
Semantic Models of a

Timed Distributed Dataspace Architecture

Jozef Hooman a,b,c

aUniversity of Nijmegen, The Netherlands
bEmbedded Systems Institute, Eindhoven, The Netherlands

Jaco van de Pol c

cCWI, Amsterdam, The Netherlands

Abstract

We investigate various formal aspects of a distributed dataspace architecture in
which data storage is based on time stamps. An operational and a denotational
semantics have been defined and the equivalence of these two formulations has been
proved. Moreover, the denotational semantics is fully abstract with respect to the
observation of produced data items. It is used as a basis for compositional reasoning
about components, supported by the interactive theorem prover PVS. We use this
framework for a small example where components make mutual assumptions about
each other’s output.

1 Introduction

In this paper, we investigate the application of formal techniques in the con-
text of an industrial software architecture which is based on distributed data
storages. In particular, we consider the software architecture Splice [1,2] which
has been devised at Thales Nederland (previously called Hollandse Signaalap-
paraten). It is used to build large and complex embedded systems such as
command and control systems, process control systems, and air traffic man-
agement systems.

Email addresses: jozef.hooman@embeddedsystems.nl (Jozef Hooman),
Jaco.van.de.Pol@cwi.nl (Jaco van de Pol).

Preprint submitted to Elsevier Science 12 October 2004

Splice is data-oriented, with distributed local databases based on keys. It pro-
vides a coordination mechanism between loosely-coupled heterogeneous com-
ponents by means of the publish-subscribe paradigm. An important design
decision is to have minimal overhead for data management, allowing a fast
and cheap implementation that allows huge data streams from sensors, such
as radars. For instance, Splice has no standard built-in mechanisms to ensure
global consistency or global synchronization. If needed, this can be constructed
for particular data types on top of the Splice primitives. A brief informal expla-
nation of Splice can be found in Section 2. Section 3 contains a formal syntax
of a very simple Splice-like language and informally describes the meaning
of this language. There is a slight difference with the semantics presented
in [3,4]; the current paper contains a weak and realistic assumption about the
synchronization of local clocks which simplifies the formalization significantly.
The semantic difference is explained at the end of Sect. 3.

Our aim is to reason about components of the distributed dataspace archi-
tecture Splice in a compositional way. This means that we want to deduce
properties of the parallel composition of Splice-components using only the
specifications of the externally visible behaviour of these components. In ad-
dition, the goal is to allow specifications that may include explicit assumptions
about the environment of a component, as described in [5].

Such a compositional verification framework should be based on a solid for-
mal foundation, in particular on a denotational semantics, which defines the
meaning of compound constructs in terms of the meaning of the parts [6].
Moreover, to increase the confidence in this denotational semantics, it is im-
portant to define an independent operational semantics and relate it formally
to the denotational one. This leads to the four main topics of this paper which
are briefly described in the next subsections: operational semantics (Sect. 1.1)
and denotational semantics (Sect. 1.2), their relation (Sect. 1.3), and the ver-
ification framework (Sect. 1.4).

1.1 Operational Semantics

To formalize the meaning of our simple Splice-like language, Sect. 4 contains
an operational semantics which is close to the operational intuition. Earlier
work on the operational semantics of Splice-like languages includes a transition
system semantics for a basic language of write and read statements (without
query) [7]. In [8], an operational semantics is provided by a translation to
process algebra. That paper focuses on a global dataspace view for a simple
fragment of Splice. Related is also a recent comparison of semantic choices
using an operational semantics and embeddings [9]. New in our work is the
treatment of local time stamps and their use for updating local databases.

2

Some other operational semantics have been given for shared dataspaces with
time, e.g. extensions of Linda or JavaSpaces with delays, time-outs and leasing
(i.e.: non-permanent data that expires after a specified time) [10–12]. All these
papers study timed extensions of coordination language primitives. Time plays
a different role in our paper. Our motivation has not been to make time explicit
in the coordination primitives, but time is used internally in the (semantics
of the) data space, in order to decide which data items to overwrite, and to
make causal relationships explicit.

1.2 Denotational Semantics

The denotational semantics of the Splice primitives is defined in Sect. 5. It
forms the basis of our verification framework and includes explicit assumptions
about the data items produced by the environment of a component. It is well-
known that a denotational semantics provides a good basis for a compositional
verification framework [6].

In previous work on a denotational semantics for Splice [13], the semantics of
local storages was inconvenient for compositional verification; it uses process
identifiers and a partial order of read and write events with complex global
conditions. In more recent work on the verification of Splice-systems [3], we
used a complex denotational semantics with environment actions.

1.3 Relating Operational and Denotational Semantics

Although the current denotational semantics is a good basis for compositional
reasoning using assumptions about the environment, it is far from trivial that
it captures the intuitive understanding of the Splice architecture. Hence, in
Sect. 6 we prove formally that it is equivalent to the operational semantics.
For the slightly more complex semantics defined in [4], a very similar proof
has been checked mechanically by means of the interactive theorem prover
PVS [14,15].

Another interesting topic concerns the equivalence classes induced by the se-
mantics, grouping the programs that obtain the same semantics. Typically,
a denotational semantics has more classes, containing less programs, than an
operational semantics. The reason is that the denotational semantics of a pro-
gram should define its meaning in any context, whereas in an operational
semantics the complete system is given. So a denotational semantics has to
distinguish more programs, but it might distinguish more than needed (the ex-
treme is a semantics where each syntactically different program gets a different
denotation).

3

This leads to the question whether the denotational semantics is fully abstract
with respect to the operational one, that is, does it only distinguish those
programs that are observably different in some context? In Sect. 7, we claim
that our denotational semantics is indeed fully abstract with respect to the
observations of the operational semantics, namely the set of produced data
items.

Full abstraction has been considered for a large variety of programming con-
cepts, e.g. for the timed semantics of synchronously or asynchronously com-
municating processes [16,17] to, recently, information exchange in multi-agent
systems [18]. Typically, a form of failure sets has been used to obtain full
abstraction, but in our case this was not needed.

1.4 Verification Framework

Many examples in the literature (cf. [6]) show that it is convenient to specify
components using explicit assumptions about the environment. Concerning
Splice, in [5] we propose a framework with an explicit assumption about the
quality of data streams published by environment and a similar commitment of
the component about its produced data. When putting components in parallel,
assumptions can be discharged if they are guaranteed by other components.

Reasoning with assumption/commitment [19] or rely/guarantee [20] pairs,
however, easily leads to unsound reasoning. There is a danger of circular rea-
soning, two components which mutually discharge each others assumptions,
leading to incorrect conclusions. Hence it is important to prove that the rea-
soning is based on a sound formal foundation.

In Sect. 8, we present a framework for the specification and verification of
Splice components. The framework has been defined in terms of the higher-
order logic of PVS, thus allowing the use of the interactive theorem prover of
PVS to verify applications. In [4] we have used a similar framework to verify
an example of transparent replication.

In this paper, we illustrate the approach by a small example with two compo-
nents that generate even and odd numbers; this example originates from an
early paper [21] on assumption/commitment reasoning. In this example, there
is a mutual dependency between the components and we observe that simple
implication between assumptions and commitments is not suitable. We solve
this by requiring that a commitment at a certain point of time may only use
assumptions for earlier points of time.

In our solution, we use a discrete notion of time; it is closely related to McMil-
lan’s rule which has also been formalized in PVS [22]. It, however, assumes

4

that parallel composition corresponds to conjunction which is not the case
in our framework (many components may produce different data items of a
particular sort). Having discrete time is convenient but not strictly needed; in
[23] we have shown that sound assumption/commitment reasoning is possible
if we require that there exists a δ > 0 such that a commitment at any point t
may use assumptions up to point t − δ.

2 Informal Introduction to the Splice Architecture

The Splice architecture provides a coordination mechanism for concurrent
components. Producers and consumers of data are decoupled. They need not
know each other, and communicate indirectly via the Splice primitives; ba-
sically read and write operations on a distributed dataspace. This type of
anonymous communication between components is strongly related to coor-
dination languages such as Linda [24] and JavaSpaces [25]. These languages,
however, have a single shared dataspace, whereas in Splice each component
has its own dataspace, see Fig. 2. Communication between components takes

local
database

local
database

application
 process

......

......

application
 process

read

write write

read

receivesend send receive

agent agent

Fig. 1. Splice applications

place by means of local agents. A data producer writes data records to the
other dataspaces via its agent. A data consumer uses an agent to subscribe
to the required types of data; only data which matches this subscription is
stored. Data items may be delayed and re-ordered and sometimes may even
get lost. It is possible to associate certain quality-of-service policies with data
delivery and data storage. For instance, for a particular data type, delivery
maybe guaranteed (each item is delivered at least once) or best effort (zero or
more times). Data storage can be volatile, transient, or persistent.

Each data item within Splice has a unique sort, specifying the fields the sort
consists of and defining the key fields, see [2] for more details. In each local

5

dataspace, at most one data item is present for each key. Basically, a newly
received data item overwrites the current item with the same key (if any). To
avoid that old data items overwrite newer information (recall that data may be
delayed and re-ordered), data records include a time stamp field. A time stamp
of a data item is obtained from the local clock of the data producer when the
item is published. At the local storage of the consumer, data items are only
overwritten if their time stamp is smaller than that of a newly arrived item
(with the same key). This overwriting technique reduces memory requirements
and allows a decoupling of frequencies between producers and consumers. It
also reduces the number of updates to be performed on the dataspace, as not
all received records get stored. The time stamps improve the quality of the
data stored, as no record can be overwritten by older data.

Although it cannot be assumed that the local clocks are synchronized perfectly,
many real-time applications require a reasonable tight clock synchronization.
In typical Splice environments, this is even supported by special hardware. We
will only use the relatively mild assumption that the clock drift is less than
the network latency.

To program components on top of Splice, a Splice API can be called within
conventional programming languages such as C and Java. Splice provides,
for instance, constructs for subscribing to data of a certain sort, retrieving
(reading) data from the local dataspace, and for publishing (writing) data.
Read actions contain a query on the dataspace, selecting data items that
satisfy certain criteria.

