
Abstraction of Parallel Uniform Processes with Data∗

Jun Pang, Jaco van de Pol, Miguel Valero Espada
CWI, Department of Software Engineering, The Netherlands

{pangjun,vdpol,miguel}@cwi.nl

Abstract

In practice, distributed systems are quite often composed
by an arbitrarily large but finite number of processes that
execute a similar program. Abstract interpretation is an ef-
fective technique to fight state explosion problems. In this
paper, we propose a general framework for abstracting par-
allel composition of uniform processes with data, in the set-
ting of a process algebraic language μCRL. We illustrate
the feasibility of this technique by proposing two instances
of the general framework and applying them to the verifica-
tion of two systems.

1. Introduction

In practice, distributed systems are quite often composed
by an arbitrarily large but finite number of processes that ex-
ecute a similar program. The parallel composition of a set of
uniform processes with data always produces an exponen-
tially growing state space, which limits the application of
verification techniques such as model checking. Abstract in-
terpretation [4] is an effective technique to fight the state ex-
plosion. It extracts program approximations by eliminating
uninteresting information. Computations over concrete uni-
verses of data are performed over abstract domains. The ap-
plication of abstract interpretation to the verification of sys-
tems is suitable since it allows to formally transform possi-
bly infinite instances of specifications into smaller and finite
ones. By loosing some information we can compute a desir-
able view of the analyzed system that preserves some inter-
esting properties of the original.

Algebraic approaches to the study of distributed systems
focus on the manipulation of process descriptions. Process
algebras, are well suited for the study of behavioral proper-
ties of distributed systems. The language μCRL [11] com-
bines the process algebra ACP [2] with equational abstract

∗ Partially supported by PROGRESS, the embedded systems research
program of the Dutch organization for Scientific Research NWO, the
Dutch Ministry of Economic Affairs and the Technology Foundation
STW, grants CES.5008 and CES.5009.

data types. To each μCRL specification there belongs a La-
beled Transition System, in which the states are process
terms and the edges are labeled with actions. Linear Process
Equations (LPEs) [21] constitute a restricted class of μCRL
specifications, in which the parallel composition and com-
munication operators are removed. Algorithms have been
developed to transform μCRL specifications into this linear
format. In particular, Groote and van Wamel [12] derived
an LPE for the parallel composition of an arbitrary but fi-
nite number of uniform processes with data.

Recently, van de Pol and Valero Espada [19] developed a
framework to generate modal abstract approximations from
μCRL specifications. They introduced a new format for pro-
cess specifications Modal Linear Process Equation (Modal-
LPE), in which every transition, labeled with a set of ab-
stract actions, may lead to a set of abstract states. They
used Modal-LPEs to characterize abstract interpretations of
systems and to generate Modal Labeled Transition Systems
(Modal-LTS), in which transitions may have two modalities
may and must, that represent a double approximation (over
and under) of the original system, and proved that the ab-
stractions are sound for the full action-based μ-calculus.

Considering a distributed system composed of an arbi-
trary but finite number of uniform processes with data, we
develop a general framework and its formal requirements
for safely abstracting the system by performing abstract in-
terpretation of data, based on [12, 19]. Moreover, we present
two abstraction patterns, which fulfill the requirements and
can be embedded in the general framework.

1. Abstraction of process state: instead of keeping the
state of each process, we only count the number of pro-
cesses that are in a certain state.

2. Abstraction of the state counter: instead of storing the
exact number of processes that are in a same state, we
only consider some specific cases of the counter.

Furthermore, we present a special abstraction schema for
systems composed by indistinguishable processes, i.e., their
behavior does not depend on their identity. We illustrate the
feasibility of our technique by verifying a (simplified) dis-
tributed lift system [10] and a shared data space architec-

ture built over the JavaSpaces architecture [17]. For exper-
iments we used the abstraction assistent [18] in the μCRL
toolset [3].

Our approach can be used to verify large in-
stances of distributed systems. Moreover, in combina-
tion with classical data abstraction, we can generalize
the results to any instance of parameters of the sys-
tem. In this extended abstract, we omit the proofs for
all the theorems. Interested readers can find them at:
http://www.cwi.nl/˜miguel/abstraction/

Related work. The Parameterized model checking problem,
which is in general not decidable [1], has been addressed in
several works using different approaches. Abstraction tech-
niques for model checking are sound but incomplete, and
need human creative interactions in order to select the ap-
propriate abstractions.

The closest to ours are [15, 20]. Ip and Dill [15] used a
special data type to represent process identities and perform
an abstraction that maps the processes that are in a certain
state to the values {zero, more, zero or more}. The work
by Pong and Dubois [20] follows the same idea but needs
more user interaction in order to define the abstract behav-
ior of the abstracted processes. An improvement of our ap-
proach with respect to theirs is that we can deal with both
safety and liveness properties. Moreover, we do not give a
fixed abstraction mapping but a general pattern that can be
instantiated with different abstraction relations. The paral-
lel composition of processes is automatically translated to
a required form, therefore the user only needs to define the
desired abstractions.

