
12

The Multi-model DBMS Architecture and
XML Information Retrieval

Arjen P. de Vries, Johan A. List, and Henk Ernst Blok

12.l Introduction

Since long, computer science has distinguished between information retriernl
and data retrieval, where information retrieval entails the problem of rank­
ing textual documents on their content (with the goal to identify documents
relevant for satisfying a user's information need) while data retrieval involves
exact match, that is, checking a data collection for presence or absence of
(precisely specified) items. But, now that XML has become a standard doc­
ument model that allows structure and text content to be represented in a
combined way, new generations of information retrieval systems are expected
to handle semi-structured documents instead of plain text, with usage scenar­
ios that require the combination of 'conventional' ranking with other query
constraints; based on the structure of text documents, on the information
extracted from various media (or various media representations), or through
additional information induced during the query process.

Consider for example an XML collection representing a newspaper archive.
and the information need 'recent English newspaper articles about Willem­
A.lexander dating Maxima' .1 This can be expressed as the following query
(syntax in the spirit of the XQuery-Fulltext working draft [58]): 2

FOR $article IN document("collection.xml")//article
WHERE $article/text() about 'Willem-Alexander dating Maxima'

AND $article[©lang = 'English']
AND $article[©pdate between '31-1-2003' and '1-3-2003')

RETURN <result>$article</result>

The terms 'recent' and 'English' refer to metadata about the newspaper
articles, whereas the aboutness-clause refers to the news content. Because only

1 Willem-Alexander is the Crown Prince of The Netherlands, who married l\1axima
Zorreguieta on 2-2-2002.

2 Assume an interpretation in which 'recent' is equivalent to 'published during the
last month', and language and pdate are attributes of the article tag. The between
... and . . . construct does not exist in XQuery, but is used for simplicity.

H. Blanken et al. (Eds.): Intelligent Search on XML Data, LNCS 2818, pp. 179 191. 2003.
© Springer-Ver!ag Berlin Heidelberg 2003

180 A.P. de Vries, J.A. List, and H.E. Blok

recent English articles will be retrieved by this request, precision at low recall
levels is likely to be improved. Note that this capability to process queries that
combine content and structure is beneficial in ways beyond extending query­
ing textual content with constraints on rich data types like numeric attributes
(e.g., price), geographical information and temporal values. Egnor and Lord
[105] suggest that new generations of information retrieval systems could ex­
ploit the potentially rich additional information in semi-structured document
collections also for disambiguation of words through their tag context, and
use structural proximity as part of the ranking model. Also, combined query­
ing on content and structure is a necessary precondition for improving the IR
process when taking into account Mizzaro's different notions of relevance (see
[221]).

12.1.1 Dilemma

So, we observe a trend in software development where information retrieval
and data retrieval techniques are combined; as a result of a desire to create
applications that take advantage of the additional information made explicit in
semi-structured document collections, and, as importantly, to provide a basis
for improved information retrieval models, possibly achieving better recall and
precision thanks to exploiting this additional information automatically.

Developments in hardware layout of computer systems pose another chal­
lenge - to be met in any resource-consuming application, not just IR. Due
to the increasing importance of cache memory in modern CPUs, memory
access cannot be thought of as random access any more: sequential access
patterns can be many times faster than random accesses [39]. Since memory
latency is not improving with Moore's law (unlike other properties of com­
puter architecture), this problem will gain importance. At the same time,
the price of (cheap) personal computers compared to (expensive) professional
workstations stimulates distribution of work over 'workstation farms', taking
advantage of shared-nothing parallelism. Similarly, server machines with two
up to eight processors are not extremely expensive any more, making it more
attractive to explore strategies that exploit shared-memory parallelism. The
drawback of this increased complexity in computer architecture (hierarchical
memory, parallelism, distribution) is that efficient usage of the available re­
sources requires highly experienced programmers, who are fully aware of the
low-level details of the machine architecture used.

As a result of these observed trends (software and hardware), a dilemma
arises in the engineering of information retrieval systems: should their design
be optimized for flexibility or for efficiency'? Highly optimized stand-alone
systems are, naturally, not very flexible. Experiments (e.g., with new models
or adaptive learning strategies) require changes in complex low-level code,
with the danger of affecting the correctness of the results. To circumvent such
inflexibility, it is common practice to wrap the core IR system in a black­
bo1:, and implement additional features on top. Considering that we should

12 The Multi-model DBMS Architecture and XML IR 181

optimize our systems for parallel and distributed computing and memory
access patterns however, usage of black-box abstractions to obtain fiexibilitv
becomes ever less desirable: it leads easily to inefficient systems. as we do n;t
really understand what happens inside the ranking proc~ss.