The local dataspace is organized along the well-known relational database
model. All information is stored in tables, and sorts determine the names and
types of the fields within a table. Fields can be declared to be key fields,
which determines the identity relation on data items. Queries may involve
typical database operations, such as joining records from various tables based
on key-fields, and projecting the records of a table by selecting a subset of the
fields. Note that by subscribing to a selection of the fields, a consumer may
ignore certain fields of produced data items. Most of this database structure
is kept abstract in our formalization; we keep a notion of key-data and assume
in Section 7 that producers can extend data sorts by adding new tag fields.

3 Syntax of a Simple Splice-like Language

In this section, we define the formal syntax of a very simple Splice-like lan-
guage. We have embedded the basic Splice primitives in a minimal program-
ming language to be able to high-light the essential features and to prove
equivalences between various semantic definitions in a formal way. It is easy

6

to extend the language with other constructs; in Sect. 8.1 we show how to
add an infinite loop and in [3] we have added assignments and an if-then-else
construct.

We consider only one sort. Let Data be some data domain, with a set Key-
Data of key data and a function key: Data → KeyData. Assume a given type
LocalTime, to represent values of local clocks. We assume a total order > on
LocalTime, and a minimal element 0 ∈ LocalTime.

The type DataItems of time-stamped data items, consists of records with two
fields: dat of type Data and ts of type LocalTime. A record of type DataItems
can be written as (#dat := v, ts := c#), following the PVS notation. In
long formulas, we may also write this as the ordered pair (v, c). Hence, for
di ∈ DataItems, we have dat(di) ∈ Data and ts(di) ∈ LocalTime.

For X ⊆ (DataItems) and t ∈ LocalTime, we define X <time t to denote that
all time stamps in X are smaller than t. More precisely, X <time t iff for all
di ∈ X, ts(di) < t. The reverse t <time X is defined similarly.

Using overloading, functions on Data can be extended to functions defined
on DataItems. In particular, the function key is extended to DataItems by
defining key(di) = key(dat(di)).

We will use ⊥ as a special symbol denoting an undefined data item, and
DataItems⊥ is defined to be DataItems∪{⊥}. Let Vars be the set of program
variables. Program variables range over DataItems⊥. For simplicity, we do not
give the concrete syntax of data expressions and queries here. Instead, we use
standard set notation for expressions and queries. A data expression e : Data
denotes a data value, possibly depending on the program variables. A query
is a predicate on DataItems⊥, possibly depending on program variables. We
will use ⊥ in queries to specify non-blocking read operations.

Henceforth, we typically use the following variables ranging over the types
mentioned above:

• v over Data values. In examples we also use A,B,C as concrete values.
• di, di0, di1, . . . over DataItems
• Di,Di0, Di1, . . . over DataItems⊥

• diset, diset0, diset1, . . . over sets of DataItems
• x, x0, x1, . . . , y, y0, y1, . . . over Vars
• q, q0, q1, . . . over queries

The syntax of our programming language is given in Table 1.

Informally, the statements of this language have the following meaning:

7

Table 1

Sequential program S ::= Write(e) | Read(x, q) | S1 ; S2

Process P ::= S | P1 ‖ P2

• Write(e) publishes a data item with value e (in the current state) and the
current time stamp (from the local clock). The local clock is increased.

We model best effort delivery; a data item arrives 0 or more times at each
process, where it might be used to update the local storage. It is added to
this local storage if there is no item with the same key which has a larger or
equal time stamp. As a side-condition of such an update, the value of the
local clock should be larger than the time stamp of any data item used for
an update of the local database.

• Read(x, q) assigns to x a data item from the local storage that satisfies
query q. In particular, if there are data items satisfying q, the choice is
non-deterministic. If no data item from the local storage satisfies q, but
⊥ satisfies q, then ⊥ can be returned. Otherwise, the execution of read is
blocked until the database contains a data item satisfying q.

For instance, the query q = {di | ts(di) > 100} in Read(x, q), would assign
to x a data item from the local storage with time stamp greater than 100.
If there are no such items in local storage, the read statement blocks. Note
that a query like q′ = q ∪ {⊥} allows ⊥, so with this query the read may
continue, even if the data storage doesn’t contain an element satisfying q.
Hence a read statement may be blocking or not, depending on the query.

• S1 ; S2: sequential composition of sequential programs S1 and S2.
• P1 ‖ P2: parallel composition of processes. A process is either a sequential

program or a parallel composition of processes; in the latter case we call it
a parallel program.

Instead of a concrete syntax for queries, we introduce a number of standard
abbreviations:

Definition 1 (Abbreviations)

• We use query “true” to denote any data item or ⊥.
• We use queries of the form “v” to denote {di | dat(di) = v}. These queries

require a data value v, and allow an arbitrary time stamp.
• We use queries of the form “v⊥” to denote {di | dat(di) = v} ∪ {⊥}. These

queries require data value v, but allow ⊥ if v is not present.
• new(x, v) is the query which requires an item with value v and time stamp

larger than that of x, if x is defined. Formally:
new(x, v) = {di | dat(di) = v and (x = ⊥ or ts(di) > ts(x)}.
For instance, if Read(y, new(x,A)) terminates then y is a data item with
value A and a time stamp larger than all time stamps of the items of x.

8

Example 2 As a very simple example, consider a few producers and con-
sumers of flight data. Let Data be a record with two fields: flightnr (a string,
e.g. KL309) and pos (a position in some form, here a number for simplicity).
The flight number is the key, that is, key(v) = flightnr(v). Consider a producer
of flight data

P1 = Write((#flightnr := KL567, pos := 1#)) ;
Write((#flightnr := LU321, pos := 6#)) ;
Write((#flightnr := KL567, pos := 2#)) ;
Write((#flightnr := KL567, pos := 3#))

and two consumers:
C1 = Read(x1, true) ; Read(y1, q1) ; Read(z1, q1)
C2 = Read(x2, q1) ; Read(y2, q2)

whose queries are specified as follows:
q1 = {di | flightnr(dat(di)) = KL567}
q2 = {di | flightnr(dat(di)) = KL567 and ts(di) > ts(x)}

Consider the process P1 ‖ C1 ‖ C2 and assume there are no other producers of
data. Note that the producer does not specify the local time stamp explicitly;
this is added implicitly. Recall that the items produced by P1 may arrive in a
different order at the consumers, and they may arrive several times. However,
this only leads to an update of the local database if the time stamp is larger.

Variable x1 may be ⊥ (if no data item has been delivered yet – note that this
read is not blocking) or it may contain a produced data item. For instance,
it may contain position number 3 for KL567. The second read is blocking (q1

doesn’t allow ⊥), so after that read, variable y1 will contain a data item with
flight number KL567. If there is a position for KL567 in x1, then the position
in y1 will be greater or equal (lower values are produced earlier, hence have
a smaller local clock value, and thus they cannot overwrite greater values).
Similarly for z1, where the position is greater or equal than the one in y1. It
is possible that z1 = y1. For consumer C2 the second read action requires a
newer time stamp, hence we always have y2 �= x2 and the position in y2 is at
least 2.

Difference with earlier versions

The most notable syntactic change compared to [4] is that now variables and
queries denote DataItems⊥ instead of P(DataItems). This simplifies the pre-
sentation considerably, and the generality of having sets was only used to allow
non-blocking reads (corresponding to the empty set) which is now captured
by having ⊥.

The informal meaning of the Splice statement defined here differs slightly from
the semantics defined earlier [3,4]. The current semantics contains a slightly
stronger - but realistic - requirement on the local clocks, namely that a local

9

clock is always larger than the time stamps in the data items that have been
received. This can be seen as an abstraction of the clock synchronization which
is present in the Splice system. In our semantics, these local clocks are updated
similar to Lamport’s logical clocks [26]. This ensures that the partial order
thus obtained is consistent with the causality relation between read and write
events.

The following example shows that this semantic difference can be observed by
a Splice process. Consider the three processes:

P1 = Write(A)
P2 = Read(x,A) ; Write(B)
P3 = Read(y,B) ; Read(y, new(y,A))

Suppose the time stamp of the item with value A is 10. With the original
semantics [3,4], the time stamp of the item with value B could be smaller,
say 5. Hence P3 may terminate, because it can first read B and then A with
a larger time stamp. With the current semantics, the local clock of P2 after
Read(x,A) will be larger than 10 and, hence, also the time stamp of the item
with value B will be larger than 10. This implies that P3 always blocks after
the first read, because there is no new item A with a larger time stamp to
read.

4 Operational Semantics

We define an operational semantics for a process S1 ‖ ... ‖ Sn of the syntax
of Sect. 3. where the Si are sequential programs. First, an operational status
of a sequential program (Def. 3) and its local computation steps (Def. 6) are
defined. Next, we define configurations (Def. 7), which represent the state of
affairs during operational execution of a process, and global computation steps
(Def. 8), leading to the operational semantics (Def. 9).

For convenience, we slightly rewrite the syntax of the programming language,
also introducing the empty statement E which represents a statement that
has terminated, as shown in Table 2.

Table 2

Sequential program S ::= E | Write(e) ; S | Read(x, q) ; S

Process P ::= S | P1 ‖ P2

The state of a program is represented by a function st : Vars → DataItems⊥.
An expression is formalized as a function e : (Vars → DataItems⊥) → Data.
We will write e(st) to denote the value of expression e in state st. Similarly,
a query q can be represented as q : (Vars → DataItems⊥) → P(DataItems⊥).

10

We write q(st)(di) (resp. q(st)(⊥)) to denote that di (resp. ⊥) satisfies query
q in state st.

Let DataBases be the type consisting of sets of data items with at most one
item for each key, i.e.

DataBases = {diset ⊆ DataItems | for all di1, di2 ∈ diset:
key(di1) = key(di2) → di1 = di2}

Definition 3 (Operational Status) An operational status of a sequential
program, denoted os, os0, os1, .., is a record with three fields, st, clock and db:

• st : Vars → DataItems⊥, represents the local state, assigning to each vari-
able a data item (or ⊥ representing undefined);

• clock ∈ LocalTime, the value of the local clock;
• db ∈ DataBases, with 0 <time db <time clock, represents the local database

as a set of data items representing the local storage. Besides the restriction
that each key occurs at at most once, we additionally require that all time
stamps in db are smaller than clock, but bigger than the minimal element
of LocalTime 1 .

