomial coefficients. Extend the 
usual definition of the binomial coefficients in the standard way: 

(:)=o ifm>n, (~)=1 ifn~O. 
Proposition. Consider the p-adic expansion of two natural numbers m and n 

n=ao+a1p+···+akpk, m=bo+b1p+···+bkpk, ai,biE{O,l, ... ,p-1}. 

The value of the binomial coefficient modulo p is equal to 

(:) = (~:) (~~) ... (~:). 
In particular, if bi :::; ai for all i, this binomial coefficient is nonzero modulo p. 

Corollary. The multinomial coefficient 

is nonzero modulo p. 

(Pk .. ·pk pk-1 .. ~pk-1 ... l ·. · l ) 
"'---v--' ..______, '-v-" 
ak times ak- l times ao times 

Proof of the proposition. For 0 :::; n :::; p - 1 things are clear. Now let n ~ p, write down the p-adic 
expansion of n and m as in the formulation of the proposition and let 

nl = ao +alp+···+ ak-lPk-l, m1 = bo + blp + · · · + bk-lPk-l. 

We have 

( x + y) n = { (a;) ( xPk) ak ( yPk) O + ... + ( ~k) ( xPk) ak -i ( yPk) i + ... + ( xPk) O ( yPk) ak } 

x { (~l)xniyO + ... + (~1)xn1-iyi + ... + (~1)xoyn1}. 
It follows that 
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and with induction the desired result follows. 

Proof of the p-adic Ditters conjecture. We use the same ordering of words as at the end of Sec. 10 
above, i.e., length first and then lexicographic ordering on words of equal length. Let SL(p) be the set 
of all p-star powers of Lyndon words, i.e., words of the form 

k 
w = v*P , v E Lyn. 

The first step is to prove that all words can be written as polynomials in the elements of SL(p). Let w 
be a word over N. With induction we can assume that all smaller words can be written as polynomials 
in SL(p), and by induction on weight that all nontrivial products can be so written. Let 

be its Chen-Fox-Lyndon factorization. Consider products of the form 

ki k2 km 

II v~nli II v;n2, ... II v;::mi, 
i=l i=l i=l 

where the products are overlapping shuffie products and nil+···+ nii1c = ni, i = 1, ... , m. The largest 
word occurring in such a product {in the ordering we are using) will be the word w, independent of how 
the various star-powers are broken up. However, the coefficient of w will depend on how the star-powers 
of the VJ are broken up. Indeed, the coefficient will be the product of multinomial coefficients 

(n11 -~~ nlkJ (n21 -~~ n2kJ ... (nm1 -~nmkm) · 
For instance, if one takes nij = 1 Vi,j (which is what is done to prove M © Q = Q[Lyn] (see Sec. 10 
above), the coefficient is nl!n2! ···nm!, and if one takes the other extreme, kl = k2 =···=km= 1, the 
coefficient is 1. Here, for our present purposes, we break up each nj according to its p-adic expansion, 
i.e., if n = ao + a1p + · · · + akpk, ai E {O, 1, ... ,p - 1}, then it is partitioned (broken up) into 

k k k k-1 k-1 k-1 1 1 p 'p ' ... 'p 'p 'p ' ... 'p , ... ' p, ... 'p' ' ... ' . 
'----v-----" ~ ~ 

ak parts ak-1 parts al parts ao parts 

The corollary above says that in this case the coefficient is nonzero modulo p, i.e., it is an invertible 
element of Z(p)· This proves that also w can be written as a polynomial in SL(p). 

Now for a given weight n, let w1 , w2 , ... , Wm be all the words of that weight that are in SL(p) but 
are not p-elementary. So, if w1 = [ail, ... , aik.l, PI gcd {an, ... , aii1c}. Let 

bij = p-l aij, Vi = [bil, · · · , bikJ 

Now consider the overlapping shuffie powers vf. It is easy to see that these are of the form 

vf = Wi + p(something of weight n). 