The essence of our problem is being trapped in an impasse solving the
dilemma: gaining flexibility through abstraction causes an efficiency penalty
which is felt most when we exploit this flexibility in new applications of IR or
explore improvements upon existing models.

This problem is illustrated clearly in the processing of relevance feedback.
Retrieval systems typically rank the documents with the initial query in a
first pass and re-rank with an adapted query in a second pass. Jonsson et al.
have shown in (182] that the resulting retrieval system is not optimal with
respect to efficiency, unless we address buffer management while taking both
passes into account. So, the inner workings of the original system must be
changed for optimal performance of the full system. In other words, we must
break open the black-box. This, obviously, conflicts with our previously stated
desire for flexibility.

Another illustration of this dilemma appears when extending retrieval sys­
tems for multimedia data collections, strengthening our arguments against
the pragmatic engineering practice of coupling otherwise stand-alone retrieval
systems. In a multimedia retrieval system that ranks its objects using various
representations of content (such as the system described in [302]), the number
of independent black-box components that may contribute to the final rank­
ing equals the number of feature spaces used in the system. It seems unlikely
that computing these multiple rankings independently (i.e., without taking
intermediate results into account) is the most efficient approach.

12.2 A Database Approach to IR

We seek a way out of this impasse between flexibility and efficiency by fol­
lowing 'the database approach'. Database technology provides flexibility by
expressing requests in high-level, declarative query languages at the concep­
tual level, independent from implementation details such as file formats and
access structures (thus emphasizing data independence). Efficiency is obtained
in the mapping process from declarative specification (describing what should
happen) into a query plan at the physical level (describing how it happens).
The query optimizer generates a number of logically equivalent query plans,
and selects a (hopefully) efficient plan using some heuristics.

There is not much consensus on how the integration of IR techniques in
general-purpose database management systems (DBMSs) should take place.
The typical system design couples two standalone black-box systems using
a shallow layer on top: an IR system for the article text and a DB'tl.IS for
the structured data. Their connection is established by using the same doc­
ument identifiers in both component systems. State-of-the-art database solu-

182 A.P. de Vries. J.A. Li::;t. and H.E. Blok

tions make available new functions in the query language of object-relational
database svstems (OR-DBl\JSs}; these functions interface to the
otherwise still stand-al~ne software systems. Therefore, extending an OR­
DB~!S with all information retrieval module means no more than again 'wrap­
ping· the IR system as a blark-box inside the DBl\IS architecture (see also
Figure 12. l L Apart from seriously handicapping the query optimizer. the IR
l!H;<lule must handie parallelism and data distribution by itself. Therefore.
adapting an OR-DBMS for the changing requirements identified in Section
12.1 may even be more complex than enhancing the stand-alone IR system.

c--·---------.
' i Query language I

···rn1
Query language i

Logical I
I algebra I

i .-----------
i
I Logical

I algebra

I L!_ ;<
w

Physical [... rn algebra

I Physical [rn I
...

algebra ~)(

Storage layer Storage layer

Fig. 12.1. Comparing a Multi-Model DBMS (left) to an Object-Relational DBMS
(right).

\Ve propose the lvfulti-Model DBMS architecture as a better alternative.
It has been especially designed to enable the integration of databases and
(multimedia) information retrieval [90]. As depicted graphically in Figure 12.l,
this system can not only be extended at the physical level, but also at the
logical level. Its extensibility at multiple layers in the architecture enables a
strong notion of data independence between the logical and physical levels.
We call this architecture the Multi-Model DBMS, since the data model used
at the logical level can be different from that at the physical level.

In a prototype implementation, the Mirror DBMS, we have used the Moa
(X)NF2 algebra [303] at the logical level, and the binary relational algebra
provided by MonetDB [37] at the physical level. Knowledge about IR is cap­
tured using Moa 's extensibility with domain-specific structures. These exten­
sions map high-level operations (such as probabilistic ranking of document
contem) to binary relational algebra expressions [90].

Creating a dear separation of concerns by introducing a logical and physi­
cal layer provides several advantages. First, operations defined at the physical
level support facilities for features of the computer system architecture (e.g.,
shared-memory parallel processing) and can take full advantage of modern

12 The Multi-model DBMS Architecture and XML IR 183

CPU processing power. The mapping of operators by extensions at the log­
ical level onto expressions at the (possibly extended) physical level is the
appropriate place for encoding domain-specific knowledge, such as the Zipfian
distribution of terms typical for IR (as demonstrated in [32]).