Definition 4 (Variant) The variant of local state st with respect to variable
x ∈ Vars and value Di ∈ DataItems⊥, denoted by st[x 	→ Di], is defined as

(st[x 	→ Di])(y) =

⎧⎪⎨
⎪⎩

Di if y = x

st(y) if y �= x

Similarly, the variant of a record r with fields f1 . . . fm is defined by

fi(r[f 	→ v]) =

⎧⎪⎨
⎪⎩

v if fi = f

fi(r) if fi �= f

Produced data items are sent to an underlying network. This is represented by
N , a set of data items, i.e. N ⊆ DataItems. Note that we do not use a multi-
set, although a particular item might be produced several times by different
producers. The use of a set is justified by the fact that the multiplicity of data
items cannot be observed: the network is unreliable, and it may deliver this
item never, once, or many times. In previous papers [3,4] we showed that this
even allows the transparent replication of processes in certain cases.

To avoid problems due to multiple delivery of old data items by the network,
the database is only updated with newer data. We define the update of a
database, using a new database, i.e. a selected set of data items delivered by
the network. An element of the new database is added if its key is not yet
present, otherwise it only replaces the element of the old database with the

1 The additional requirement was not present in [4], but is essential for the full
abstraction result in Section 7

11

same key if its local time stamp is strictly greater.

Definition 5 (Update Database) The update of database db using a new
database db1, denoted UpdateDb(db, db1) is defined as follows.
di ∈ UpdateDb(db, db1) iff

• either di ∈ db and for all di1 ∈ db1 with key(di1) = key(di) we have ts(di1) ≤
ts(di),

• or di ∈ db1 and for all di0 ∈ db with key(di0) = key(di) we have ts(di0) <
ts(di).

A local computation step of a sequential program corresponds to a read or
write statement, or it can be an update step in which the local database is
updated with items delivered by the network.

Definition 6 (Local Computation Step) We denote a local computation
step of a sequential program S in an operational status os and given a network
N by 〈S, os,N〉 −→ 〈S ′, os′, N ′〉. This relation is defined by the three rules of
Fig. 2.

• Update: In the first – update – rule, X represents the data items that
arrive from the network. The condition X <time cl′ expresses that the value
of the local clock in the end state should be larger than the time stamps
of the newly added items; this models our assumption that the local clocks
of sender and receiver differ less than the maximal message transmission
delay.
Note that the network has not been changed, since data items might be
used several times for an update (modeling the fact that an item might be
delivered by the network several times).

• Write: In the second rule, for the write statement, the written data item
is given the time stamp of the new clock value, which must be strictly
greater than the current clock value. This ensures that subsequent write
statements get increasing time stamps. Recall that e(st) denotes the value
of the expression e in the current state st.

• Read: The last rule expresses that a read statement assigns to x an element
from the database that satisfies the query q if it exists. If no such element
exists and ⊥ satisfies the query, then ⊥ is assigned to x. Otherwise, no rule
applies, modeling a blocking read.

Definition 7 (Configuration) The state of affairs of a process S1 ‖ ... ‖ Sn

during execution is represented by a configuration of the form
〈(S ′

1, os1), ..., (S
′
n, osn), N〉

For each sequential program Si, it denotes the current status osi and the
remaining part S ′

i that still has to be executed. Moreover, it contains the
current contents N of the network.

12

cl′ ≥ cl X : DataBases X ⊆ N X <time cl′

〈S , (st, cl, db) , N〉 → 〈S , (st, cl′,UpdateDb(db,X)) , N〉

cl′ > cl

〈Write(e);S , (st, cl, db) , N〉 → 〈S , (st, cl′, db) , N ∪ {(e(st), cl′)}〉

q(st)(Di) cl′ ≥ cl Di ∈ db or (Di = ⊥ and ¬∃di ∈ db, q(st)(di))

〈Read(x, q);S , (st, cl, db) , N〉 → 〈S , (st[x 	→ Di], cl′, db) , N〉

Fig. 2. Local Computation Step

An execution of S1 ‖ ... ‖ Sn is represented by a sequence of configurations
C0 −→ C1 −→ C2 −→ ...

where C0 = 〈(S1 ; E, os1), ..., (Sn ; E, osn),ø〉 and, for all i, db(osi) = ø. Each
step in such a sequence represents the execution of an atomic action by some
sequential program i, as defined in Def. 8.

Definition 8 (Global Computation Step) The global computation ⇒O
is defined in Fig. 3. The basic rule corresponds to a local computation step of
one of the components. The other rules yield the reflexive, transitive closure
of the one step computation.

〈Si, osi, N〉 → 〈S ′, os′, N ′〉, for some i, 1 ≤ i ≤ n

〈(S1, os1), . . . (Sn, osn), N〉 ⇒O 〈(S1, os1), . . . (S
′, os′), . . . (Sn, osn), N ′〉

REFL
C ⇒O C

C1 ⇒O C2 C2 ⇒O C3
TRANS

C1 ⇒O C3

Fig. 3. Global Computation Steps for O
Typically, the operational semantics yields some abstraction of execution se-
quences, depending on what is observable. Here we postulate that only the set
of produced data items in the last configuration of an execution sequence is
(externally) observable.

Definition 9 (Operational Semantics) The operational semantics of a
process S1 ‖ ... ‖ Sn, given an initial operational status os0, is defined by
O(S1 ‖ ... ‖ Sn)(os0) =

{N ⊆ DataItems | db(os0) = ø and ∃os1, . . . , osn :
〈(S1 ; E, os0), ..., (Sn ; E, os0),ø〉 ⇒O 〈(E, os1), ..., (E, osn), N〉 }

Thus, the operational semantics of a program yields a set of sets of produced
data items, where each set of produced data items represents a possible exe-
cution of the program.

13

Example 10 Observe that, for any os0,
O((Read(x,A) ; Write(B)) ‖ (Read(x,B) ; Write(A)))(os0) = ø.

Indeed, the network and the databases are initially empty and the queries make
the read statements blocking, so no component can write the data item needed
by the other component. In the next section (Example 11) we show how our
denotational semantics avoids that these processes read each other’s written
items.

5 Denotational Semantics

In this section, we define the denotational semantics of our Splice-like pro-
gramming language. This means that the semantics of compound constructs
(sequential and parallel composition here) is defined in terms of the semantics
of its constituents, without referring to the syntax of these parts. The meaning
of the atomic statements (read and write here) is defined independently, such
that they can be included in any context.

We define the denotational semantics of a program using an initial status which
represents the state of affairs at the start of the execution. To support our aim
to reason with assumptions about the items produced by the environment,
such assumptions are included in the status. The semantics yields a set of
statuses, each representing a possible execution of the program.

To achieve compositionality and to describe a process in isolation, without
knowing the context in which it will operate, it is quite common that informa-
tion has to be added to the status to express relations with the environment
explicitly. Here we add the set of written data items and the set of items that
are assumed to be produced by the environment.

A denotational status, typically denoted by s, s0, s1, .., representing the cur-
rent state of affairs of a program, is a record with five fields. In addition to
the three fields of the operational status:

• st : Vars → DataItems⊥, the local state (values of variables);
• clock ∈ LocalTime, the value of the local clock;
• db ∈ DataBases, 0 <time db <time clock, the local database (a set of data

items, with at most one item per key, and time stamps smaller than clock
but bigger than the minimal element of LocalTime);

there are two new fields:

• ownw ⊆ DataItems, with 0 <time ownw. These are the data items written
by the program itself in the past;

14

• envw ⊆ DataItems, with 0 <time envw. This is the set of data items written
by the environment of the program; it is an assumption about all items
produced (including present and future). Note that we assume given all
items produced by the environment, including those that are assumed to be
produced in the future. This simplifies the semantics in the sense that no
updates of this envw-field have to be taken into account in the semantics.
However, we will need a condition to ensure that items are read in the
correct causal order (see also Example 11).

Below, we define a meaning function M for programs by induction on their
structure. The possible behaviour of a program prog, i.e. a set of statuses, is
defined by M(prog)(s0), where s0 is the initial status at the start of program
execution. Note that this includes an assumption about all data items that
have been or will be produced by the environment. The semantics will be such
that if s ∈ M(prog)(s0) then

• ownw(s) equals the union of ownw(s0) and the items written by prog.
• envw(s) = envw(s0); the field envw is used in the denotational semantics to

update the local storage of prog with elements written by its environment.
So prog itself cannot modify this field. Although all items are available
initially, constraints on local clocks prevent the use of items “too early”.

Next, we define M(prog) by induction on the structure of prog. The atomic
cases use an auxiliary Update relation.

Update

The auxiliary Update function may update the local database with data items
that have been written (by the process itself or by its environment). Its defini-
tion uses UpdateDb of Def. 5. To ensure the proper use of environment writes,
i.e. respecting causal ordering, it is important to require that the local clock
becomes larger than the time stamps of the items used for the update.
Update(s0) =

{s | clock(s) ≥ clock(s0) and there exists a db1 ⊆ ownw(s0) ∪ envw(s0)
such that db(s) = UpdateDb(db(s0), db1), db1 <time clock(s), and
s equals s0 for the other fields (st, ownw and envw) }

We will use this relation to occur once before and once after every read and
write action. 2 One may wonder how this corresponds to the operational se-
mantics, where arbitrarily many update steps can occur between read and

2 This is another deviation from the semantics in [4], where the denotational se-
mantics had an update before the read statement only; the change is essential for
the full abstraction result.

15

write events. The fact that s0 ∈ Update(s0) corresponds to the possibility of
having no update step, and the fact that Update(Update(s0)) = Update(s0)
shows that multiple updates can be combined to one. We deliberately reduced
the number of explicit update steps in the denotational semantics, in order to
simplify the verification framework.

Below we use relation composition, defined as s1 ∈ (R1◦R2)(s0) iff there exists
an s2 such that s2 ∈ R1(s0) and s1 ∈ R2(s2).