Liveness for parametrized systems was already ad-
dressed in [16]. To use this approach, one has to define
safe acceleration schemes in order to infer liveness prop-
erties. Automated and complete techniques, e.g. the one
proposed by Emerson and Kahlon for Snoopy Cache Co-
herence Protocols [7], are restricted to a particular set of
systems. Other sound but incomplete methods use, for ex-
ample, automatically inductive invariants generated from
small instances of a system that hold in every larger in-
stance of it. Another approach is based on a cutoff theorem,
which has to be found and proved in order to general-
ize the verification result (see a.o. [6]).

This paper is organized as follows: Some basic defini-
tions and a short introduction to modal abstraction in μCRL
are given in Section 2. The general framework for lineariz-
ing and abstracting of parallel uniform processes with data
is proposed in Section 3. Section 4 presents two abstraction
patterns, and Section 5 applies these two patterns to a par-
ticular set of systems where processes are indistinguishable.
We perform two case studies in Section 6 and conclude the
paper in Section 7.

2. Preliminaries

2.1. Transition Systems

The semantics of a system can be captured by a Labeled
Transition System (LTS). An LTS consists of a possibly in-
finite set of transitions s

a→ s′, denoting that the state s can
evolve into the state s′ by the execution of an action a.

To model abstractions we use a different structure that al-
lows to represent approximations of the concrete system in
a more suitable way. In a Modal Labeled Transition Sys-
tem (Modal-LTS), transitions have two modalities may and
must which denote the possible and necessary steps in the
refinements. This concept was introduced by Larsen and
Thomsen [14]. The formal definition extends the definition
of LTSs by considering the two modalities.

From a concrete system described by an LTS we can gen-
erate an abstraction of it by relating concrete states and ac-
tion labels with abstract ones. We use a classical abstraction
framework based on Galois Connections between domains,
introduced in the late seventies by Cousot and Cousot [4],
see also [5].

Given the abstraction relation, we construct a double ap-
proximation of the concrete system using a Modal-LTS.
The may-transitions correspond to an over-approximation
of the original and the must ones to an under-approximation.
In [19], we have presented the complete formal framework
for performing abstractions, now we give an example to in-
troduce the basic intuition1:

Abstract States
Concrete States

A

B

C

b

b

a a a

b

Concrete Transitions
Abstract May Transitions
Abstract Must Transitions

a

a

a

a

b b b

If all concrete states related to an abstract state S have a
transition to a concrete state related to an abstract state S ′,
then there is a must transition between S and S ′. Therefore,
in Figure 2.1, we have the abstract must transition B

a→ C.
If there is some concrete state related to an abstract state S
with a transition to another state related to an abstract state
S′, then there is a may transition between S and S ′. In Fig-
ure 2.1, these abstract transitions are marked by the dashed
arrows. Whenever there is a must transition, there is also a
may one, note that we do not explicitly draw such cases.

Since the abstraction of a system preserves some infor-
mation of the original one, the idea is to prove properties on

1 The example is simplified by leaving out abstraction of labels.

the abstract and then to infer the result for the original. To
express properties about systems, we adapt the highly ex-
pressive temporal logic (action-based) μ-calculus [13]. The
satisfaction and/or refutation of formulas built over the full
μ-calculus is preserved/reflected in the abstract systems.

In the above example, we can prove a liveness prop-
erty that states that from the initial state we can do an a-
transition (〈a〉T) because in the abstract system there is a
must transition from A, so A necessarily satisfies 〈a〉T .
Furthermore, we can refute that from the initial state it is
possible to do a c-transition (〈c〉T) because there is no ab-
stract may c-transition from A.

2.2. μCRL

μCRL [11] is a formal language for specifying proto-
cols and distributed systems in an algebraic style. A μCRL
specification consists of two parts: one part specifies the
data types, the other part specifies the processes. We assume
the existence of the data types: booleans and naturals, de-
noted by Bool and Nat with their standard functions. More-
over, for every data type we assume the existence of the
equality predicate.

The specification of a process is constructed from action
names, recursion variables and process algebraic operators.
Actions and recursion variables carry zero or more data pa-
rameters. There are two predefined actions in μCRL: δ rep-
resents deadlock, and τ a hidden action. These two actions
never carry data parameters.

Processes are represented by process terms, which de-
scribe the order in which the actions from a set Act may
happen. A process term consists of action names and recur-
sion variables combined by process algebraic operators. p·q
denotes sequential composition and p+ q non-deterministic
choice, summation

∑
d:D p(d) provides the possibly infi-

nite choice over a data type D, and the conditional construct
p�b�q with b a data term of data type Bool behaves as p if b
and as q if ¬b. Parallel composition p ‖ q interleaves the ac-
tions of p and q; moreover, actions from p and q may also
synchronize to a communication action. The syntax and se-
mantics of μCRL are given in [11].

2.3. Linearization and Abstraction of μCRL Spec-
ifications

Linearization. A Linear Process Equation (LPE) is a sin-
gle equation consisting of actions, summations, sequential
compositions and conditional constructs. In particular, an
LPE does not contain any communication and parallel op-
erators. In essence an LPE is a vector of data parameters to-
gether with a list of condition, action and effect triples, de-
scribing when an action may happen and what is its effect
on the vector of data parameters. Each μCRL specification

that does not include successful termination can be trans-
formed into an LPE [21].