By what has been proved, each of these somethings of weight n can be written as polynomials in SL(p). 
Do so. Now calculate modulo nontrivial products and the elements of ESL(p). The result will be the 
following n congruence relations: 

... ' 

where the matrix A = ( aij) has the property A = in mod p. This implies that the determinant of the 
matrix A is invertible in z(p)• so that Wi, •.. 'Wn can be eliminated. This proves that the elements from 
ESL(p) suffice to generate all of M © Z(p) over Z(p)· The same counting argument used before finishes 
the proof. 
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Fig. 1 

Remark. There is no predicting (that I can see) which w's will show up in these congruence relations. 
A priori, larger ones, smaller ones (lexicographically) and also the same ones can show up. And they do. 
This is where the proof attempt from [15] breaks down. All one knows in that case is that the rows in 
the matrix A break up into several classes corresponding to different primes p, and these rows are "unit 
rows" modulo that p. That is not enough, as the matrix 

for the prime 2 for the first row and the prime 3 for the second one shows. Explicit examples for 
low weights give matrices A that are invertible over the rationals but not necessarily over the integers, 
showing that more relations in M need to be used. 

12. Generalized Overlapping Shuffle Algebras 

Let S be a partial semigroup, i.e., a set with a partially defined multiplication function 

SxS-tS 

that is associative. This last requirement means that if s1 s2 and s2s3 are both defined, then so are 
(s1s2)s3 and s1 (s2s3) and these two are then equal, and also if s2s3 and s1 (s2s3) are defined, then s1s2 
is defined (and (s1s2)s3 = s1(s2s3)), and if s1s2 and (s1s2)s3 are defined, then s2s3 is defined (and 
(s1s2)s3 = s1(s2s3)). For instance the set of morphisms of a category is a partial semigroup in this 
sense. 

The generalized overlapping shuffle algebra defined by a partial semigroup over Z (or, more generally, 
over a commutative ring R with unit element) is defined as follows. As a free Abelian group it has as 
basis all words on the set S. The product is basically the overlapping shuffle product (taking account 
the order of the factors) and with only those overlaps allowed for which the product is defined. This is 
an associative algebra with unit element (represented by the empty word). This algebra will be denoted 
GOSA(S). For instance, let S be the partial semigroup depicted in Fig. 1, i.e., 

Then, for example 

and 

In particular, this particular GOSA is not commutative. Indeed, GOSA(S) is commutative if and only 
if S is commutative. 

If the multiplication on Sis nowhere defined one obtains the shuffle algebra, Shz(S) over the set S. 
For the case of the semigroup N of natural numbers with addition the result is the overlapping shuffle 
algebra we have been examining in the previous sections, i.e., GOSA(N) = M. Some other special 
GOSA's will be discussed in some detail below. 
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13. GOSA's as Duals of Hopf Algebras 

Again let S be a partial semigroup. We now need one mild extra finiteness condition: 

V s E S # { ( t, u) E S x S : tu = s} < oo. 

This holds, for instance, for all finite semigroups and for (partially) ordered semigroups such as the 
natural numbers; it does not hold for any infinite group, for instance, the group of integers. 

Define Z(S) as the free associative algebra over the integers in the (noncommuting) variables Zs, 
s E S, i.e., as the algebra Z(S) = Z(Zs : s E S), and define the comultiplication and counit by 

µ(Zs) = 10 Zs + L Zu 0 Zt + Zs 01 and c:(Zs) = 0. 
ut=s 

This defines the bialgebra Z(S), and its graded dual is GOSA(S) (where, if S is not finite, increasing 
weights need to used for the Z8 ). 

It is certainly not the case that these bialgebras can always be given the structure of a Hopf algebra, 
i.e., that they always admit an antipode. An example is 

S = {e, si, s2; sf= s2, s1s2 = s2s1 = s~ = s2} 

and with e a unit element. A simple calculation shows that there cannot be an antipode in this case. 
Another example is the multiplicative group bialgebra 

Z[X], µ(x)=l©X+X@X+X®l, 

but in this case, there is an antipode if Z[X] is completed to the power-series ring Z[[X]], which makes 
this one a sort of trivial counterexample. 