Write

In the semantics of the write statement, the published item is time-stamped
and added to the ownw field. The time stamp will be the clock value in the
resulting status. Since the local clock is increased, subsequent written items
obtain a larger time stamp.

BasicWrite(e)(s0) =
{s | clock(s) > clock(s0) and

ownw(s) = ownw(s0) ∪ {(v, clock(s))},
where v = e(st(s0)), the value of e in s0, and
s equals s0 for the other fields (st, db and envw) }

Next, we define M(Write(e)) = Update ◦ BasicWrite(e) ◦ Update.

Read

The read statement Read(x, q) first updates the local storage and next assigns
to x a data item that satisfies the query q.

BasicRead(x, q)(s0) =
{s | there exists Di ∈ DataItems⊥ such that

q(st(s0))(Di) and st(s) = st(s0)[x 	→ Di] and
either Di ∈ db(s0), or Di = ⊥ and ∀di ∈ db(s0),¬q(st(s0))(di);
s equals s0 for the other fields (clock, db, ownw and envw) }

Note that we only represent successfully terminating executions; blocking has
not been modeled explicitly. Next, we define

M(Read(x, q))(s0) = Update ◦ BasicRead(x, q) ◦ Update.

Sequential Composition

Since we only model terminating executions, the meaning of the sequential
composition S1 ; S2 is defined by applying the meaning of S2 to any status
that results from executing S1. In Sect. 8.1, we show how this can be extended
to deal with non-terminating programs.

16

M(S1 ; S2) = M(S1) ◦M(S2).

Parallel Composition

To define parallel composition, let init(s0) be the condition db(s0) = ø ∧
ownw(s0) = ø. Moreover, we use s + diset to add a set diset ⊆ DataItems to
the environment writes of s, i.e. envw(s+diset) = envw(s)∪diset and all other
fields of s remain the same.

In the semantics of P1 ‖ P2, starting in initial status s0, the main observation
is that envw(s0) contains only the data items produced outside P1 ‖P2. Hence
the semantic function for P1 is applied to s0 where we add the items written
by P2 to the environment writes. Similarly for P2. Then parallel composition
is defined as follows:

M(P1 ‖ P2)(s0) =
{s | init(s0) and there exist s1 and s2 with

s1 ∈ M(P1)(s0 + ownw(s2)),
s2 ∈ M(P2)(s0 + ownw(s1)),
ownw(s) = ownw(s1) ∪ ownw(s2), envw(s) = envw(s0)}

Parallel composition is commutative and associative. Observe that there are
no constraints on the fields st, clock and db of s; we abstract from these fields
when composing processes in parallel and allow them to be arbitrary.

Example 11 Consider again the program of Example 10:
(Read(x,A) ; Write(B)) ‖ (Read(x,B) ; Write(A))

Without using the condition on the local clock in the Update function, the
semantics would allow for this program a status where envw = ø and ownw
contains A and B (each component produces the item required by the other
one). This, however, does not correspond to the operational semantics which
yields the empty set. But using the condition in Update, the first program
ensures that the time stamp of the item with value B is larger than the item
with value A produced by the other process. Similarly, the second program
ensures that the item with value A has a larger time stamp, and hence there
are no executions that can be combined at parallel composition. We can indeed
show that, for any s0 with env(s0) = ø,

M((Read(x,A) ; Write(B)) ‖ (Read(x,B) ; Write(A)))(s0) = ø.

Since both sequential and parallel composition are associative, we will often
omit brackets and write S1 ; . . . ; Sm and S1 ‖ . . . ‖ Sn.

17

6 Equivalence of Denotational and Operational Semantics

In this section, we first define what it means that the operational and the
denotational semantics of Sect. 4 and 5, resp., are equivalent. Next, we give an
outline of how we proved this equivalence formally. For the more complicated
semantics described in [4], the equivalence proof has been checked completely
using the interactive theorem prover PVS.

Note that equivalence is far from trivial, since there exist a number of promi-
nent differences.

• The operational semantics allows updates of the local database at any point
in time, whereas in the denotational semantics updates occur once before
and after each atomic statement.

• The parallel composition of the denotational semantics is defined by a few
recursive equations and it is not obvious a priori that this indeed corresponds
to the operational semantics.

• The underlying network is modeled in different ways. In the operational se-
mantics, all produced items are collected in a single set. In the denotational
semantics, there is a distinction between the produced items of a process
and its environment; moreover, these environment writes are all available
initially.

Equivalence is based on what is externally observable, i.e. two semantic func-
tions are equivalent if they assign the same observable behaviour to any
program. Here we choose the same notion of observable behaviour as has
been used in the operational semantics, namely the set of published data
items. For a set D of denotational statuses, define the observations of D by
Obs(D) = {ownw(s) | s ∈ D}. For a set T of n-tuples (s1, . . . , sn) of statuses,
define Obs(T) =

⋃{∪i,1≤i≤nownw(si) | (s1, . . . , sn) ∈ T}.

To relate the operational and the denotational semantics, we use a function
Ext to extend an operational status to a status of the denotational seman-
tics; Ext(os) is defined by st(Ext(os)) = st(os), clock(Ext(os)) = clock(os),
db(Ext(os)) = db(os), ownw(Ext(os)) = ø, and envw(Ext(os)) = ø.

This leads to the main theorem.

Theorem 12 If db(os) = ø, then O(P)(os) = Obs(M(P)(Ext(os))).

Let P = S1 ‖ ... ‖ Sn. We present the main steps of the proof, ignoring for
instance details about initial conditions. The proof uses a few intermediate
versions of the semantics. First, we define OD, which extends the operational
semantics O to the status of the denotational semantics (adding ownw and
envw). Moreover, the network N is removed. This is achieved by defining the

18

atomic steps of a single sequential program as (S, s)
diset−→ (S ′, s′), where diset

represents the set of items written in the step (a singleton if S starts with
a write statement, the empty set otherwise). OD also includes update steps
that are similar to the updates of the denotational semantics, so including
a condition on the value of the local clock. The local steps for a sequential
program are shown in Fig. 4.

cl′ ≥ cl X : DataBases X ⊆ ow ∪ ew X <time cl′

〈S , (st, cl, db, ow, ew)〉 ø−→ 〈S , (st, cl′,UpdateDb(db,X), ow, ew)〉

cl′ > cl

〈Write(e);S , (st, cl, db, ow, ew)〉 {(e(st),cl′)}−→ 〈S , (st, cl′, db, ow ∪ {(e(st), cl′)}, ew)〉

q(st)(Di) cl′ ≥ cl Di ∈ db or (Di = ⊥ and ¬∃di ∈ db, q(st)(di))

〈Read(x, q);S , (st, cl, db, ow, ew)〉 ø−→ 〈S , (st[x 	→ Di], cl′, db, ow, ew)〉

Fig. 4. Local Computation Step Using Denotational Status

〈Si, si〉 diset−→ 〈S ′, s′〉, for some i, 1 ≤ i ≤ n s′j = sj + diset, for all j, j �= i

〈(S1, s1), . . . (Sn, sn)〉 ⇒OD 〈(S1, s
′
1), . . . (S

′, s′), . . . (Sn, s′n)〉

C ⇒OD C

C1 ⇒OD C2 C2 ⇒OD C3

C1 ⇒OD C3

Fig. 5. Global Computation Steps for OD

The global steps of OD for a process are defined in Fig. 5. This leads to the
definition of OD.

Definition 13 (OD) The operational semantics extended to denotational
statuses is defined as a list of final statuses for each of the sequential programs
of a process.

OD(S1 ‖ ... ‖ Sn)(s0) = {(s1, . . . sn) | init(s0)∧
〈(S1 ; E, s0), ..., (Sn ; E, s0)〉 ⇒OD 〈(E, s1), ..., (E, sn)〉 }

We will also use the above definition for a sequential program (n = 1), iden-
tifying a one-tuple with its element, yielding:

OD(S)(s0) = {s | 〈S ; E, s0〉 ⇒OD 〈E, s〉 }

We present the main outline of the proof, showing how suitable lemmas reduce
the statement to be proved. The aim is to prove:

19

O(S1 ‖ ... ‖ Sn)(os) = Obs(M(S1 ‖ ... ‖ Sn)(Ext(os)))
For OD we can prove the following lemma.

Lemma 14 O(S1 ‖ ... ‖ Sn)(os) = Obs(OD(S1 ‖ ... ‖ Sn)(Ext(os)))

Then it remains to prove:
Obs(OD(S1 ‖ ... ‖ Sn)(Ext(os))) = Obs(M(S1 ‖ ... ‖ Sn)(Ext(os)))

The following lemma expresses the observations of a parallel program, ac-
cording to the OD semantics, in terms of the observations of the sequential
programs. To express that an individual component uses the items written by
all other components as its environment writes, we define
OtherWrites(os , i) = Ext(os)[envw 	→ ∪j �=iownw(sj)].

Lemma 15 Obs(OD(S1 ‖ ... ‖ Sn)(Ext(os))) =
Obs({(s1, . . . , sn) | for all i, 1 ≤ i ≤ n, si ∈ OD(Si)(OtherWrites(os , i))})

Then it remains to show, assuming 1 ≤ i ≤ n,
Obs({(s1, . . . , sn) | for all i, si ∈ OD(Si)(OtherWrites(os , i))}) =
Obs(M(S1 ‖ ... ‖ Sn)(Ext(os)))

Observe that M is defined for the parallel composition of two processes; see the
definition of M in Sect. 5. In the next lemma we prove a similar formulation
for the application of M to the parallel composition of n sequential programs.

Lemma 16 Obs(M(S1 ‖ S2 ‖ ... ‖ Sn)(Ext(os))) =
Obs({(s1, . . . , sn) | for all i, si ∈ M(Si)(OtherWrites(os , i))})

Then it remains to show
Obs({(s1, . . . , sn) | for all i, si ∈ OD(Si)(OtherWrites(os , i))}) =
Obs({(s1, . . . , sn) | for all i, si ∈ M(Si)(OtherWrites(os , i))})

This follows trivially from the following lemma.

Lemma 17 OD(S) = M(S), for any sequential program S.