A good example is given by the tree-awareness for relational databases,
introduced by Grust and Van Keulen (Chapter 16 of this book). The staircase
join proposed is an example of an extension at the physical level, improving
the efficiency of structural joins. A logical extension for handling trees based
on their work encodes, e.g., the pruning predicates added to the WHERE
clause of the SQL query, or the criteria for using the staircase join in the
physical query plan.

Another advantage of the separation of concerns in the Multi-Model DBMS
architecture is that it allows IR researchers to concentrate on retrieval mod­
els and reduce the effort of implementation involved with empirical studies.
It separates representation from evidential reasoning and query formulation,
which reduces the effort of changing the application logic significantly: the
IR researcher makes necessary changes only to the IR processing extension,
while the user applications do not require adaptation whenever the retrieval
model is changed. This advantage has been called content independence (91],
as a counterpart of data independence in database management systems. The
notion of content independence helps to keep changes local (changes to the
retrieval model) when experimenting with new theory.

12.3 Extensions for XML Information Retrieval

Our prototype system for information retrieval on XML collections exploits
the separation of concerns discussed in Section 12.2, by introducing two sep­
arate extensions at the logical level: an XML extension for handling path
expressions over XML documents and an IR extension for IR primitives. To
illustrate a typical retrieval session (including the translation of a logical layer
query to a possible physical query execution plan), consider again the example
query of Section 12.1 (an example XML document is shown in Figure 12.2):

FOR $article IN document("collection.xml")//article
WHERE $article/text() about 'Willem Alexander dating Maxima'

AND $article[©lang = 'English']
AND $article[©pdate between '31-1-2003' and '1-3-2003']

RETURN <result>$article</result>

This query can be rewritten to include a ranking preference, typical for IR
applications:

FOR $article IN document("collection.xml")//article
LET $rsv := about($article/text(), 'Willem-Alexander dating Maxima')
WHERE $article[©lang = 'English']

AND $article[©pdate between '31-1-2003' and '1-3-2003']
ORDER BY $rsv DESCENDING
RETURN <result><rsv>$rsv</rsv>$article</result>

184 A.P. de Vries, J.A. List. and H.E. Blok

__ __. <.g1 language

article ': : : _

title

'

' 'Willem-Aleunder'

--~---- .. @Jate-puhlished

bdy

/-~~
I ~

sec

I\
p p

'Maxima'

sec

r , \
p p

' 'dating'

'
Fig. 12.2. Possible article excerpt of an X!vfL newspaper archive; the leaf nodes
contain index terms.

The about statement in the query above can be seen as an instantiation of
the retrieval model used at the logical layer, taking as input the text of the
articles in the collection (i.e., the article text regions) and the query text.
An instantiation of the retrieval model requires the collection of component
text and computation of term statistics, as well as calculating a score for the
component under consideration.

The logical Xl\IL extension manages the document structure using a stor­
age scheme at the physical level that is based on te1;t regions [78, 173]. Text
regions support dynamic computation of term statistics in any projection of
the XML syntax tree, including transitive closures. They also offer flexibil­
ity for determining structural relationships between given sets of nodes, an
important property for, e.g, efficient traversal along XPath axes.

\Xle view an Xi'vfL document instance as a linearized string or a set of
tokens (including both entity tags and document text tokens), instead of as a
synta.x tree. Each component is then a text region or a contiguous subset of
the entire linearized string. The linearized string of the example document in
Figure 12.2 is shown below:

<article ... ><title> ... </title><bdy><sec><p> ... </bdy></article>

A text region a can be identified by its starting point Sa and ending point ea

within the entire linearized string, where assignment of starting and ending
points is simply done by maintaining a token counter. Figure 12.3 visualizes
the start point and end point numbering for the example XML document and
we can see, for example, that the bdy-region can be identified with the closed
interval [5 .. 24].

12 The Multi-model DBMS Architecture and X\!L JR 187.i

.---~--@language
anicle:[0 .. 25] ':::: ___ _

/ ~ --·@date-published

.. ;~''." 7~
'•I'" ·-·"'"' 7'\' =l"··"I

p:[7 .. 10' p:[ll..13] p:[l6 .. l~[l9 221

,
'dating':[l7 .. 17] .·

' ' ' .' 'Willem-Alexander':[S .. 8] '. . .':[9 .. 9] 'Maxima':[l2 .. 12] '. . .':[20'.201 '
'. . .':121..211

Fig. 12.3. Start point and endpoint assignment

At the physical level, our system stores these XML text regions as four-
tuples (region_id, start, end, tag), where:

• region_id denotes a unique node identifier for each region;
• start and end represent the start and end positions of each region;
• tag is the (XML) tag of each region.