Proposition. Let S be a partial semigroup without unit element with a partial order on it such that 
pq > p for all q and such that for all s E S 

#L(s) < oo, where L(s) = {t ES: t < s}. 

Then the bialgebra Z(S) has an antipode. 

The proof is straightforward, starting with the minimal elements, i.e., those for which L(s) = 
0. This is by no means the most general statement that can be proved concerning antipodes for the 
bialgebras Z(S). 

For any ring R with unit element and semigroup S, let 

Ms(R) = { 1 +Lass: s ES, as E R} 

be the semigroup of "I-units" of R[S], where R[S] is the semigroup algebra of S over R (without, 
however, identifying the unit element of S (if it has one) with the unit of R[S]). Then the semigroup 
valued functor RH Ms(R) is represented by Z(S). 

Remark. There are some obvious variants of the construction of the Z ( S) as given above, for instance 
the following two. 

Again let the underlying algebra be the free associative algebra in Z8 , s E S. But now, define the 
comultiplication by 

µ(Zs) = L Zu 0 Zt. 
ut=s 

Denote this "bialgebra" by Z 0 (S). The word bialgebra is in quotes because it is not always the case that 
there is a corresponding counit. 

For Sa matrix partial semigroup such as the one depicted in Fig. 2 (which is, of course, the 3 x 3 
case), Zo(S) does have a natural counit, viz. 
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Fig. 2 

and the resulting bialgebra is the matrix-function bialgebra of matrix comultiplication. The construction 
Z(S) itself also gives this matrix-function bialgebra but "shifted" (see Sec. 15 below). This construction 
is perhaps less appropriate here because the "pure shuffle" part of the multiplication in the dual comes 
from 1 ® Z and Z ® 1 parts of the comultiplication. 

A third variant is as follows. Let now M be a partial monoid, i.e, there is a twosided unit element e. 
The underlying algebra is now Z ( Zm : m E M \ { e} J, and Ze is identified with 1. The comultiplication 
formula is the same as above, i.e., 

µ(Zs) = L Zu®Zt 
ut=s 

and there is a counit given by 

e(Zm) = 0 Vm EM\ {e}. 

Denote the result of this construction by Zoo(M). Clearly Z(S) = Zoo(SU{e}), where SU{e} is the 
partial monoid obtained by adding a new (artificial) twosided unit element e. There are corresponding 
"GOSA's: GOSAo and GOSAoo. 

14. The Simplest GOSA 

Possibly the simplest partial semigroup is the one-element S = { s; s2 = s }. Let us see what the 
corresponding GOSA looks like, i.e., GOSA( { s}). The dual is the ring of polynomials in one variable 
Z[X] with comultiplication X t-+ 1 ® X + X ® X + 1 ® X, i.e., the multiplicative (formal) group. The 
possible words on {s} are strings of n s's and are conveniently coded by some symbol as (n). The 
multiplication on GOSA( { s}) is given by the explicit formula 

rnin{m,n} ( ( ')! ) 
(n)(m) = L ( : ~1~ -_i ·)i ·i (n + m - i). 

i=O n i . m i .i. 

Let P = Pfinite(N U {O}) be the set of all finite subsets of the set of the nonnegative integers. For each 
n E N U { 0} write down its dyadic expansion 

n = ao + a12 + a222 + · · · + ak2k, ai E {O, 1}, 

and define 

€(n) = {i: ~ # O} E P. 

Give P a semigroup structure by means of the union operation. 

Theorem. The map (n) t-+ e(n) E P defines an isomorphism 

e : GOSA( { s}) ® Z/ (2) -+ Z/ (2)[P], 

where the target is the semigroup algebra of the semigroup P over Z/(2). 