This completes the outline of the proof of Theorem 12. The lemmas used above
have been proved using the proof checker PVS. Here we only present the main
ideas for the proof of the most complex lemma, namely Lemma 15. We prove
Obs(OD(S1 ‖ ... ‖ Sn)(Ext(os))) =
Obs({(s1, . . . , sn) | for all i, si ∈ OD(Si)(OtherWrites(os , i))})
Proof:
We show that the sets are contained in each other.
⊆
Suppose (s1, . . . sn) ∈ OD(S1 ‖ ... ‖ Sn)(Ext(os)), that is,

20

〈(S1 ; E,Ext(os)), ..., (Sn ; E,Ext(os))〉 ⇒OD 〈(E, s1), ..., (E, sn)〉.
By the definition of ⇒OD, there exist a finite number of atomic steps:

〈(S1 ; E,Ext(os)), ..., (Sn ; E,Ext(os))〉 diset1−→ . . .
disetk−→ 〈(E, s1), ..., (E, sn)〉.

We have shown by induction on the number of steps in this execution se-
quence that it can be used to construct for each sequential program a local
execution. Such a local execution starts with status Ext(os) where the envw-
field contains the items written by all other components, as expressed by
OtherWrites(os , i). This leads to (Si ; E,OtherWrites(os , i)) ⇒OD (E, si), i.e.
si ∈ OD(Si)(OtherWrites(os , i)), for all i, 1 ≤ i ≤ n.

⊇
Assume, for all i, 1 ≤ i ≤ n that si ∈ OD(Si)(OtherWrites(os , i)). Thus, for
each of the sequential programs, we have an operational execution

(Si ; E,OtherWrites(os , i)))
diset1−→ . . .

disetk−→ (E, si). We have to show,
〈(S1 ; E,Ext(os)), ..., (Sn ; E,Ext(os))〉 ⇒OD 〈(E, s1), ..., (E, sn)〉, i.e., we have
to show that these sequential executions can be merged into a global execu-
tion sequence for the parallel program. Basically, this is done by induction
on the total number of steps in all sequential executions. The construction
of the global execution sequence is far from trivial, since the local, sequential
executions start with all available environment writes, whereas in the global
execution a process may only use what has been produced up to the current
moment. However, the constraints on the local clocks (that have been included
in the extended operational semantics OD), ensure that only items are used
that have been produced before its current local time. Formally, this is cap-

tured by the property that if (S, s+diset)
diset1−→ (S ′, s′) (representing a step of

a local process) and for all di ∈ diset, ts(di) ≥ clock(s′) (i.e. diset contains only
time stamps after the clock value in s′) then (S, s) −→diset1 (S ′, s′′) where
envw(s′′) = envw(s) and s′′ equals s′ for all other fields. Hence the step can
be used in the global sequence without environment writes that have been
produced later. �

7 Full Abstraction

As mentioned in Sect. 5, to obtain a denotational semantics, the definition
of a status had to be extended and the meaning of each atomic statement
has been defined in isolation, such that it can be used in any context. Typ-
ically, this means that in the denotational semantics more programs are dis-
tinguished than in the operational one. That is, in the denotational semantics
more programs get a different semantics and less programs are identified. For
instance, we have O((Read(x,A); Write(B))‖(Read(x,B); Write(A)))(os0) =
O(Read(x,A))(os0) = O(Read(x,B))(os0) = ø, since the operational seman-
tics considers each of them as the complete program and then they all block.

21

In the denotational semantics, all three programs have a different semantics; it
always includes the possibility that the context in which it will be placed pro-
vides the required data items. In fact, they behave differently in a particular
context and hence a denotational semantics should distinguish them.

Recall that in the equivalence proof of the previous section we have only proved
equivalence for a particular initial status (where envw and db are empty) and
with respect to a particular observation criterion, namely the set of published
data items. The question remains whether we did not make too much distinc-
tions to make the semantics compositional. Ideally, in the denotational seman-
tics we should distinguish exactly those programs that behave differently in a
particular context. This corresponds to the notion of full abstraction, which is
defined formally below, using the notion of a context as defined by Table 3.

Table 3

Sequential Context SC ::= [] | Write(e) | Read(x, q) | SC1 ; SC2

Context C ::= SC | C1 ‖ C2

Observe that the only new construct is [] which serves as an “open place” for
which we can substitute a program to obtain a complete program. We often
denote a context by C[] to emphasize that there is an open place, and use
C[P] to denote the context C[] where every occurrence of [] is replaced by P .
In fact, we can restrict ourself here to contexts with exactly one open place.

Convention: if C[P] is not syntactically correct (e.g. because a parallel pro-
gram is inserted in a sequential context) then we define

O(C[P])(os0) = M(C[P])(s0) = ø, for any os0, s0.

Definition 18 (Full Abstraction) Semantic function M is fully abstract
with respect to observable behaviour O if for every two processes P1 and P2,

M(P1) = M(P2) iff for every context C[] we have O(C[P1]) = O(C[P2]).

Typically, it requires quite some effort to turn a denotational semantics into
a fully abstract one. Here we claim that the denotational semantics is already
fully abstract with respect to the operational one. Actually, some technical
modifications of the semantics with respect to [4] were required, as we indi-
cated when defining the current semantics. We will show along the way why
these modifications were needed. One direction of the proof is easy; it is based
on the equivalence result proved before. For the other direction we have to
construct a context explicitly. It appears to be convenient to assume some
structure on the data sorts, as we will explain later on.

Theorem 19 M is fully abstract with respect to O.

Proof:

22

⇒
Assume M(P1) = M(P2) and consider a context C[] and an operational se-
mantic primitive os. Then

M(P1) = M(P2)
⇒ { since M is compositional }

M(C[P1]) = M(C[P2])
⇒ { take Ext(os) as initial status }

M(C[P1])(Ext(os)) = M(C[P2])(Ext(os))
⇒

Obs(M(C[P1])(Ext(os))) = Obs(M(C[P2])(Ext(os)))
⇒ { Theorem 12 }

O(C[P1])(os) = O(C[P2])(os)

⇐
Assume M(P1) �= M(P2). Without loss of generality, we can assume there
exists s0 and s1 such that s1 ∈ M(P1)(s0) and s1 �∈ M(P2)(s0). It suffices to
construct a context C[] such that O(C[P1]) �= O(C[P2]).

Without loss of generality, we can assume that envw(s0) is finite. Moreover,
it is allowed to assume ownw(s0) = ø, as can be shown as follows. If P1

is a parallel program, then ownw(s0) = ø follows from the init condition.
Otherwise, we shift the elements of ownw(s0) to the envw field. Formally, define
s′0 = s0[ownw 	→ ø, envw 	→ envw(s0) ∪ ownw(s0)]. Then it can be proved (by
an appropriate induction on P1) that there exists an s′1 ∈ M(P1)(s

′
0) with

ownw(s0) ∪ ownw(s′1) = ownw(s1) and ownw(s1) ∪ envw(s1) = ownw(s′1) ∪
envw(s′1). Further, we can prove that s′1 ∈ M(P2)(s

′
0) implies s1 ∈ M(P2)(s0),

which contradicts our assumption, so we have s′1 �∈ M(P2)(s
′
0).

Similarly, we can assume that db(s0) = ø by shifting the elements of db(s0) to
the envw field. Then the update included in the first read action of P1 can use
these elements to reconstruct db(s0) as far as the items are not overwritten. 3

We have to show that there exists a context C and initial status os0 such that
O(C[P1])(os0) �= O(C[P2])(os0). By the equivalence result, Theorem 12, it is
sufficient to show that there exists a context C and an initial status ŝ0 with
ownw(ŝ0) = envw(ŝ0) = db(ŝ0) = ø such that

Obs(M(C[P1])(ŝ0)) �= Obs(M(C[P2])(ŝ0)).

Let ŝ0 be such that envw(ŝ0) = ø and it equals s0 for the other fields. Thus
s0 = ŝ0 + envw(s0), and since envw(s1) = envw(s0), also s0 = ŝ0 + envw(s1).

The construction of the context depends on whether the programs are sequen-

3 At this point we use that items in the database must have time stamp smaller
than the clock, otherwise we would have to increase the clock value.

23

tial or parallel. Before going into this case distinction we introduce some extra
notation for queries and expressions. In the next three subsections we distin-
guishes three cases: both programs are sequential, both are parallel, and one
is sequential and the other is parallel. We give the proof for the first, most
complicated, case.

Notation for tags in expressions

It is sometimes needed to distinguish elements written by the context from
elements written by the original program. To this end, we may extend all data
sorts with an additional tag field. The tag field may have values E (denoting
items written by the environment), V (denoting items representing values of
variables), and D (denoting items of the database). As noted in the introduc-
tion, such extensions are transparent for P1 and P2; as P1 and P2 are sub-
scribed to the original sorts, their local database performs a suitable selection
of relevant fields.

Also, in some cases we want to recognize some data items exactly, including
time stamp, and also when they are ⊥. To this end we allow Write actions
with expressions of sort DataItems⊥, i.e. time stamps are added as additional
data fields. We use Write(〈x, T 〉) to denote that the data item in x is written
with an additional tag field with value T . Also Write(v, T) is used to write a
data value v tagged with T .

This extension to a multi-sorted language is realistic from the point of view
of the real Splice (cf. [2]). It greatly simplifies the proofs. It is not clear if
having multiple sorts is strictly needed for full abstraction, but the proof
below breaks down if items written by the environment are indistinguishable
from items written by P1 and P2 (see also Ex. 26)

Two sequential programs

Context C is now constructed based on s1 such that it produces the elements
in envw(s1) (i.e., envw(s0)), represented by Ce, and after termination of the
program the values of all variables and the contents of the database are writ-
ten. Let x1, . . . , xn be the finite list of all variables occurring in P1 or P2,
di1, . . . , dim be the finite list of data items occurring in ownw(s1) ∪ envw(s1)
(which is the maximal set of data items that may occur in db(s1) - note that
we assume some ordering on the items), and e1, . . . , ek be the finite list of data
values (i.e. the data part of the data items) occurring in envw(s1). We define
the context as follows.