Definition 2.1 A Linear Process Equation is a μCRL
specification of the form

X(d : D) =
X
i∈I

X
ei:Ei

ai(fi(d, ei)).X(gi(d, ei)) � ci(d, ei) � δ

where ci : D ×Ei → Bool, fi : D ×Ei → Di, gi : D×Ei →
D, and ai is an action label with data parameters of type Di.

The LPE expresses that state d can perform, for all e i : Ei,
an action ai(fi(d, ei)) to end up in state gi(d, ei), under the
condition that ci(d, ei) is true. To every LPE corresponds a
Labeled Transition System, in which process states are rep-
resented by the nodes and actions by transition labels.

Abstraction. To generate a “safe” abstraction of a μCRL
specification we first give the abstraction relation between
the data domains, concrete and abstract, and then we in-
terpret the concrete system over the abstract domain. Let
absD be the abstract domain, and let us consider the rela-
tion between concrete and abstract domains is given by an
arbitrary mapping H : D → absD 2. To generate an ab-
stract approximation, we first transform the original specifi-
cation to a new format, called Modal Linear Process Equa-
tion, then we extract the corresponding Modal-LTS from
it. Before introducing the definition of the Modal-LPE, we
present a simple example.

Let us consider a concrete specification that uses inte-
gers. Then, if we abstract the integers to their sign, i.e.,
{neg, zero, pos}, we need to provide abstract definitions
of the functions to manipulate them. For example, the ab-
stract successor of neg can be either neg or pos, the ab-
stract successor of zero is pos and the abstract successor
of pos is always pos. In the first definition, we see that ab-
stract function may add more non-determinism. To capture
this feature, we use sets of values, i.e., absSucc(neg) =
{neg, zero}.

A Modal-LPE is similar to an LPE, the difference is that
the state is represented by power sets of abstract values and
for every i: Ci returns a non-empty set of booleans, G i a
non-empty set of states and Fi a non-empty set of action
parameters.

Definition 2.2 A Modal Linear Process Equation is a
μCRL specification of the form

X(aD : P(absD)) =
P

i∈I

P
ei:Ei

ai(Fi(aD, ei)).

X(Gi(aD, ei)) � Ci(aD, ei) � δ

2 In fact, H may be an arbitrary relation, but for simplicity we assume
that it is a mapping.

where Ci : P(absD)×Ei → P(Bool), Fi : P(absD)×Ei →
P(absDi), and Gi : P(absD) × Ei → P(absD).

Concrete LPEs are automatically abstracted using the ab-
straction assistant for μCRL specifications [18]. As the re-
sult of the syntactic transformation, we obtain a Modal-LPE
in which concrete function symbols f, appearing in the data
terms fi, gi, and ci of the original specification, are re-
placed by abstract counterparts absF, resulting in the cor-
responding abstract terms Fi, Gi, and Ci. In order to gen-
erate a Modal-LTS the user has to provide the relation be-
tween concrete and abstract domains H and the definition
of the abstract function symbols that form part of the ab-
stract Modal-LPE generated by the tool. The semantics of
Modal-LPEs follow these rules:

• S
A→must S′ if and only if there exists i ∈ I and e ∈

Ei such that F /∈ Ci(S, e), A = a(Fi(S, e)) and S ′ =
Gi(S, e)

• S
A→may S′ if there exists i ∈ I and e ∈ Ei such that

T ∈ Ci(S, e), and A = a(Fi(S, e)) and S ′ = Gi(S, e)

A Modal-LTS, generated from an abstract Modal-LPE, is
a safe approximation of the original system, if the abstract
functions that appear in the data terms of the Modal-LPE
satisfy a formal requirement in relation with their concrete
counterparts. Every pair of functions (f, absF), in which
f : X → Y (X is a vector of sorts) and absF : absX →
P(absY), has to satisfy:

• ∀ x : X. H(f(x)) ∈ absF(H(x))

We assume that the abstract function of the boolean sort is
the identity. We also remark that all functions are consid-
ered to apply point-wisely to sets.

In the next section, we present the general framework to
specify the parallel composition of uniform processes and
the abstraction of them by following the ideas presented in
this section.

3. Linearization and Abstraction of Parallel
Uniform Processes

Linearization. We use μCRL to specify systems composed
by an arbitrary number of uniform processes. We assume
that the processes are loosely coupled, i.e., they do not
communicate directly with each other.3 However, we allow
them to communicate with external processes that may play
the role of networks or coordination architectures. Uniform
processes share the same specification, i.e., they are syn-
tactically the same. This does not mean that their behavior

3 This requirement is not necessary, it is just to simplify the develop-
ment.

is equal for all of them. Every processes is uniquely iden-
tified, by a natural number k, and its behavior may be de-
termined by its identity. From now on, we assume that the
uniform processes share the following linear form (see Def-
inition 2.1):

P (k : Nat , d : D) =P
i∈I

P
ei:Ei

ai(fi(k, d, ei)).

P (k, gi(k, d, ei)) � ci(k, d, ei) � δ

This linear form makes no restriction on the specification of
the processes. For a process P (k, d), k is the identity and d
the data parameter of some arbitrary data type D represent-
ing the state of the process.4 We assume the existence of a
global constant N > 1 denoting the number of uniform pro-
cesses, therefore k is in the range {0, . . . ,N − 1}.