For details, see [10]. 
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15. Matrix-Function Algebras 

Consider the partial semigroup of n 2 elements defined as follows 

Mn = { Sij : i, j E {1, ... , n }; SijSjk = Sik, other products undefined} 

(the "matrix-product semigroup" so to speak). This can be seen as the partial semigroup of morphisms of 
a finite category; the case n = 3 is depicted above in Sec. 13. The corresponding bialgebra Z(Mn) is the 
"matrix-function bialgebra" in the sense that for any ring with unit element R, Ring(Z(Mm), R) is the 
semigroup of n x n-matrices with coefficients in R under matrix multiplication. For a E Ring(Z(Mn), R), 
the corresponding matrix is A= (aij), aij = a(Zij)+8ij· There is of course a corresponding "coad.dition" 
u(Zij) = 1 ® Zij + Zij ® 1 - 8ij (and corresponding "cozero") making Z(Mn) a coring object in the 
category of rings. There are many "functorial" sub-matrix-rings represented by similar Z(8)'s. 

16. GOSA(N*) 

Another particularly interesting class of GOSA's to investigate (it seems to me) are the 

9n = GOSA(A* \ {e}) = GOSAoo(A*), 

where A is an alphabet of n letters, A* is the free monoid of all words over that alphabet, and e stands 
for the empty word. The basis of this GOSA consists of all strings of words s = [w1, w2 , ••• , wn], i.e., 
sentences, including the empty sentence, which serves as the unit element. Let the alphabet A consist 
of the letters 

A= {Yi. Y2, y3, ... } (finite or countable). 
The length of a sentence s is the sum of the lengths of the words making up that sentence. The signature 
of a sentence is the string (ii, i2, ... , ik) of nonnegative integers, where ii is the total number of times 
that Yi occurs in the words making up the sentences. For instance, 

sig[Y1Y2, Y1, Y4Y1] = (3, 1, 0, 1). 

If the sentences s1, s2 have signatures u1, u 2, then the product s1s2 E g is the sum of basis elements 
which all have signature u1 + u2 , where signatures are added componentwise. 

The GOSA 's g are highly noncommutative, and a first question might be whether they are freely 
generated by certain (perhaps partially commuting) generators. This is not the case. The first obstruc­
tion occurs at length 3. For signature (1, 1, 1) one needs, modulo products of sentences of lower lengths, 
at least 7 generators; for instance 

[y1,Y2Ya], [y1,YaY2], [Y2,Y1Y3], [y3,Y1Y2], [y1,Y2,y3], [yi,y3,y2], [y2,Y1,Ya] 

and then there is one relation which comes from 

[Y1JlY2, y3] - [y2, y3][y1] + (83) = 0, 

where +(83) means "apply the nonidentity permutations from 83 to the expression on the left and add 
all these to that expression." 

Quite generally, for any three words u, v, w EA* one has the relation 

[u][v * w] - [v * w][u] + [v][w * u] - [w * u][v] + [w][u * v] - [u * v][w] = 0, 

or, equivalently, 
[u][v, w] - [v, w][u] + (83) = 0. 

There are also longer length relations like 

[Y1][y2, y3, y4] - [y2, y3, y4][y1] + (C4) = 0, 

where C4 is the cyclic group of the four permutations (1), (1234), (13)(24), (1432), and their natural 
generalizations for five or more y's. Further there are relations such as 

[Y1, Y2HY3Y4] - [y3y4][y1, Y2] + (A4) = 0, 
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where A4 is the alternating group on four letters. Up to and including length 4, these kinds of quadratic 
relations are the only ones that are needed, and one is tempted to speculate that this might be generally 
the case. 

17. The Malvenuto-Reutenauer Hopf Algebra 

The Leibniz-Hopf algebra Z of noncommutative symmetrical functions is a noncommutative gen­
eralization of the Hopf algebra of symmetrical functions. The latter one is self-dual, which Z cannot 
be, being cocommutative on the one hand and (maximally) noncommutative on the other. There exists, 
however, a noncommutative and noncocommutative generalization of the algebra of symmetrical func­
tions over the integers which is self-dual. This very nice object is due to Malvenuto and Reutenauer [13]. 
This is a much more symmetrical animal, which has M as a natural quotient (and Z as a natural sub­
object), and I would suggest that the business of noncommutative symmetrical functions should perhaps 
be redone in this context rather than over the nonselfdual generalization Z of the algebra of symmetrical 
functions. 