C = ([] ; Cv ; Cd) ‖ Ce

24

where
Cv = Write(〈x1,V〉) ; . . . ; Write(〈xn,V〉)
Cd = Read(y, di1⊥) ; Write(〈y, D〉) ; . . . ; Read(y, dim⊥) ; Write(〈y, D〉)
Ce = Write(〈e1,E〉) ‖ . . . ‖ Write(〈ek,E〉)

Thus, Cv publishes the values of the variables in a particular order with tag V.
We use 〈st(s1),V〉 to denote the set of written items that corresponds to the
values of the variables in s1. Observe that Cd tries to read all possible values
from the database in a non-blocking way and publishes the result with tag D;
hence it writes 〈⊥,D〉 iff the item is not in the database. We use 〈db(s1),D〉
to denote the set of writes that corresponds exactly to db(s1). Context Ce

writes the data values that occur in envw(s1) with tag E. It is essential that
Ce is parallel, because it may have to write several data items with the same
time stamp. 4 Let 〈envw(s1),E〉 be the set of data items that correspond to
envw(s1), i.e. with the same time stamps.

Lemma 20 There exists a status s ∈ M((P1 ; Cv ; Cd) ‖ Ce)(ŝ0) with
ownw(s) = 〈envw(s1),E〉 ∪ ownw(s1) ∪ 〈st(s1),V〉 ∪ 〈db(s1),D〉.

Proof:
By the construction of Ce, which cannot block, there is an se ∈ M(Ce)(ŝ0) with
ownw(se) = 〈envw(s1),E〉. Since environment writes can always be extended
without affecting an existing execution, there is an s′e ∈ M(Ce)(ŝ0+ownw(s′1))
with ownw(s′e) = 〈envw(s1),E〉, for any s′1.

Using ŝ0 + envw(s1) = s0, we obtain that s1 ∈ M(P1)(ŝ0 + envw(s1)). Since
P1 is not affected by the additional tags, also s1 ∈ M(P1)(ŝ0 + ownw(s′e)).
Note that Cv and Cd do not block and there exists an s′1 ∈ M(Cv ; Cd)(s1)
with ownw(s′1) = ownw(s1) ∪ 〈st(s1),V〉 ∪ 〈db(s1),D〉. Hence, by sequential
composition, we have that s′1 ∈ M(P1 ; Cv ; Cd)(ŝ0 + ownw(s′e)).

Combining s′e and s′1 we obtain an s ∈ M((P1; Cv; Cd)‖Ce)(ŝ0) with ownw(s) =
〈envw(s1),E〉 ∪ ownw(s1) ∪ 〈st(s1),V〉 ∪ 〈db(s1),D〉. �

For the next step in the proof we need a few lemmas about the value of the
local clock. The first lemma expresses that the clock is always larger than the
time stamps in the database and not smaller than the time stamps in the
produced data items.

Lemma 21 For any sequential program S, if db(s0) = ownw(s0) = ø and

4 Observe that Ce cannot produce items with time stamp 0, according to the se-
mantics of a write statement in Section 5. But, in Section 5, we also required that
envw only contains items with time stamp bigger than 0.

25

s ∈ M(S)(s0) then

(1) for all di ∈ db(s), clock(s) > ts(di)
(2) for all di ∈ ownw(s), clock(s) ≥ ts(di)

The next lemma expresses the other direction; if time t is larger than the time
stamps in the database and not smaller than the time stamps in the produced
items, then t occurs in the semantics as a possible value of the clock.

Lemma 22 For any sequential programs S, if s ∈ M(S)(s0), t ≥ clock(s0)
and

(1) for all di ∈ db(s), t > ts(di)
(2) for all di ∈ ownw(s), t ≥ ts(di)

then s[clock 	→ t] ∈ M(S)(s0)

These lemmas are used to prove the following.

Lemma 23 There exists no status s′ ∈ M((P2 ; Cv ; Cd) ‖ Ce)(ŝ0) with
ownw(s′) = 〈envw(s1),E〉 ∪ ownw(s1) ∪ 〈st(s1),V〉 ∪ 〈db(s1),D〉.

Proof:
This is proved by contradiction, so suppose there exists a status s′ with s′ ∈
M((P2; Cv; Cd)‖Ce)(ŝ0) and ownw(s′) = 〈envw(s1),E〉∪ownw(s1)∪〈st(s1),V〉∪
〈db(s1),D〉. Since the items with tag E must have been produced by Ce, there
exists an s′e in the semantics of Ce with ownw(s′e) = 〈envw(s1),E〉 and an
s′2 ∈ M(P2 ; Cv ; Cd)(ŝ0 +ownw(s′e)), with ownw(s′2) = ownw(s1)∪〈st(s1),V〉∪
〈db(s1),D〉. Since the E-tags are not used by P2 ; Cv ; Cd and ŝ0+envw(s1) = s0,
we obtain s′2 ∈ M(P2 ; Cv ; Cd)(s0). Hence there exist an s2 such that s2 ∈
M(P2)(s0) and s′2 ∈ M(Cv ; Cd)(s2). Since P2 does not write the V and D tags
and the program Cv ; Cd only writes tagged items, we have that ownw(s2) =
ownw(s1). Since Cv produces 〈st(s1),V〉, we obtain st(s2) = st(s1).
Observe that the fact that Cd produces 〈db(s1),D〉 doesn’t imply that db(s2) =
db(s1). Actually, some database updates can occur during execution of Cd, and
we only know that at the time dik is written, the database indeed contains
dik. However, from the fact that these updates are possible, we conclude that
either db2 doesn’t contain items with the same key, or db2 contains an item
with the same key, but with a smaller time stamp. So all these updates can be
combined in a single update, which is glued to the last atomic action of P2.

5

Hence there exists an s3 ∈ M(P2)(s0) with st(s3) = st(s1), db(s3) = db(s1),
ownw(s3) = ownw(s1), and envw(s3) = envw(s1). This leads to s1[clock 	→
5 Here we use the fact that the atomic actions are followed by an update. The
programs Write(x) and Write(x); Read(x, {x}) would be denotationally different
without the update after Write, leading to a counter example for full abstraction.

26

clock(s3)] ∈ M(P2)(s0).
Using Lemma 21, we have for all di ∈ db(s1), clock(s1) > ts(di), and for all
di ∈ ownw(s1), clock(s1) ≥ ts(di). By s1[clock 	→ clock(s3)] ∈ M(P2)(s0) and
Lemma 22, we obtain s1[clock 	→ clock(s3)][clock 	→ clock(s1)] ∈ M(P2)(s0),
i.e. s1 ∈ M(P2)(s0). Contradiction. �

Finally, observe that by Lemma 20 and Lemma 23 there exists an s such
that ownw(s) ∈ Obs(M(C[P1])(ŝ0)) and ownw(s) �∈ Obs(M(C[P2])(ŝ0)), so
Obs(M(C[P1])(ŝ0)) �= Obs(M(C[P2])(ŝ0)).

We present a few small examples that show how the context distinguishes
sequential programs. In the first example, the final states are different.

Example 24 The programs P1: Read(x1, A) and P2: Read(x2, A) are denota-
tionally different, because the values of x1 and x2 might be different, e.g. if the
initial status s0 is such that st(s0)(x1) = st(s0)(x2) = 0 and envw(s0) contains
an item with value A and time stamp 10. The construction above leads to the
context

C = ([] ; Write(〈x1,V〉) ; Write(〈x2,V〉) ;
Read(y, (#dat := A, ts := 10#)⊥) ; Write(〈y, D〉))

‖ Write(〈A,E〉)

Note that the construction of the context depends on a particular status s1

that shows a difference between the two programs. Since there might be several
differences, this may lead to several possible contexts that distinguish the
programs. This is illustrated by the next example.

Example 25 Suppose we have the two programs P1: Read(x,A) ; Read(x,⊥)
and P2: Read(x,B) ; Read(x,⊥). There are several possible differences, leading
to different contexts.

• If db(s0) = ownw(s0) = ø and envw(s1), which equals envw(s0), only con-
tains an item with value A then the second program blocks and first one does
not. This leads to a context of the form C = ([] ; Cv ; Cd) ‖ Write(〈A,E〉)

• Another possibility is that db(s0) = ownw(s0) = ø and envw(s1) (and hence
envw(s0)) contains two data items, with values A and B and local time
stamps 6 and 8, respectively. If these items have the same key, then P1 may
have the item with value A in its database, which is not possible for P2

because it must have B in its database before the read and this cannot be
overwritten by value A which has a smaller time stamp. This difference is
made visible by the following context:

C = ([] ; Write(〈x, V〉) ;
Read(y, (#dat := A, ts := 6#)⊥) ; Write(〈y, D〉) ;
Read(y, (#dat := B, ts := 8#)⊥) ; Write(〈y, D〉))

‖ Write(〈A,E〉) ‖ Write(〈B,E〉)

27

Two parallel programs

Suppose P1 and P2 are parallel programs. Then we do not use the sequential
part of the context (this would lead to syntactically invalid programs), but
define the context by

C = [] ‖ Ce

The proof that this indeed distinguishes the two programs is a simple version
of the proof for two sequential programs.

We present a small example that indicates why we have used the tags.

Example 26 Consider the programs
P1: Write(A) ‖ (Read(x,A) ; Write(B)) ‖ Read(y,⊥)
P2: (Write(A) ; Write(B)) ‖ Read(y,⊥)

Statement Read(y,⊥) has been added to obtain two parallel programs.
If db(s0) = ownw(s0) = ø and envw(s1) only contains an item with value A
then P1 may read this and write its A after the B. Program P2 will always
write B after A.

If we use a context without tags, i.e. C = [] ‖ Write(A) then the own writes
of C[P1] may contain an A (produced by the context), followed by a B and
another A (ordering them by time stamp). But this is also possible for C[P2],
since there the own writes may contain an A followed by a B (produced by
P2), followed by an A produced by the context. The problem is that without
tags we cannot observe which item was produced by the context.

A sequential and a parallel program

To prove that we can make a distinction in general, we distinguish three cases:

• If P1 is sequential and P2 is a parallel program, then use some sequen-
tial context, say C = [] ; Cv. Since s1 ∈ M(P1)(s0), we can prove that
M(C[P1])(ŝ0) �= ø. But C[P2] is a syntactically incorrect program, so by
convention we have M(C[P2])(ŝ0) = ø.