Groote and van Wamel [12] defined an equation that
models the parallel composition of N such processes, it uses
a data type DTable to store the values of parameters d of
each process. It defines tables indexed by natural numbers,
and each element has the data type D. Based on their def-
initions, we specify a different representation that is more
appropriate for performing abstractions.

Let K denote the set {0, . . . , N − 1}. The data type
DTable has the signature of K → D. Each table is a func-
tion from K to D. Thus, a process with identity k only has
one state in a table. Furthermore, we define update as a
function to update the old value e of process P (k) with d,
test a function to check whether the specified position and
data are in the table.

update : K × D × D × DTable → DTable
test : K × D × DTable → Bool

The defining equations are:

update(k, d, e, dt) =def dt [k := d]
test(k, d, dt) =def dt(k) = d

The argument e of update represents the old value of the
process k, it is not necessary for the definitions of concrete
linear systems, however we will see that it is helpful to de-
fine abstraction patterns. Let dk be the initial value of the
process k and dt be initially defined as dt(k) = dk for all
k ∈ K , then:

Theorem 3.1 The system P (0, d0) || P (1, d1) || · · · ||
P (N − 1, dN−1) is strongly bisimilar to Q(dt), where Q
is an LPE of the form:

4 Typically processes have a vector of parameters, using pairing and pro-
jections we can easily see that the use of a single parameter d is not an
essential limitation.

Q(dt : DTable) =P
i∈I

P
k:Nat

P
d:D

P
ei:Ei

ai(fi(k, d, ei)).

Q(update(k, gi(k, d, ei), d, dt))

�test(k, d, dt) ∧ ci(k, d, ei) ∧ k < N � δ

Theorem 3.1 states that any parallel composition of uniform
processes can be encoded using an LPE and a data type
DTable. Instead of the condition test, Groote and van Wamel
used a function get to access the state of the processes. Both
approaches are equivalent for defining concrete systems, in
which every process is in only one state. However, our ap-
proach minimizes the extra non-determinism added by the
abstractions that do not allow to determine the exact state of
the processes.

Abstraction. Now we present an abstraction framework for
an LPE in Theorem 3.1. It is composed by some definitions
and requirements that any particular instance of abstraction
must fulfill. To perform an abstraction it is needed to specify
a mapping H from concrete tables DTable to abstract ones
absDTable. Furthermore, the concrete linear form is sym-
bolically abstracted to the following Modal-LPE (see Defi-
nition 2.2):

absQ(absDt : P(absDTable)) =P
i:I

P
k:Nat

P
d:D

P
ei:Ei

ai(fi(k, d, ei)).

absQ(absUpdate(k, gi(k, d, ei), d,absDt))

�absTest(k, d, absDt) ∧ ci(k, d, ei) ∧ k < N � δ

absQ is the abstract version of the process defined in Theo-
rem 3.1, it gets as a parameter the abstract specification ab-
sDTable, that is initialized by the abstraction of the concrete
initial table, i.e., H(dt), and can be accessed with the func-
tions absUpdate and absTest, which have the following sig-
natures:

absUpdate : K × D × D × absDTable → P(absDTable)
absTest : K × D × absDTable → P(Bool)

Recall that all the functions point-wisely apply to sets of
values. The function symbols appearing in the data terms
are: absTest ,∧, ci, <, fi, absUpdate and gi, from which
only absTest and absUpdate are abstracted. Therefore, in
order to prove the correctness of an instance of abstraction,
the following conditions have to hold: ∀k ∈ K , d, e:D and
dt:DTable

H(update(k, d, e, dt)) ∈ absUpdate(k, d, e,H(dt))
test(k, d, dt) ∈ absTest(k, d,H(dt))

The remaining functions appearing in the specification are
not abstracted, so there is no safety requirement related with

them. A direct consequence of the fulfillment of the re-
quirement is that the Modal-LTS generated from the ab-
stract specification is a safe abstraction of the original sys-
tem, therefore it can be used to prove the satisfaction and/or
the refutation of safety and liveness properties.

We see that processes are abstracted using standard data
abstraction. By linearizing we encode the behavior of the
processes with a table, then we use abstraction to reduce the
range of values of the table. This abstraction can be used in
combination with other kind of abstractions. For example,
we can abstract the data type D that represents the state of
the processes to reduce even more the size of the system. In
the following section we present some instances of the gen-
eral abstraction framework.

4. Abstraction Patterns

4.1. Abstraction of the Processes State

Instead of storing the values d of every process we just
save the number of processes that are in a certain state. Let
Count denote the set {0, . . . , N}. Let Succ be the successor
function defined as Succ(c) = c + 1 for c ∈ {0, ..., N − 1}
and Succ(N) = N , and let Pred be the predecessor func-
tion defined as Pred(c) = c − 1 for c ∈ {1, ..., N} and
Pred(0) = 0. First, we give a function match from Count
to P(Bool) with the defining equations as follows:

match(c) =def

8<
:

{T} if c = N
{T, F} if 0 < c < N
{F} if c = 0

match checks whether a process is in a given state. The re-
sult of the function is {T} when all the processes are in the
given state; {F} when no process is in the state; otherwise,
{T,F}, since we do not know the exact answer. The last case
introduces non-determinism to the system.