Appendix. Generation mod length n 

Let Jn be the subspace of M spanned by all the words of length n (where the length of a word 
[ai, a2 , ... , an] is, of course, n). This is an ideal in M. If M is seen as the algebra of quasi-symmetrical 
functions, and hence as a subalgebra of the power series in Xi, X2 , •.. , calculating modulo Jn is exactly 
the same as calculating modulo Xn+1, Xn+2, .... 

Because a word of weight n has length ::;n, to prove surjectivity of the map cp : Z[ESL] -+ M, it 
suffices to prove that it is surjective modulo Jn for each n. This is entirely analogous to the case of the 
symmetrical functions, where to prove that a symmetrical polynomial of degree n is a polynomial in the 
elementary symmetrical functions it suffices to work with the first n elementary symmetrical functions 
only. 

It is useful to have some terminology. We shall say that an element of M is AM n (where n = 2, 3, 4, 
or 5 for the cases considered here) if it is in the image of cp modulo the ideal Jn. (Here "AM" stands for 
"available modulo.") 

Below there are the detailed proofs that cp: Z[ESL] -+ M is surjective modulo Jn for n::; 5. These 
range from immediate (for n = 2) to rather quite messy (for n = 5). 

Al. Generation modulo J2. The only words of length ::;2 are the words [n] which correspond to the 
power sums 

Xf + X~ + · · · E Qsymz(X) = M. 
These are polynomials over Z in the elementary symmetrical functions which, in turn, correspond to the 
words 

~EESL. 
n 

A2. Generation modulo J3 • Because of the above we need only consider words of length 2. Now 

[a][b] = [a+ b] +[a, b] + [b, a] 

with induction (on weight) we can assume that all products are AM 3. Thus, it suffices to show that 
[a, b] is AM 3 for a ::; b, indeed for a < b because [a, a] is symmetrical and hence AM n for all n. Now 
[1, n] is a generator (i.e., an element of ESL), and 

[a -1][1,b] = [a,b] + [1,a + b-1] mod Ja, 

and we are done. Actually, it is not difficult to show that the algebra M/ J3 is isomorphic to the algebra 
over Z generated by the three elements [1], [1, 1], and [1, 2] modulo the single relation 

[1, 2]2 = [1][1, 1][1, 2] - [1][1, 1]2 • 
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Here there is a significant difference between Qsymz(X) and Symz(X). In the latter case Symz(X)/Jn 
is free polynomial in n generators for every n. 

A3. Generation modulo J4. Because of A2 we need only prove that all words of length 3 are AM4. 
(This, however, will still involve more detailed consideration of words of smaller length.) Now 

[l][a-1,b,c] = [a,b,c] + [a-1,b+ 1,c] + [a-1,b,c+ 1], 

where = now, of course, denotes congruence modulo J 4. Thus, with induction on weight and with 
induction on the first symbol in the words of length 3, it suffices to prove that the words of length 3 that 
start with a 1 are AM 4. This leaves three cases: 

(1) [1, a, b], a, b > 1; 
(2) [1, 1, b], b ? 1; 
(3) [1, a, 1], a> 1. 

The first two cases involve generators. Therefore, it remains to deal with the last one. Now 

[1][1, a] = [2, a] + [1, a+ 1) + 2[1, 1, a]+ [1, a, l]. 

If a is odd, then [2, a] is in ESL; also [1, a+ 1], [1, 1, a] E ESL. Therefore, it only remains to show that 
words of the form [2, 2b] are AM 4, where we can assume b ?: 2 because [2, 2] is symmetrical. Now 

[1, b]2 = [2, 2b) + 2(1, b + 1, b] + 2[1, 1, 2b] + 2[2, b, b] and [2, b, b] = [1, 1, 1][1, b - 1, b - l]. 

This concludes this proof. 

A4. Generation modulo Js. Here, of course,= will denote congruence modulo Js. Because of A3 it 
suffices to deal with words of length 4 precisely. Again, by induction on weight we can assume that all 
sums of nontrivial products are AM 5. The calculations involve taking care of a fair number of different 
cases. 

Step 1. Words of the form [a, b, c, d], a, b, c, d ?: 2, are AM 5. 

