
37

ON T!IE COMPACTIFICATION OF PROGRAMS
K, R. Apt, C. !longer s and M. Stefanski

Faculty of Economics
Erasmus University

P.O.Box 1738, 3000DR Rotterdam
The Netherlands

It has been argued in the literature that a natural and effective way to obtain programs of good quality is to proceed through the process of stepwise refinement. We show in this shott note how this technique can be applied to obtain compact· and succinct programs devoid of superfluous assignments or multiple loops. To illustrate our point ~e chose the well known Josephus problem taken from Knuth [1 l:
Tl1ere are n men arranged in a circle. Beginning at a particular position, we count around the circle and brutally execute every third man (the circle closing as· men are decapitated). Try to design a clever algorithm to determine which two are left (it may save your life). ·
While trying to solve this problem we should at first settle on the choice of the programming language in which the solution should be coded. Since our goai' is to obtain a short and simple solution we have to exclude FORTRAN or PASCAL because of their lack of provision for dynamic arrays which, as we shall soon :;ee, are needed here. On the other hand languages like Algol 60, Algol 68, PL/I and Ada are unsatisfactory because of their requirement of declaring all variables which in addition to all those BEGlNs and ENDs and identifiers of more than one letter unnecessarily lengthens the program text. As a result we are naturally led to choosing BASIC.
CAlr idea is to use an array L of N (N>=3) elements to form a ring of N elements from which every third element is removed until two elements are left over. This brings us to the following 12 line program
0010 INPUT N
0020 DIM L[N J
0030 FOR K=1 TO N-1 STEP 1
0040 LET L[K]=K+l
0050 NEXT K
0060 L[N]=1
0070 K=1
0080 FOR I=1 TO N-2 STEP 1
0090 LET L[L(K]]:L[L[L[K]J]
0100 LET K=L[L[KJ]
0110 NEXT I
0120 PRINT K,L(K]
The first loop together with line 60 is used here to form the ring whereas the second is used to leave out every third element.
An astute programmer will immediately observe various natural improvements which lead to the following 9 line version

0010 INPUT N
0020 DIM L [N]

38

0030 FOR K=N TO 1 STEP -1
00~0 LET L[K]= K+l-INT(K/lll*N
0050 NEXT K
0060 LET L[L[K]]=L[L(L[K]]]
0070 LET K=L(L[K])
0080 IF K<>L[L[KJJ THEN GOTO 0060

0090 PRINT K,L[K]
Note the elegant use of the fact that the variable K equals

1 in most versions of BASIC upon exit from the first loop. This

technique used here to save one assignment cannot be employed in

PASCAL 1~here upon exit from the loop the value of the loop index
is undefined. Furthermore, the program demonstrates once again

the power of GOTO.
A closer look at the last program still reveals some

deficiencies. Even though we saved here one line by using the

GOTO statement instead of the for loop we are stiH left with

two loops in the ·program. The major question now is: is it

possible to merge these two loops into one, thereby further

reducing the length of the program, and eliminating redundancy?

While looking for an answer to this question it is

illuminating to observe that both loops consist of updating the

array Land computing the new value of K (in that order). The

next version of the program makes use of this fact and also

employs the useful feature of BASIC that all variables are

initialized to zero.
In the above program the_ values assigned to K are: N Cat

the beginning), K-1 (during the first lo_op) and L[L[K]](during

the second loop). On the other hand the subscript of L used

during the first loop is K and during the second loop L[K) and

the values assigned are K+l-INTCK/N)*N and L[L[L[K]J),

respectively.
This suggests that the two assignments to K and L should be

of the following form:
K:A*(N+l)+B*CK-l)+C*L[L[K]]
L[B*K+C*L[K]):B*(K+l-INT(K/N)*N) +C*L[L[L[KJ]J
where
A is 1 at the first execution of the K-assign.~ent, thereafter it

equals 0,
B is 1 throughout the first loop and 0
loop,
C is O throughout the first loop and
loop.

A proper choice of the values is:
A:l-SGN (L[Ni),
B=l-SGN (L[O J),
C:SGN (L (0]).

throughout

throughout

The program .. 10uld now be of the following form:
0010 INPUT N
0020 DIM L[N]
0030 assignment to K
00~0 assignment to L
0050 IF K <>L [L [K)] THEN GOTO 30
0060 PRINT K,L[K]

the second

the second

39

Let us analyze what happens during the execution of this
program. During the first phase the corresponding assignments
to L are carried out in the following order: L(N]=1,
L[N-1)=N, ••• , L(l]=2 and finally L[0)=1. llow the second phase
begins. C now equals 1 and K becomes L[L[O]) i.e. 2 and not 1
as we would wish. (The reader is asked to consult the second
version of the program). Thus we start the second phase with a
wrong vnlue of K. This difficulty can be solved by assigning to L the value B*(K+1-INT(K/N)*N) +C*L[L[L[K]J]+D
wh_ere Dis 11-1 if K is 0 and 0 otherwise. Thus a . choice
D:(1-SGN (K))*(11-1) will do.

Now L[O) becomes II, so L[L[OJ)=1 as desired. The second
phase begin:; with the assignment K:1 • Note that the test at
line 70 is true only at the very end of the second phase when
\.here are only two elements left in the ring. These two elements are the desired ones.

Summarizing, the complete listing of the program lool's as follows:
0010 INPUT N
0020 DIM L[N)
0030 LET K=C1-SGN(L[N]))*(N+1)+(1-SGN(L[O)))*(K-1)+

SGN(L[O))*L[L[K])
0040 LET L[(1-SGN (L [0)))*K+SGN (L [O])*L [K]]= (1-SGN (L (0]))*

(K+ 1-INT (K/N)*N)+SGN (L [OJ) *L [L [L[K]]]+ (1-SGN (K)) 1 (N-1)
0050 IF K<>L[L(K)) THEN GOTO 30
0060 PRINT K, L[K]

REMARK:One might object to the use of the fact all variables are
initialized to zero. This problem can be avoided by observing
that the desired initial assignment can be performed by the user
provided he is encouraged to do so. For example the initial
assignment of K to N might be achieved by replacing the first
iine of the last program by

INPUT "TYPE IN THE NUMBER OF PRISONERS (TWICE TO AVOID ERRORS)";K,N.
An appropriate refinement of the program which uses this technique to assign initial values to both K and L[O] is left to

the read er.
The final version of the program has only 6 lines and is

several orders of magnitude simpler and more transparent than
the first one. Any improvement in this matter can be achieved
only by some additional insights into the problem. We encourage
the reader to find a solution to the problem which has only 5
lines. We do have such a solution and shall present it in the
next issue of this Bulletin.
CONCLUSIONS : rle hope to have demonstrated that 13ASIC possesses
various, largely unexplored APL-like features which can be
nicely combined with the process of stepwise compactification.
At the same time we have introduced a new powerful technique of loop merging which deserves a further study.

REFERENCE
[1) Knuth, D., TI1e Art of Cornpu\,er Programming, Vol.

ilddison-\lcsley, 1973