Next, we specify absDTable as the type D → Count .
Each table absDt is a function from D to Count, absDt(d)
expresses the number of processes that are in the state d. ab-
sUpdate updates the number of processes in a certain state
and absTest is a function to check if a process is in a cer-
tain state. The definitions are:

absTest(k, d, absDt) =def match(absDt(d))
Succ(absDt, d) =def absDt [d := Succ(absDt(d))]
Pred(absDt, d) =def absDt [d := Pred(absDt(d))]

absUpdate(k, d, e, absDt) =def {Succ(Pred(absDt, e), d))}

If a process changes its state, we first decrement the counter
of the previous state, and then we increment the counter of
the new state. The absTest function does not depend on the
index of the process, it only depends on the state. We de-
fine the abstraction function Ht from DTable to absDTable
as follows:

Ht(dt)(d) =def

P
k∈K(dt(k) = d)

Theorem 4.1 The mapping Ht and the data type abs-
DTable with the functions absUpdate and absTest define a
safe abstraction.

As we have seen in the general framework it is enough to
prove the following safety conditions:

test(k, d, dt) ∈ absTest(k, d,Ht(dt))
Ht(update(k, d, e, dt)) ∈ absUpdate(k, d, e,Ht(dt))

This abstraction can be used for the verification of proper-
ties that do not depend on the exact process that executes an
action, but only depends on whether there is a process that
executes it or not.

4.2. Abstraction of the State Counter

We can generate a more abstract version of the system
by abstracting the counter. Instead of storing the exact num-
ber of processes that are in a determined state we can just
consider some specific cases, for example: (a) There is no
process in a certain state. (b) All processes are in a certain
state. (c) There are some (but not all) processes in a cer-
tain state (assuming N > 1).

To perform this abstraction we define an ab-
stract counter absCount by specifying a new mapping
Hc : Count → absCount . The data type absCount has
three values: zero, some and all. Together, we define two
functions absSucc, absPred : absCount → P(absCount)
to increase and decrease an abstract counter.

Hc(c) =def

8<
:

all if c = N
some if 0 < c < N
zero if c = 0

absSucc(zero) =def {some}
absPred(zero) =def {zero}
absSucc(some) =def {some , all}
absPred(some) =def {zero, some}

absSucc(all) =def {all}
absPred(all) =def {some}

The function absMatch is used to check whether a process
is in a certain state, based on the information of the abstract
counter. It corresponds to the function match for Count.

absMatch(zero) =def {F}
absMatch(some) =def {T, F}

absMatch(all) =def {T}

In our second instance of the general framework, we re-
define absDTable as a data type with the signature D →

absCount . Accordingly, absDt(d) expresses the abstract
number of processes which are in state d. absUpdate is a
function to update the number of processes in one state. The
definition of the new functions are as the ones defined in the
previous section, the only difference is that we replace the
concrete functions for the counter by abstract ones:

absTest(k, d, absDt) =def absMatch(absDt(d))
Succ(absDt, d) =def absDt[d := absSucc(absDt(d))]
Pred(absDt, d) =def absDt[d := absPred(absDt(d))]

absUpdate(k, d, e, absDt) =def {Succ(Pred(absDt, e), d))}

The new table is a more abstract version of the previous one.
The abstract mapping Htc : DTable → absDTable, is the
combination of the mappings Ht and Hc:

Htc(dt)(d) =def Hc(Ht(dt)(d))

Theorem 4.2 The abstract table with abstract counters con-
structed using the mapping Htc , defines a safe abstraction.

Considering the result of Theorem 4.1, the two safety re-
quirements for the functions absTest and absUpdate reduce
to prove that ∀c : Count the following conditions hold:

Hc(Succ(c)) ∈ absSucc(Hc(c))
Hc(Pred(c)) ∈ absPred(Hc(c))

match(c) ⊆ absMatch(Hc(c))

This pattern is more abstract than the previous, there-
fore it will preserve less information. We remark, again,
that the abstraction patterns are just examples of in-
stances that match the general framework provided in
Section 3. Depending on the system other values for the ab-
stract counter may be selected, for example the domains
{zero, one,more} or {zero,more, zero or more} used in
Ip and Dill’s work [15] are easily embedded in our frame-
work. This abstraction pattern may be also combined
with the previous one by only abstracting the counters re-
lated to some specific states and leaving the others as
natural counters.

5. Linearization and Abstraction of Parallel
Identical Processes

Linearization. Section 3 was dedicated to the linearization
and abstraction of uniform processes. We have defined uni-
form processes as the ones that share the same specifica-
tion, i.e., they are syntactically the same. Each process has
assigned an unique identity. Even if two processes are syn-
tactically the same, their behavior may be different because
of their identity.

We consider a particular case of uniform processes which
are indistinguishable. We call this class of processes iden-
tical. The behavior of each process does not depend on its
own identity k. They share the following linear form:

P (d : D) =
P

i∈I

P
ei:Ei

ai(fi(d, ei)).P (gi(d, ei))

�ci(d, ei) � δ

Given two identical processes pi and pj that are in the same
state d. If a condition c is true for pi, then it is also true for
pj . Furthermore, they can execute the same action to end in
the same new state.