Indeed, [a, b, c, d] = [1, 1, 1, l][a - 1, b - 1, c - 1, d - 1]. 

Step 2. Words of the form [2, 2b, 2c], b, c? 2, are AM 5. 

To see this, calculate 

[1, b, c]2 = [2, 2b, 2c) + 2[1, b + 1, c + b, c] + 2[2, b, b + c, c] + 2[2, 2b, c, c] 

+ 2[2, 2b, c, c] + 2[1, b + 1, b, 2c] + 2[1, 1, 2b, 2c]. 

Now all terms on the right hand side, except (2, 2b, 2c], are generators or are AM 5 by Step 1. 

Step 3. Words of the form [2, 2b] are AM 5. 

If b = 1, this is symmetrical and hence AM n for all n; therefore, we can assume b ?: 2. Now 
calculate 

[1, b] 2 = [2, 2b] + 2[1, b + 1, b] + 2[1, 1, 2b] + 2[2, b, b] + 4[1, 1, b, b] + 2[1, b, 1, b]. 
The only troublesome term is (2, b, b]. But if b = 2 this is symmetrical; if b is odd, this is a generator 
and if b ?: 4 and even, this is AM 5 by Step 2. 

Step 4. Words of the form [1, a, 1, c] are AM 5. 

If c? a> 1, these words are generators, i.e., in ESL. If 1 < c <a, calculate 

[1, a][l, c] = [2, a+ c] + [2, a, c] + [2, c, a] + [1, a+ 1, c] + [1, c + 1, a] + 2[1, 1, a+ c] 

+ [1, a, 1, c] + 2[1, l,a, c] + 2[1, 1, c,a] + [1, c, 1, a]. 

Now [2, a + c] is either a generator or is AM 5 by Step 3. All the other terms on the right hand side, 
except the desired term [1, a, 1, c], are generators except possibly [2, a, c] and [2, c, a]. If at least one of 
the a, c is odd, these are generators, and if both are even these two terms are AM 5 by Step 2. 
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Step 5. Words of the form [a, 1, b, c], a, b, c 2: 2, are AM 5. 

To see this, calculate 

[a - 1][1, 1, b, c] = [a, 1, b, c] + [1, a, b, c] + [1, 1, a+ b - 1, c] + [l, 1, b, a+ c - l] 

and note that all the terms on the right, except the desired one, are generators. 

Step 6. Words of the form [2, 2, c], c 2: 2, are AM 5. 

If c is odd this is a generator, and if c = 2, this is symmetrical. Thus we can assume that c = 2b, 
b 2: 2. As in Step 2, calculate 

[l, 1, b] 2 = [2, 2, 2b] + 2[1, 2, b + 1, b] + 2[2, 1, b + 1, b] + 2[2, 2, b, b] 

+ 2[2, 1, 1, 2b] + 2[1, 2, 1, 2b] + 2[1, 1, 2, 2b]. 

The first term on the right is the desired one, the second is a generator, the third is AM 5 by Step 5, the 
fourth is AM 5 by Step 1 and the last two are generators. It remains to deal with [2, 1, 1, 2b). We have 

[1][1, 1, 1, 2b] = [2, 1, 1, 2b) + [l, 2, 1, 2b] + (1, 1, 2, 2b] + [l, 1, 1, 2b + 1], 

and all the terms on the right, except the desired one, are generators. 

Step 7. Words of the form (1, a, b, 1], a 2: 2, b 2:. 3, are AM 5. 

To see this, calculate 

[l][l, a, b] = [2, a, b] + [1, a+ 1, b] + [1, a, b + l] + 2[1, 1, a, b] + [l, a, 1, b] + [1, a, b, l]. 

The last term on the right is the desired one; the next to last term is a generator if b 2: a and is AM 5 
otherwise by Step 4 because b 2: 3. Except for [2, a, b] the other terms on the right are generators. If 
one of the a, b is odd, this term is a generator; if both are even and a 2: 4 this term is AM 5 by Step 2, 
and if both are even and a = 2 this term is AM 5 by Step 6. 