• Similarly, if P1 is parallel and P2 is sequential with M(P2)(s0) �= ø, we can
also use context C = [] ; Cv.

• If P1 is parallel and P2 is a sequential program with M(P2)(s0) = ø, then use
context C = [] ‖Ce, since M(P1)(s0) �= ø implies M(P1 ‖ Ce)(ŝ0) �= ø. �

28

8 Verification Framework

In this section, we provide a framework that can be used to specify and verify
processes, as shown in Sect. 8.3. First, in Sect. 8.1, the programming language
is extended with an infinite loop. Section 8.2 contains the main specification
and verification constructs. The same framework has been used in [3] to verify
transparent replication in another example.

8.1 Language Extensions

The simple programming language of Sect. 3 is extended with infinite loops.
Accordingly, the denotational semantics of Sect. 5 is extended. Since infinite
loops introduce non-terminating computations, we add one field to the status:

• term ∈ {true, false}: indicates termination of the process; if it is false all
subsequent statements are ignored.

Henceforth, we assume that s0 is such that term(s0) = true, i.e. after s0 we
can still execute subsequent statements.

The definition of sequential composition has to be adapted, since it is possible
that the first process does not terminate and thus prohibits execution of the
second process.

M(S1 ; S2)(s0) =
{s | s ∈ M(S1)(s0) ∧ ¬term(s)}∪
{s | there exists an s1 with s1 ∈ M(S1)(s0)∧ term(s1) ∧ s ∈ M(S2)(s1)}

We define the meaning of an infinite loop by means of an infinite sequence
of statuses s0, s1, s2, . . ., where si is the result of executing the loop body i
times, provided all these executions terminate. Otherwise the term-field of si

is false. The written items are collected by taking the union of the produced
items in each execution of the body, as long as term is true for the start state
of this execution (we should also include the data items produced when the
body does not terminate).

M(Do S Od)(s0) =
{s | ¬term(s) and there exists a sequence s1, s2, . . . such that for all i ≥ 0,

if term(si) then si+1 ∈ M(S)(si) else term(si+1) = false,
ownw(s) = ∪{i≥0|term(si)}ownw(si+1), and envw(s) = envw(s0) }

29

8.2 Specification and Verification

To obtain a convenient specification and verification framework, we define a
mixed formalism in which one can freely mix programs and specifications,
based on earlier work [27].

Specifications are part of the program syntax; let p, p0, p1, . . . , q, q0, q1, . . . be
assertions, that is, predicates over statuses. We will use the usual Boolean
connectives (e.g. →, ↔, ∧) on assertions. A specification is a “program” of
the form Spec(p, q) with the following meaning.

M(Spec(p, q))(s0) ={s | (p(s0) implies q(s)) and envw(s) = envw(s0) }

Next, we define a refinement relation ⇒ between programs (which now may
include specifications).

Definition 27 (Refinement) For any two programs P1, P2, we define that
P1 is a refinement of P2 (denoted by P1 ⇒ P2) as follows:

P1 ⇒ P2, iff for all s0, we have M(P1)(s0) ⊆ M(P2)(s0).

Note that it is easy to prove that the refinement relation is reflexive and
transitive. We have the usual consequence rule, which expresses that we can
refine a specification by strengthening the precondition and weakening the
postcondition.

Lemma 28 (Consequence)
If p → p0 and q0 → q then Spec(p0, q0) ⇒ Spec(p, q).

Based on the denotational semantics for Splice, we checked in PVS the sound-
ness of a number of proof rules for programming constructs. For instance, for
sequential composition we have a composition rule and a monotonicity rule
which allows refinements in a sequential context.

Lemma 29 (Sequential Composition)
(Spec(p, r) ; Spec(r, q)) ⇒ Spec(p, q).

Lemma 30 (Monotonicity of Sequential Composition)
If P3 ⇒ P1 and P4 ⇒ P2 then (P3 ; P4) ⇒ (P1 ; P2).

The reasoning about parallel composition in PVS mainly uses the semantics
directly. But we do have a monotonicity rule for parallel composition, which
forms the basis of stepwise refinement of components. Note that our main mo-
tivation to develop a denotational semantics has been to obtain the following

30

rule.

Lemma 31 (Monotonicity of Parallel Composition)
If P3 ⇒ P1 and P4 ⇒ P2 then (P3 ‖ P4) ⇒ (P1 ‖ P2).

8.3 Verification Example

To illustrate the reasoning about Splice components in PVS, we consider a
simple system with two processes that produce data items based on previously
written data by the other component. So they mutually depend on each other.
As a simple example, we consider two components that produce even and odd
numbers, based on each others output.

In Sect. 8.3.1, we define the top-level specification of the system. A failed
decomposition attempt is shown in Sect. 8.3.2. The main problem of the cor-
rectness of this decomposition is mutual dependency: both of the components
is correct if the other is. We show how our formalization blocks this cyclic
reasoning. Based on the reasoning problems encountered there, we rewrite the
specifications in Sect. 8.3.3 and prove the correctness of the new decomposi-
tion. The components are implemented in Sect. 8.3.4.

8.3.1 Top-level Specification

To formalize the top-level specification of the system, we define the following
types and functions:

• DataName = {Even,Odd}, with typical variable dn.
• DataVal = N.
• Data is a type of records with two fields: name of type DataName and val

of type DataVal.
• KeyData = DataName and key(v) = name(v).
• Vars = {evenvar, oddvar}, variables over data items that are used later in

the implementation of the components (for simplicity, we have not intro-
duced hiding or scoping rules).

To formulate the specifications, first a few preliminary definitions are needed,
where diset is a set of data items, and even? and odd? are predicates that hold
when a number is even or odd, respectively.

• Even(diset) = {di | di ∈ diset ∧ name(di) = Even}
• Odd(diset) = {di | di ∈ diset ∧ name(di) = Odd}
• Increasing(diset) holds iff

∀di1 ∈ diset, di2 ∈ diset : (val(di1) < val(di2) ↔ ts(di1) < ts(di2))

31

• EvenNrs(diset) holds iff ∀di ∈ diset : even?(val(di))
• OddNrs(diset) holds iff ∀di ∈ diset : odd?(val(di))
• EvenWrites(diset) holds iff Increasing(Even(diset))∧EvenNrs(Even(diset))
• OddWrites(diset) holds iff Increasing(Odd(diset)) ∧ OddNrs(Even(diset))

Let pre be an assertion expressing that envw = ø and the variables evenvar
and oddvar are initialized to the empty set. The top-level specification of the
overall system is defined as follows.

postTopLevel(s) = EvenWrites(ownw(s)) ∧ OddWrites(ownw(s))

TopLevel = Spec(pre, postTopLevel)

8.3.2 Failed Decomposition Attempt

The aim is to specify two components, say EvenComp and OddComp, such
that EvenComp ‖ OddComp ⇒ TopLevel.

Since it is important to express which components produce certain data items,
we define

• NameOwnw(dn)(s) = ∀di ∈ ownw(s) : name(di) = dn

The main idea is that component EvenComp first writes 0 and next reads an
item with name Odd, stores it in variable oddvar, and uses this item – assuming
it is odd indeed – to produce a new even number. Similarly, OddComp reads
Even items, stores them in evenvar and uses them to produce odd numbers.

Let preEvenComp be an assertion expressing that db, ownw and oddvar are
all empty. Similarly, preOddComp expresses that db, ownw and evenvar are all
empty. Then we try the following specifications of the components:

postEven(s) = NameOwnw(Even)(s)∧
(OddWrites(envw(s)) → EvenWrites(ownw(s)))

EvenCompTry = Spec(preEvenComp, postEven)

postOdd(s) = NameOwnw(Odd)(s)∧
(EvenWrites(envw(s)) → OddWrites(ownw(s)))

OddCompTry = Spec(preOddComp, postOdd)

The aim is to prove EvenCompTry ‖ OddCompTry ⇒ TopLevel. Since the
precondition of TopLevel requires that envw = ø for the complete system, this
reduces to the obligation to prove for s, s1 and s2 that

(OddWrites(ownw(s2)) → EvenWrites(ownw(s1))) and

32

(EvenWrites(ownw(s1)) → OddWrites(ownw(s2))) implies
EvenWrites(ownw(s)) ∧ OddWrites(ownw(s)), where
ownw(s) = ownw(s1) ∪ ownw(s2).

Unfortunately, it is not possible to draw any suitable conclusion from the
mutually dependent specifications of the components. Hence we rewrite these
specifications in the next section to allow some form of inductive reasoning.

8.3.3 Correct Components

To obtain specifications that can be used for inductive reasoning at parallel
composition, we rewrite them such that a property of a component up to some
point of time n + 1 has to be established using the assumptions up to time n.
This means that we use local clock values as a basis for induction and we take
LocalT ime = N.

Let n be a variable ranging over N and define:

• (diset < n) = {di | di ∈ diset ∧ ts(di) < n}

Observe that (diset < 0) = ø.

Then we specify the components as follows:

postEvenComp(s) = NameOwnw(Even)(s)∧
(∀n : OddWrites(ownw(s) < n) → EvenWrites(ownw(s) < n + 1))

EvenComp = Spec(preEvenComp, postEvenComp)

postOddComp(s) = NameOwnw(Odd)(s)∧
(∀n : EvenWrites(ownw(s) < n) → OddWrites(ownw(s) < n + 1))

OddComp = Spec(preOddComp, postOddComp)

Note that we have not formalized that EvenComp first writes value 0 be-
cause we only consider safety here, i.e., we show that no wrong numbers are
produced.

We have proved in PVS that this leads to a correct refinement of the top-level
specification.