If processes are identical then the mapping of Section 4.1
does not loose information. Therefore, the concrete system
is composed by a table that stores the number of processes
that are in a certain state. We redefine the concrete table
DTable =def D → Count . So dt(d) states the number of
processes in a certain state d. Accordingly, we redefine the
functions update and test.

update : D × D × DTable → DTable
test : D × DTable → Bool

The defining equations are:

test(d, dt) =def

j
T if dt(d) > 0
F if dt(d) = 0

Succ(dt, d) =def dt [d := Succ(dt(d))]
Pred(dt, d) =def dt [d := Pred(dt(d))]

update(d, e, dt) =def Succ(Pred(absDt, e), d))

Let ni the number of identical processes that are initially in
the state di, and dt be defined as dt(di) = ni , then we have
the following theorem:

Theorem 5.1 P (d0) || P (d1) || · · · || P (dN−1) is strongly
bisimilar to Q(dt), which is an LPE of the following form:

Q(dt : DTable) =
P

i∈I

P
d:D

P
ei:Ei

ai(fi(d, ei)).

Q(update(gi(d, ei), d, dt))

�test(d, dt) ∧ ci(d, ei) � δ

Instead of storing the state of every process, we have used
a counter representing the number of processes that are in
a certain state and we have proved that both representations
are equivalent (are strongly bisimilar).

Abstraction. In order to abstract the system with identical
processes, we can trivially adapt the definitions given for
the case of uniform processes. In this case the abstraction
would consist of abstraction of the counters, therefore, one
may use, for example, the pattern provided in Section 4.2,
in which the counter is abstracted to some symbolic val-
ues that determine the abstract number of processes that are
in a certain state.

6. Applications

6.1. JavaSpaces

JavaSpaces [9] is a coordination architecture that imple-
ments a shared repository that external agents can use to
communicate by sharing objects. It provides extra support
for implementing reliable applications. Systems may use
transactions, a notification mechanism and timeouts on re-
source allocation. We focus on a characteristic sort of appli-
cations that coordination architectures, such as JavaSpaces,
can easily implement. The idea is to accomplish a compu-
tationally intensive problem by breaking it into a number
of smaller tasks that can be executed in parallel. In partic-
ular, we consider a simple example composed by three dif-
ferent types of components:

• Producer: It writes new entries into the space. We can
think the producer as an acquisition unit that generates
a continuous flux of data that have to be processed. We
mark the unprocessed entries as being of type A.

• Transformer: It retrieves entries of type A, performs
some computation and writes a transformed entry into
the shared repository. The processed entry is of type B.

• Consumer: It takes the processed information from the
space, and uses the result of the computations.

A real life example that can match our model is, for ex-
ample, a radar-monitor system. The radar introduces pack-
ets of different measurements taken from an external mov-
ing agent. Transformers process the measures by comput-
ing predictions of future moves of the investigated agent.
The monitor displays the results of the process. In general,
we would like to have several transformers making calcu-
lations at the same time in order to accelerate the display
of the results. Next figure presents an overview of the sys-
tem.

��������

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

����������

T T

P C

write take

write writetaketake

B entry

A entry

In previous work [17], we developed a formal specifica-
tion of JavaSpaces written in μCRL. The specification is not
trivial and it captures the main features of the original archi-
tecture. It is composed by more than 500 lines of code. Be-
low we present the μCRL specification of the three types
of components. The complete concrete system is defined by
the parallel composition of the space, the producer, the con-
sumer, and N Transformers process.

proc Producer =
write(A, timeout)
.Producer

proc Consumer =
take(typeB)
.TakeReturn(typeB, B)
.Consumer

proc Transformer =
take(typeA)
.TakeReturn(typeA, A)
.write(B, timeout)
.Transformer

The Write action takes as arguments: the entry to add into
the space and a lease, i.e., the time the entry is allowed to
stay in the space before being automatically removed. Take
actions are destructive reads, and are executed by two syn-
chronous operations, first the space receives the request and
then it returns the value. Take actions get as arguments the
template used to select the desired entry. When there is an
entry in the space that matches some request the space re-
turns the desired value. The space only accepts a maximum
number of queries active at the same time, we assume that
this number is big enough for the needs of our system. The
space makes the best effort in order to deliver the entries,
i.e., it does not remove any entry that has a matching query.

One basic requirement to check is that the system no
matter what happens, keeps progressing. In other words that
it will not deadlock. If the capacity of the space is bounded
and the entries are never eliminated (infinite timeout), the
system may arrive to a deadlock state. Let us consider a fi-
nite instance of the system with one single Transformer and
the size of the space equals to 2. The following sequence of
steps: 1) Producer writes A, 2) Producer writes A, 3) trans-
former takes A, 4) Produces writes A, leads to a deadlock
since the space is full and the transformer cannot write a
B entry, the producer cannot write any new entry either and
the consumer cannot retrieve any B entry to free space. If the
space is unbounded this problem will not arise since both
producer and transformer can always write. But this solu-
tion is not realistic therefore we add a timeout to the entries
which will allow the space to free some place for new in-
coming entries. In principle, using timeouts, there should
not be any deadlock in the system, because in any state one
of the following actions is possible:

• If it is not full then the producer can Write.

• If there is some A entry in the space, Transformers that
are waiting for an entry can take it, (similar for B).