Step 8. Words of the form [a, b, 1, c], a, b, c 2: 2, are AM 5. 

This time calculate 

[a-1,b- l)[l,l,1,c] = [a,b,1,c] + [a,l,b,c] + [1,a,b,c] 
+[a, 1, 1, b + c - l] + [l, a, 1, b + c - 1] + [l, 1, a, b + c - l]. 

The first term on the right is the desired one, the second is AM 5 by Step 5, the third is a generator, 
and so is the sixth and last. Further, b + c - 1 2: 3. Therefore, if a = 2 the fifth term is a generator, and 
if a 2:. 3 it is AM 5 by Step 4. It remains to deal with the fourth term. For this one consider 

[a-l][l,l,l,b+c-1] = [a,l,1,b+c-1] + [1,a,l,b+c-1] 
+ [l, 1, a, b + c - 1] + [1, 1, 1, a+ b + c - 1]. 

The second term is again either a generator or AM 5 by Step 4, and the third and fourth are generators. 
Therefore, [a, 1, 1, b + c - l] is also AM 5 and we are finished with this step. 

Step 9. Words of the form [a, b, c, l], a, b, c 2: 2, are AM 5. 

To see this consider 

[a - 1,b- l,c- l][l, 1, 1, l] = [a,b,c, 1] +[a, b, 1,c] +[a, l,b,c] + [1,a,b,c] 

and, noting that [l, a, b, c] is a generator, use Steps 7 and 8. 

Step 10. Words of the form [1, a, 1, c], a, c 2:. 2, are AM 5. 
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This completes the result of Step 4. However Step 4 in its original form was used for Step 8, which, 
in turn, will be used here. If a, c ~ 3 this is Step 4, and if a $ c this is a generator. Thus only the cases 
[1, a, 1, 2], a 2 3, remain. Now 

[1][1, a - 1, 1, 2] = [2, a - 1, 1, 2] + [1, a, 1, 2] + [1, a - 1, 2, 2] + [1, a - 1, 1, 3]. 
The first term on the right is AM 5 by Step 8; the second is the desired one; the third is a generator; the 
fourth is a generator if a $ 4 and is AM 5 by Step 4 if a 2 4. 

Step 11. Words of the form [1,a,b,1], a,b ~ 2, are AM5. 

This completes the result of Step 7. Using Step 7 it only remains to deal with [1, a, 2, 1], a 2 2. To 
do this, consider 

[1][1,a-1,2, 1] = [2,a-1,2, 1] + [1,a,2, 1] + [1,a-1,3, 1] + [1,a-1,2,2]. 
First let a ;:::: 3. Then the first term is AM 5 by Step 9; the second is the desired one; the third is AM 5 
by Step 7; the fourth is a generator. That takes care of this subcase. For a= 2, consider 

[1][1, 2, 2] = [2, 2, 2] + [1, 3, 2] + [1, 2, 3] + 2[1, 1, 2, 2] + [1, 2, 1, 2] + [1, 2, 2, l]. 
The last term on the right is the desired one, the first is symmetrical, and all the others are generators, 
taking care of this subcase. 

Step 12. Words of the form [3, b, c], b, c 2 3, are AM 5. 

For this case consider 
[1, 1, 1][2, b - 1, c - 1] = [3, b, c] + [1, 3, b, c - 1] + [3, 1, b, c - 1] + [3, b, 1, c - 1] + [3, b, c - 1, 1] 

+ [3, 1, b - 1, c] + [1, 3, b - 1, c] + [1, 2, b, c] + [3, b - 1, 1, c] + [3, b - 1, c, 1] 
+ [2,b,c,1] + [2,b,1,c] + [2,1,b,c] 

and note that all the terms on the right, except the desired one, are AM 5 by Steps 7-9. 

Step 13. Words of the form [1, 1,a, 1], a 2 5, are AM5. 