The set of all XML region tuples is named the node index N. Index terms
present in the XML documents are stored in a separate relation called the
word index W. Index terms are considered text regions as well, but physically
the term identifier is re-used as both start and end position to reduce mem­
ory usage. Node attributes are stored in the attribute index A as four-tuples
(attr_id, region_id, attr _name, attr_val). Furthermore, we extended the phys­
ical layer with the text region operators, summarized in Table 12.1. Note that
we have put the text region operators in a relational context, delivering sets
or bags of tuples.

Table 12.1. Region and region set operators, in comprehension syntax [56]; sr and
er denote the starting and ending positions of region r, Or its region_id.

I Operator I Definition

a ::) b true {:::=:} Sb > Sa /\ eb < ea

At><i:::iB {(oa,ob)\ a<--A, b<-B, a:::ib}

12.4 Query Processing

To clarify the difference between a 'traditional', black-box system architec­
ture and our proposed architecture, this section presents the query processing

186 A.P. de Vries, .J.A. List, and H.E. Blok

employed in the prototype system that takes place to evaluate the exampk•
query. To keep things simple, we present the physical layer as a familiar SQL
database: in the prototype implementation however, we use the Monet In­
tt>rface Language (J\UL, [38]) gaining better control over the generated querv . .
plans.

Wordlndex (WI Nodeindex (NJ

position term region_
id

start end tag

2 ... 0 0 25 article

3 I I 4 title

8 'Will..' 2 5 24 bdy

9 3 6 14 sec

12 'Maxi . .' 4 7 10 p

17 'dating' 5 II 13 p
20 ... 6 15 23 sec

21 7 16 18 p
8 19 22 p

...

Query (Q) Attribute index (A)
qterm

'Maxima'
region_ attr_id attr_ attr

id name -val
'dating'

0 0 Jang ...

0 1 pdate ...

...

Fig. 12.4. Database schema of our XML IR system.

12.4.1 XML Processing

The first part of the generated query plan focuses on the processing of struc­
tural constraints, and is handled in the logical XML extension. For the exam­
ple query, it identifies the document components in the collection that are sub­
sequently ranked by the IR extension, which implements the about function.
The XML processing extension produces its query plans based upon the region
indexing scheme outlined in Section 12.3, using the physical database schema
shown in Figure 12.4. It selects the collection of article components specified
by XPath expression //article/text() (a collection of bags of words), fil­
tered by the specified constraints on publication date and language attributes:

articles :=

SELECT n.region_id, start, end
FROM nodeindex n,

attributeindex al, attributeindex ap
WHERE n.tag = 'article'

AND al.region_id = n.region_id

12 The Multi-model DBMS Architecture and Xl\!L IR 187

AND al.name = 'lang'
AND al.value = 'English'
AND ap.region_id = n.region_id
AND ap.name = 'pdate'
AND ap.value BETWEEN '31-1-2003' AND '1-3-2003';

mat_articles : =
SELECT a.region_id, w.position
FROM articles a, wordindex w
WHERE a.start < w.position AND w.position <a.end;

The resulting query plan is rather straightforward; it selects those article
components satisfying the attribute constraints, and materializes the text oc­
curring in these article components. Materialization of the text is handled
by the containment-join IXl ::i, specified in the second SQL query by the range
predicates on the position attribute of word index W.

?-Jotice that the logical XML extension generates a query plan that is un­
derstood by the physical level of the system (and could be executed as is),
but that this plan has not been executed yet, neither has the ordering in
which the relational operators are to be evaluated been fixed at this point!
A main advantage of deferring the query evaluation is that the physical layer
can still use its statistics maintained about the data, for instance to decide
upon the predicate that is most selective. This also improves the likelihood
that intermediate query results can be reused, e.g .. between sessions (when
the same user always reads English articles only) or shared across different
users (all selecting usually article nodes with recent publication date). A third
advantage will be discussed after the logical extension for information retrieval
processing has been introduced.

12.4.2 IR Processing

The next step in this discussion focuses on the logical extension for IR pro­
cessing: in our example query, this extension handles the ranking of article
components selected by the XJ'vIL extension.