• If there is one expired entry, i.e., its lease equals to 0,
and no process is requiring it, then the space can re-
move the entry.

• If there is one entry with non-expired lease, the space
can decrease the timeout of the entry.

Looking at the Transformer μCRL code, we see that they
are identical, they do not use any identification number

therefore we can use the pattern presented in Section 5.
Moreover, we can abstract it by doing an abstraction to the
counters of the number of processes that are in one state, as
presented in the pattern of Section 4.2. However, it is im-
portant to capture the idea that after every take action there
should be exactly one return operation (TakeReturn). There-
fore, we abstract all counters but the one that determines the
number of processes that are waiting for an entry.

The absence of deadlock may be expressed using the ac-
tion based μ-calculus with modalities as follows:

νX.(〈 ′. ∗must .∗′ 〉 true ∧ [′. ∗may .∗′] X)

The formula states that from every state that may be reached
there is an out-going must transition. The property can be
proved using the CADP toolset [8]. Below, we present a ta-
ble with the sizes of the state spaces for different instances
of the system. We compare three cases:

• The concrete system represented with the standard rep-
resentation of parallel processes (denoted by Crt).

• The concrete system given in the linear form proposed
in the equation of Theorem 5.1 (denoted by Crt Lin).

• The abstract version of the last case (denoted by Abs).

The table shows how the standard representation of paral-
lel processes can not deal with big instances of the sys-
tem. However, our proposed format can, because it elim-
inates symmetries of the interleavings. Moreover, with the
abstraction we can reduce even more the size of the systems.
It is possible to handle instances with more than 100 parallel
processes. In order to generalize the model checking prob-
lem to an arbitrary number of processes, we would have to
abstract also some parts of the JavaSpaces processes, more
precisely, we would have to abstract the maximum number
of active queries.

Crt States Crt Lin States Abs States

5T 15,135 10T 4,663 10T 3,858
6T 49,560 20T 25,828 20T 12,093
7T 161,097 40T 267,302 40T 42,171
8T 520,494 80T 1,193,830 80T 156,759

100T 241,269

This example shows that the proposed framework is suitable
for verifying liveness properties. Many typical JavaSpaces
applications follow the schema of the example, therefore
they can easily be analyzed following our methodology.

6.2. A Distributed System for Lifting Trucks

A real-life distributed system for lifting trucks (lorries,
railway carriages, buses and other vehicles), which was de-
signed and implemented by a Dutch company, was analyzed
in μCRL together with CADP by Groote et al. [10].

The system consists of a number of lifts; each lift sup-
ports one wheel of the truck that is being lifted and has its

own micro-controller. On each lift there are some buttons
that control its movement. The micro-controllers of the dif-
ferent lifts belonging to a system are connected to a ‘cycli-
cal’ CAN (Controller Area Network). The formal analysis
of the system discovered some errors in the original speci-
fication and helped to build a refined version of the incor-
rect implementation. The new specification could be proved
correct for small instances of the system (at most 5 lifts). In
this section, we are going to extend the analysis of some re-
quirements for an arbitrary number. For this purpose, we
first give a simplified version of the original specification
that removes some non-relevant details, then we apply the
previously introduced techniques (see Section 4.1 and Sec-
tion 4.2).

If the up button of a certain lift is pressed, all the lifts
of the system should go up. The system has to assure that
all lifts move simultaneously to the same direction. Lifts
are programmed in such a way that during normal opera-
tion, they take turns to claim the bus. To achieve this or-
derly usage of the CAN bus, each lift must know its po-
sition in the network. Furthermore, in order to be able to
find out whether all lifts are in the same state, each lift must
know how many lifts there are in the network.

Initially, all lifts are in a standby state. The state of a lift
is changed if its up button is pressed. Then it will send an
up message to the bus. Other lifts change their state accord-
ing to the messages they receive, and when it is their turn
to use the bus they broadcast a message according to their
state. These messages are received by all the other lifts, and
the lift where a button is pressed will count them. When
it counts enough state messages and it gets the turn to use
the bus, it will broadcast a move message, after which all
the lifts will synchronously move. The state of each lift is
the vector composed by: the identifier of the lift, which de-
termines the order to claim the bus, the current state of the
lift and a counter for synchronized lifts which ranges from
0 to N . The behavior of the lifts also depends on the pass-
ing messages, which are composed by: the identity, the state
of the sender of the last message and a boolean specifying
when the up-button was pressed. The complete system is
composed by the parallel composition of the N lifts and the
process that models the CAN bus.

In order to create an abstraction that proves properties
for an arbitrary number of lifts, we have to combine the ab-
straction of processes as proposed in this paper with classi-
cal data abstraction. Therefore, we first abstract all the pa-
rameters and local variables that depend on N . Then, we see
that the behavior of the lifts depends on the process identi-
fier so we have to use the abstraction pattern for uniform
processes. Therefore, we construct the abstract table with
abstract counters for every state using the abstraction pat-
tern in Section 4.2.

We have built such abstraction using the abstraction as-

sistant for μCRL specifications. The result of the abstrac-
tion is a Modal-LTS. We see below the comparison between
the abstract result and some concrete instances.