To see this, consider 

and 

[2][1, 1, a - 2, 1] = [3, 1, a - 2, 1] + [1, 3, a - 2, 1] + [1, 1, a, 1] + [1, 1, a - 2, 3] 

[1, 1][2, 1, a - 3, 1] = [3, 2, a - 3, 1] + [3, 1, a - 2, 1] + [3, 1, a - 3, 2] 
+ [2, 2, a - 2, 1] + [2, 2, a - 3, 2] + [2, 1, a - 2, 2], 

[1, 1][1,2,a -3, 1] = [2,3,a - 3, 1] + [2,2,a- 2, 1] + [2,2,a -3,2] 
+ [1, 3, a - 2, 1] + [1, 3, a - 3, 2] + [1, 2, a - 2, 2], 

[1, 1][1, 1, a - 3, 2] = [2, 2, a - 3, 2] + [2, 1, a - 2, 2] + [2, 1, a - 3, 3] 
+ [1, 2,a - 2,2] + [1,2,a -3, 3] + [1, 1,a - 2,3]. 

Combining these and using Steps 1, 7, 8, and 9 gives the desired result. 

Step 14. Words of the form [1, 1,a, 1], a 2 2, are AM5. 

For a ~ 5, this is Step 13. Therefore, let a $ 4. Consider 

[1][1, 1, a] = [2, 1, a] + [1, 2, a]+ [1, 1,a + 1] + 3[1, 1, 1, a]+ [1, 1, a, 1] 
and 

[2][1, a] = [3, a] + [1, 2 +a] + [2, 1, a] + [1, 2, a] + [1, a, 2]. 
For the values of a under consideration, the first term on the right in the second equation is AM 5, and 
the second, fourth, and fifth are generators. Thus, [2, 1, a] is AM 5 for a $ 4. Using this the first equation 
in this step gives that [1, 1, a, 1] is AM 5 also for these values of a and hence for all values of a. 
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Step 15. Words of the form [2, 1, a], a 2: 2, are AM 5. 

This now follows from Step 14, using the first equation of Step 14. 

Step 16. Words of the form [2, a, 1], a 2: 2, are AM 5. 

For this, consider 

[2][1, a] = [3, a] + [1, a+ 2] + [2, 1, a] + [1, 2, a] + [1, a, 2] 

and 
[1][2, a] = [3, a]+ (2, a+ 1] + [1, 2, a]+ [2, 1, a] + (2, a, 1]. 

The first equation of these two gives that (3, a] is AM 5, and then the second, using also Step 3, gives 
the desired result. 

Step 17. Words of the form [1,a,1,1], a 2: 2, are AM5. 

Consider 
[1, l][l,a] = [2,a + 1] + [2, 1,a] + [2,a, 1] + [1, 2,a] + [1, a+ 1, l] + 2[1, 1,a + 1] 

+ 3[1, 1, 1, a]+ 2[1, 1, a, 1] + [1, a, l, 1]. 

Using Steps 3, 14, 15, and 16 the desired result follows if we can show that [1, a+ 1, 1] is AM 5. This 
follows directly from 

[1][1, a+ 1] = (2, a+ 1] + [1, a+ 2] + 2[1, 1, a+ 1] + [1, a+ 1, 1] 

and Step 3. 

Step 18. All words of length 4 are AM 5. 

This is done by induction on the first element of a word [a, b, c, d] using the formula 

[l][a-1,b,c,d] = [a,b,c,d] +[a- l,b+ l,c,d] +[a- l,b,c+ l,d] +[a- l,b,c,d + l]. 

Thus it only remains to deal with all words of the form [1, a, b, c]. If a, b, c 2: 2, this is a generator. If 
precisely one of the a, b, c is equal to 1, we have one of the cases 

[1, 1, b, c], b, c 2: 2; [1, a, l, c], a, c 2:: 2; [1, a, b, 1], a, b 2: 2. 

The first of these is a generator; the second and third are taken care of by Steps 10 and 11 respectively. 
If precisely 2 of the a, b, c are equal to 1, we have one of the cases 

[1, 1, 1, c], c 2: 2; [1, 1, b, 1], b 2: 2; [1, a, l, 1], a 2: 2. 

The first of these is a generator, and the second and third are taken care of by Steps 14 and 17. 
This concludes the proof that the conjectured generators suffice modulo length 5. 
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