The prototype system uses Hiemstra's statistical language modeling ap­
proach for the retrieval model underlying the about function (Chapter 7 of
this book). The selected XML sub-documents are thus ranked by a linear
combination of term frequency (~f) and document frequency (df). The lan­
guage model smoot.hes probability P(T;IDJ) (for which the tf statistic is a
maximum likelihood estimator) with a background model P(T,) (for which
the df statistic is a maximum likelihood estimator), computing the document
component's retrieval status value by aggregating the independent scores of
each query term.

The IR processing extension at the logical level manipulates collections of
bag-of-words representations of the document components to be ranked. Let
us first consider the calculation of the term probabilities. This requires the

188 A.P. de Vries, J.A. List, and H.E. Blok

normalization of term frequency with document component length. Calcula­
tion of P(T;!D1) is thus outlined in the following SQL fragment:

mat_art_len :=
SELECT mat_articles.region_id, count(*) AS length
FROM mat_articles GROUP BY mat_articles.region_id;

ntf_ij :=
SELECT mat_articles.region_id, w.term,

(count(•) I mat_art_len.length) AS prob
FROM mat_articles, mat_art_len, wordindex w, query q
WHERE Y.term = q.qterm

AND mat_articles.position = w.position
AND mat_articles.region_id = mat_art_len.region_id

GROUP BY mat_articles.region_id, w.term;

For generality, the computation of these probabilities has been assumed
completely dynamic, for the IR extension cannot predict what node sets in
the XML collection will be used for ranking. In practice however, when the
collection is mostly static and the same node sets are used repeatedly for rank­
ing (e.g., users ranking always subsets of //article/text()), the relations
storing term counts and component lengths should obviously be maintained
as materialized views.

Similar arguments hold for the estimation of P(T;), the term probabilitv
in the background model. As explained in [89] however, the collection fro~
which the background statistics are to be estimated should be specified as
a parameter of the about operator (alternatively, the right scope could be
guessed by the system). Let the collection of all article nodes be appropriate in
the example query (and not the subset resulting from the attribute selections),
and the following queries compute the background statistics: ·

num_art :=

SELECT COUNT(*) FROM nodeindex WHERE tag='article';

art_qterm :=
SELECT DISTINCT n.region_id, w.term
FROM nodeindex n, wordindex w, query q
WHERE w.term = q.qterm

AND n.tag = 'article'
AND n.start < w.position AND w.position < n.end;

ndf_i :=

SELECT term, (count(•) I num_art) AS prob
FROM art_qterm GROUP BY term;

The final step computes the ranking function from the intermediate term
probabilities in document and collection:

ranks :=

SELECT ntf_ij.region_id,
sum(log(1.0 + ((ntf_ij.prob I ndf_i.prob) *

12 The lVlulti-model DBMS Architecture and X!llL lH ISll

(0.15 I 0.85)))) AS rank
FROM ntf_ij, ndf_i
WHERE ntf_ij.term = ndf_i.term
GROUP BY ntf_ij.region_id
ORDER BY rank DESC LIMIT 100;

12.4.3 Inter-extension Optimization

\Ve now present the third advantage of the Multi-Model DB.MS architecture:
optimization is not limited to within extensions themselves, but can also be
performed between extensions. An example of such inter-extension optimiza­
tion is the processing of the text()-function. Formally, this function material­
izes all text within an XML node and the generated plan for materialization of
all article text has been presented. Assuming for example an object-relational
approach \Vith two blackbox extensions, one for XPath expressions anJ orn' for
IR processing, the XPath blackbox extension would have had to materialize
all text occurring in article nodes as result of //articles/text() that is the
input for the about operator of the IR extension.

In our case however, the IR extension takes a query plan as input that
it simply augments with its own operations. The physical layer of the archi­
tecture can easily detect that only the terms occurring in the query string
have to be materialized to compute the correct results. The query term selt>c­
tion predicate (wordindex. term = query. qterm) is simply pushed up into
the expression for mat_articles. The much smaller intermediate result to
be materialized reduces significantly the bandwidth needed for evaluating the
full XQuery expression - especially in cases when the query terms occur in­
frequently in the corpus.

Summarizing, the main benefit of the proposed ~lulti-Model DB:\lS ar­
chitecture is the ability to make such optimization decisions (either within
extensions or between extensions) at run-time. The logical extensions expose
their domain knowledge in terms understood by the physical layer. still allow­
ing it to intervene if necessary (instead of fixing the query execution order
themselves). Also, reuse of intermediate results is easier realized. The precise
nature of the optimization process is a central focus in our current research.