System States

Crt 5 Lifts 2,751
Crt 6 Lifts 10,011
Crt 7 Lifts 33,031
Crt 8 Lifts 101,255

Abs N Lifts 1341

Formally, we express a correctness criterion by the follow-
ing safety property:

[true ∗ . ′movemay
′.NOTUP ∗ . ′movemay

′]false

Here NOTUP abbreviates (′. ∗may . ∗′ ∧¬ ′upmay
′), rep-

resenting any may-step except upmay . Basically, the for-
mula states that after a movement of the lift system, a but-
ton should be pressed in order to let the system move again.
The safety formula is satisfied by the abstract system there-
fore we can infer its satisfaction to all instances of the con-
crete system.

In this example we have seen that in some cases the ab-
straction patterns together with regular data abstraction may
be used to generalize the model checking problem to an ar-
bitrary number of uniform components. However the be-
havior of the lift system is strongly dependent of the iden-
tities of the lifts which implies that using the given patterns
its abstraction will not preserve many liveness properties.

7. Conclusion

We have presented a generic linearization and abstrac-
tion framework for algebraic specifications of systems com-
posed by processes that execute a similar program. The
framework is composed by a flexible set of definitions and
formal requirements that may be instantiated with different
abstraction schemes. Moreover, we have provided two dif-
ferent abstraction patterns that can be applied in a fully au-
tomated way. The suitability of the patterns has been proved
by applying them to the verification of two distributed ap-
plications. Moreover, we have shown that, in some cases,
the abstractions can still be used to verify liveness as well
as safety properties.

In Section 3, we have assumed that the uniform pro-
cesses in parallel do not communicate between each other
but with external processes. To generalize the framework
for any kind of processes, we have to extend definitions of
the linear equations by allowing communications via inter-
nal actions. The abstraction results will apply to the new
definitions with no further change.

References

[1] K.R. Apt and D. Kozen. Limits for automatic verification of
finite-state concurrent systems. IPL, 22(6):307-309, 1986.

[2] J.A. Bergstra and and J.W. Klop. Algebra of communicating
processes with abstraction. TCS, 77–121, 1985.

[3] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. van
Langevelde, B. Lisser, and J.C. van de Pol. μCRL: A
toolset for analysing algebraic specifications. In Proc.
CAV’01, LNCS 2102, pp. 250–254. Springer, 2001.

[4] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction
of approximation of fixed points. In Proc. POPL’77, pp. 238-
252. ACM, 1977.

[5] D. Dams. Abstract Interpretation and Partition Refinement
for Model Checking. PhD thesis, Eindhoven University of
Technology, 1996.

[6] E.A. Emerson and V. Kahlon. Reducing model checking of
the many to the few. In Proc. CADE’00, LNCS 1831, pp.
236-254. Springer, 2000.

[7] E.A. Emerson and V. Kahlon. Rapid parameterized model
checking of snoopy cache coherence protocols. In Proc.
TACAS’03, LNCS 2619, pp. 144-159. Springer, 2003.

[8] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Ma-
teescu, and M. Sighireanu. CADP – a protocol validation
and verification toolbox. In Proc. CAV’97, LNCS 1102, pp.
437–440. Springer, 1997.

[9] E. Freeman, S. Hupfer and K. Arnold. JavaSpaces Princi-
ples, Patterns, and Practice. Addison-Wesley, 1999.

[10] J.F. Groote, J. Pang, and A.G. Wouters. Analysis of a dis-
tributed system for lifting trucks. JLAP, 56(1-2):21-56, 2003.

[11] J.F. Groote and A. Ponse. The syntax and semantics of
μCRL. In Proc. 1st Workshop on ACP, Workshops in Com-
puting Series, pp. 26–62. Springer, 1994.

[12] J.F. Groote and J.J. van Wamel. The parallel composition of
uniform processes with data. TCS, 266(1-2): 65-75, 2001.

[13] D. Kozen. Results on the propositional μ-calculus. In Proc.
ICALP’82, LNCS 140, pp. 348-359. Springer, 1982.

[14] K.G. Larsen and B. Thomsen. A modal process logic. In
Proc. LICS’88, pp. 203-210. IEEE CS, 1988.

[15] C.N. Ip and D.L. Dill. Verifying systems with replicated
components in Murφ. In Proc. CAV’96, LNCS 1102, pp.
147-158. Springer, 1996.

[16] A. Pnueli and E. Shahar. Liveness and acceleration in pa-
rameterized verification. In Proc. CAV’00, LNCS 1855, pp.
328-343. Springer, 2000.

[17] J.C. van de Pol and M. Valero Espada. Formal specification
of JavaspacesTM architecture using μCRL. In Proc. COOR-
DINATION’02, LNCS 2315, pp. 274–290. Springer, 2002.

[18] J.C. van de Pol and M. Valero Espada. An Abstract Interpre-
tation Toolkit for μCRL. Under Submission.

[19] J.C. van de Pol and M. Valero Espada. Modal abstractions
in μCRL. In Proc. AMAST’04, LNCS. Springer, 2004. To
appear.

[20] F. Pong and M. Dubois. A new approach for the verification
of cache coherence protocols. IEEE TPDS, 6(8):773-787,
1995.

[21] Y.S. Usenko. Linearization in μCRL. PhD thesis, Eindhoven
University, 2002.