Theorem 32 EvenComp ‖ OddComp ⇒ TopLevel

Proof:
Since envw = ø, by the precondition of TopLevel, we have to show that for s,
s1 and s2 with NameOwnw(Even)(s1), NameOwnw(Odd)(s2),

33

∀n : OddWrites(ownw(s2) < n) → EvenWrites(ownw(s1) < n + 1) and
∀n : EvenWrites(ownw(s1) < n) → OddWrites(ownw(s2) < n + 1) imply
EvenWrites(ownw(s1) ∪ ownw(s2)) ∧ OddWrites(ownw(s1) ∪ ownw(s2)).
This follows immediately from the following three properties:

• ∀n : OddWrites(ownw(s2) < n) → EvenWrites(ownw(s1) < n + 1) and
∀n : EvenWrites(ownw(s1) < n) → OddWrites(ownw(s2) < n + 1)
imply ∀i : EvenWrites(ownw(s1) < i) ∧ OddWrites(ownw(s2) < i).
We have proved this property by induction on i. The case for i = 0 depends
on the fact that the predicates EvenWrites and OddWrites hold for the
empty set. The inductive case is almost trivial and does not depend on the
predicates.

• ∀i : EvenWrites(ownw(s1) < i) ∧ OddWrites(ownw(s2) < i)
implies EvenWrites(ownw(s1)) ∧ OddWrites(ownw(s2)).
This property depends on the predicates used (EvenWrites and OddWrites),
but is not difficult here; given particular data items, choose i larger than
their time stamps.

• NameOwnw(Even)(s1), NameOwnw(Odd)(s2), EvenWrites(ownw(s1)), and
OddWrites(ownw(s2)) imply EvenWrites(ownw(s1) ∪ ownw(s2)) and
OddWrites(ownw(s1) ∪ ownw(s2)).
This property can be proved almost automatically by PVS.

�

8.3.4 Implementing the Components

To implement the components in our Splice-like programming language, we
define the following notation.

• NewNamed(x, dn) is a query that requires a data item with name dn and
a time stamp which is larger than the current time stamp of x (provided
x �= ⊥).

Then implement EvenComp by the program
EvenProg = Write((#name := Even, val := 0#)) ;

Do Read(oddvar,NewNamed(oddvar,Odd)) ;
Write((#name := Even, val := val(oddvar) + 1#)) Od

We have proved in PVS that this is indeed a correct refinement.

Lemma 33 EvenProg ⇒ EvenComp

Similarly, OddComp is implemented by
OddProg = Do Read(evenvar,NewNamed(evenvar,Even)) ;

Write((#name := Odd, val := val(evenvar) + 1#)) Od

34

and we have proved the following lemma

Lemma 34 OddProg ⇒ OddComp

Finally observe that Theorem 32, expressing the correctness of the decom-
position, and the Lemmas 33 and 34, which concern the correctness of the
components, lead by the monotonicity property (Lemma 31) to

(EvenProg ‖ OddProg) ⇒ TopLevel

9 Concluding Remarks

We have proposed a compositional verification framework for reasoning about
components of the industrial software architecture Splice. This architecture
is data-oriented and based on local storages of data items. Communication
between components is anonymous, based on the publish-subscribe paradigm.
Verification is supported by the interactive theorem prover PVS.

This formal framework is based on a new denotational semantics for Splice
which includes the modeling of time stamps, based on local clocks, and the
update mechanism of local storages based on these time stamps. Moreover, the
denotational semantics includes assumptions about the data items produced
by the environment of a component. To simplify verification, we reduced the
number of updates of the local storages and tried a short, but non-trivial,
formulation of parallel composition.

To increase the confidence in this denotational semantics, we also formulated
a rather straightforward operational semantics and proved that it is equivalent
to the denotational one. This revealed a number of errors in earlier versions
of the semantics. In general, our study of the semantics of Splice led to many
discussions about the precise meaning of this software architecture. As a final
justification of the semantics, we have proved that the denotational semantics
is fully abstract with respect to the operational semantics.

Acknowledgment

We are grateful to Edwin de Jong and Paul Dechering for many extensive
discussions on the meaning of the Splice architecture. We also like to thank
Simona Orzan for discussions on full abstraction, and the anonymous referees
for their many valuable remarks. The research was carried out in the project
CES.5009 funded by PROGRESS.

35

References

[1] M. Boasson, Control systems software, IEEE Transactions on Automatic
Control 38 (7) (1993) 1094–1106.

[2] M. Boasson, Software architecture for distributed reactive systems, in: B. Rovan
(Ed.), SOFSEM ’98: Theory and Practice of Informatics, LNCS 1521, Springer-
Verlag, 1998, pp. 1–18.

[3] J. Hooman, J. C. van de Pol, Formal verification of replication on a distributed
data space architecture, in: Proc. of the 2000 ACM Symp. on Applied
Computing, (SAC ’02), 2002, pp. 351–358.

[4] J. Hooman, J. C. van de Pol, Equivalent semantic models for a distributed
dataspace architecture, in: F. S. de Boer, M. Bonsangue, S. Graf, W. P.
de Roever (Eds.), Formal Methods for Components and Objects, First Int.
Symp. (FMCO ’02), LNCS 2852, Springer-Verlag, 2003, pp. 182–201.

[5] U. Hannemann, J. Hooman, Formal reasoning about real-time components on
a data-oriented architecture, in: Systemics, Cybernetics and Informatics, 6th
World Multiconf. (SCI ’02), Vol. XI, 2002, pp. 313–318.

[6] W. P. de Roever, F. S. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech,
M. Poel, J. Zwiers, Concurrency Verification, Introduction to Compositional
and Noncompositional Methods, Cambridge Tracts in Theoretical Computer
Science, Cambridge University Press, 2001.

[7] M. M. Bonsangue, J. N. Kok, M. Boasson, E. de Jong, A software architecture
for distributed control systems and its transition system semantics, in: Proc.
of the 1998 ACM Symp. on Applied Computing, (SAC ’98), ACM press, 1998,
pp. 159 – 168.

[8] S. M. Orzan, J. C. van de Pol, Distribution of a simple shared dataspace
architecture, in: A. Brogi, J.-M. Jacquet (Eds.), Foundations of Coordination
Languages and Software Architectures, First Int. Workshop (FLOCASA’02),
Electronic Notes in Theoretical Computer Science 68(3), 2003.

[9] M. M. Bonsangue, J. N. Kok, G. Zavattaro, Comparing coordination models
and architectures using embeddings, Science of Computer Programming 46 (1-
2) (2003) 31–69.

[10] F. S. de Boer, M. Gabbrielli, M. C. Meo, A timed Linda language, in: A. Porto,
G.-C. Roman (Eds.), Coordination Models and Languages, Fourth Int. Conf.
(COORDINATION ’00), LNCS 1906, Springer-Verlag, 2000, pp. 299–304.

[11] J.-M. Jacquet, K. De Bosschere, A. Brogi, On timed coordination languages,
in: A. Porto, G.-C. Roman (Eds.), Coordination Models and Languages, Fourth
Int. Conf. (COORDINATION ’00), LNCS 1906, Springer-Verlag, 2000, pp. 81–
98.

36

[12] N. Busi, R. Gorrieri, G. Zavattaro, Temporary data in shared dataspace
coordination languages, in: F. Honsell, M. Miculan (Eds.), Foundations of
Software Science and Computation Structures, 4th Int. Conf. (FOSSACS ’01),
LNCS 2030, 2001, pp. 121–136.

[13] R. Bloo, J. Hooman, E. de Jong, Semantical aspects of an architecture for
distributed embedded systems, in: Proc. of the 2000 ACM Symp. on Applied
Computing, (SAC ’00), Vol. 1, ACM press, 2000, pp. 149–155.

[14] S. Owre, J. Rushby, N. Shankar, PVS: A prototype verification system, in: 11th
Conference on Automated Deduction, LNAI 607, Springer-Verlag, 1992, pp.
748–752.

[15] S. Owre, N. Shankar, J. M. Rushby, D. W. J. Stringer-Calvert, PVS System
Guide, SRI International, Computer Science Laboratory, Menlo Park, CA,
version 2.4 Edition, http://pvs.csl.sri.com (December 2001).

[16] R. Gerth, A. Boucher, A timed failures model for extending communicating
processes, in: T. Ottmann (Ed.), Automata, Languages and Programming, 14th
Int. Coll. (ICALP ’87), LNCS 267, Springer-Verlag, 1987, pp. 95–114.

[17] F. S. de Boer, J. Hooman, The real-time behaviour of asynchronously
communicating processes, in: J. Vytopil (Ed.), Formal Techniques in Real-Time
and Fault-Tolerant Systems, Second Int. Symp., LNCS 571, Springer-Verlag,
1992, pp. 451–472.

[18] F. S. de Boer, R. van Eijk, W. van der Hoek, J.-J. Meyer, A fully abstract model
for the exchange of information in multi-agent systems, Theoretical Computer
Science 290 (3) (2003) 1753–1773.

[19] J. Misra, K. M. Chandy, Proofs of networks of processes, IEEE Trans. Softw.
Eng. 7 (7) (1981) 417–426.

[20] C. B. Jones, Tentative steps towards a development method for interfering
programs, ACM Trans. Prog. Lang. Syst. 5 (4) (1983) 596–619.

[21] J. Zwiers, A. de Bruin, W. P. de Roever, A proof system for partial correctness
of dynamic networks of processes, in: E. Clarke, D. Kozen (Eds.), Logic of
Programs, Workshop (’83), LNCS 164, Springer-Verlag, 1984, pp. 513–522.

[22] J. Rushby, Formal verification of McMillan’s compositional assume-guarantee
rule, Tech. Rep. CSL Technical Report, SRI International (September 2001).

[23] J. Hooman, Compositional verification of distributed real-time systems, in:
Proceedings Workshop on Real-Time Systems - Theory and Applications,
North-Holland, 1990, pp. 1–20.

[24] D. Gelernter, Generative communication in Linda, Transactions on
Programming Languages and Systems 7 (1) (1985) 80–112.

[25] E. Freeman, S. Hupfer, K. Arnold, JavaSpaces: Principles, Patterns, and
Practice, Addison-Wesley, Reading, MA, USA, 1999.

37

[26] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM 21 (7) (1978) 558–565.

[27] J. Hooman, Correctness of real time systems by construction, in: Formal
Techniques in Real-Time and Fault-Tolerant Systems, LNCS 863, Springer-
Verlag, 1994, pp. 19–40.

38