12.5 Discussion

The information retrieval models discussed so far have been straightforward.
ignoring semantic information from XML tags, as well as most of the logical
and conceptual structure of the documents. In spite of the simplicity of the
retrieval models discussed, these examples demonstrate the suitability of the
'database approach' for information retrieval applications. The next step in
our research is to determine what extra knowledge we need to add to increase
retrieval effectiveness. Development of new retrieval models (that exploit tlw

19ll :\.P. de Vries . .J A. List. and H.E. Blok

full potrntial !wnefit of X?\IL documents) can only be based on participation
in E'\'aluations (iike Il'iEX, see Chapter 19), and we expect the flexibility of
the datahasP approach to information retrieval to help invent these

n1on) easilv.
Th~: in~egration of IR and database technology will offer more apparent

in future retrieYal systems, supporting more complex search strate­
and advanced query proce:ssing techniques. Consider for example a slightlv

mudified scenario for our running example: we drop 'recent' from the i;ifo1:_

mation need. and assume automatic query expansion to be part of the IR
process. It is quite likely that 'Willem-Alexander' is only referred to as 'the
Dutch Crown Prince' in some of the English newspaper articles. Similarly, it
is likelv that some other articles mention both 'Willem-Alexander' and .'the
Dutch .Crown Prince'. Thus, we hypothesize that query expansion with terms
from documents containing both "Willem-Alexander' and 'Maxima' would im­
prove recall with high likelihood.

Generalizing this scenario. we define a strategy for queries containing sev­
eral (more than one) named entities. For these queries, we first retrieve a
small number of documents that contain (most of) these named entities and
rank high using the full query. Next, we perform query expansion with blind
feedback using these documents. Finally, we rank the full collection using the
expanded query.

In a retrieval system based on black-boxes, implementing a strategy like
this can be rather tricky. Terms from the collection that are tagged as named
entities would be stored outside the IR system, probably in a DBMS like
structured data. The ranking system cannot usually be instructed to only
retrieve documents that contain at least these terms. And, as argued before,
the blind feedback process is often implemented on top of the core IR engine.
which probably does not cache intermediate results. To process the full query.
we travel between the boundaries of systems more than once, which will clearly
reduce the efficiency of the system.

Advanced query processing techniques include optimization strategies
adapted to an interactive environment, allowing search with precise queries,
browsing based on online clustering of search results, and query refinement us­
ing relevance feedback. Horizontal fragmentation might be exploited for han­
dling larger collections, like in [32]: distribute large sets of XML documents
over a farm of servers and fragment the vocabulary based on term frequency,
either globally or within documents (or document regions).

Using the quality assessments from the INEX evaluation, we can investi­
gate trading quality for speed, as we did for full-tex't retrieval using TREC
benchmark data [33]. Like in text retrieval, XQuery-Fulltext retrieval will re­
sult in many documents, and now also document regions, that match a query
more or less. As mentioned before, this does require ranking and user feed­
back, resulting in an iterative process that should converge to a good final
result set as quickly and effectively as possible. This means the user does not
want the steps to get there to take very long. Also, in the first iterations ex-

12 The Iv1ulti-model DBMS Architecture and XML IR 191

plicitly presenting expectedly bad results to the user might very well speed
up the entire process as the negative user feedback on those results will rule
out significant parts of the search space for processing in further iterations.
Trading quality for speed is an interesting option for the first steps of the user.

12.6 Conclusions

We have identified two types of challenges for IR systems, that are difficult
to address with the current engineering practice of hard-coding the ranking
process in highly optimized inverted file structures. We propose that the trade­
off between flexibility and efficiency may be resolved by adopting a 'database
approach' to IR. The main advantage of adhering to the database approach
is that it provides a system architecture allowing to balance flexibility and
efficiency. Flexibility is obtained by declarative specification of the retrieval
model. and efficiency is addressed through algebraic optimization in the map­
ping process from specification to query plan.

Existing (relational) database system architectures are however inadequate
for proper integration of querying on content and structure. The Multi-Model
DBMS architecture is proposed as an alternative design for extending database
technology for this type of retrieval applications. Discussing the query pro­
cessing strategies for an example query combining content and structure, the
main differences with existing blackbox approaches for extending database
technology are explained.

The chapter has been concluded with a discussion of future directions in IR
system implementation for which our proposed architecture is of even more
importance. In particular, we claim that both fragmentation as well as the
optimization though quality prediction would benefit greatly from an open,
extensible, layered approach, i.e., the advantages of the Multi-Model DBMS
architecture.

