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Abstract

Advanced non-traditional application domains such as geographic information sys-

tems and digital library systems demand advanced data management support. In an

effort to cope with this demand, we present a novel multi-model DBMS architecture

which provides efficient evaluation of queries on complexly structured data. A vital

role in this architecture is played by the Moa language featuring a nested relational

data model based on XNF2, in which we placed renewed interest. Furthermore, the

architecture allows extensibility on all of its levels providing the means to better inte-

grate domain-specific algorithms into the system. In addition to this, the extensibility

of the Moa language is designed in a way that optimization obstacles due to black-

box treatment of ADTs is avoided. This combination of well-integrated domain-

specific algorithms, extensibility open to optimization, and a mapping of queries on

complexly structured data to an efficient physical algebra expression via a nested re-

lational algebra, makes that the Moa system can efficiently handle complex queries

from non-traditional application domains.

Keywords: Nested relational algebra, NF2, DBMS architecture, database extensi-

bility, advanced data management
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1 Introduction

Advanced non-traditional applications, such as digital library systems and geographic in-

formation systems, place high demands on their data management components. Data in

these areas is intrinsically complex and voluminous in nature and queries are compu-

tationally intensive. Researchers have sought to cope with these demands in different

directions. In section 2, we explore these directions focussing on data model and DBMS

architecture as a motivation for our multi-model DBMS architecture, as well as the par-

ticular role the logical algebra Moa plays in this architecture.

The three layers of the multi-model DBMS architecture support different data models.

In this way, the top conceptual layer can provide a data model supporting complexly

structured data, while in the logical and physical layers, a query on complexly structured

data is gradually transformed to efficient storage-level operations. To be able to bridge the

gap between a data model supporting complex structures (e.g., a hierarchical or object-

oriented data model) and a storage-level data model, we place renewed interest in (X)NF2

data models, which were popular in the 80’s. The Moa data model, used in the logical

layer of the architecture, is an adaptation and extension of XNF2 for which we succesfully

achieved to find an approach towards efficient query evaluation. Another key feature of

our approach is that extensibility is utilized in all layers to be able to integrate domain-

specific algorithms in such a way that certain optimization obstacles concerning ADTs

are avoided.

In Section 3, we present Moa’s approach to query processing. Subsequently, the Moa

language is presented in Section 4 explained using various examples that also illustrate

optimization potential of Moa. In Section 5, we show that Moa is an extensible alge-

bra framework and that the presented data model is a specific instantiation of the Moa

framework, namely its kernel. The ideas behind Moa have been validated and gradually

fine-tuned in various research projects that concerned different non-traditional applica-

tion domains, such as GIS and multi-media retrieval. A short overview of these projects

is presented in Section 6. Finally, we present our conclusions and current and future work

in Section 7.
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2 Motivation and related research

Many directions exist in which one can attempt to cope with the high data management

demands of many application domains. Some of the most prominent are discussed below.

2.1 Coping with high data management demands

Special-purpose systems Obviously, one can develop a special-purpose system that

focusses on the limited data management functionality that is required. For example,

a digital library can be tuned to the query patterns at hand using specific information

retrieval algorithms. In this way, the limited context allows both the restriction of com-

plexity as well as a way to tackle the performance problems. On the other hand, one

does re-develop, in many occasions even re-invent, data management functionality that is

readily available in off-the-shelve DBMS products. Moreover, the limited genericity and

flexibility of dedicated systems makes them hard to adjust to future demands.

Object-orientation Programming languages often offer a rich object-oriented data model

for dealing with complexly structured data. Applications that use a relational DBMS for

the management of their persistent data, however, must ‘disassemble’ their nested data

structures into atomic components and re-assemble them upon retrieval. This is the so-

called impedance mismatch. Notice that the notion of impedance mismatch also refers to

the difference between item-oriented thinking, encouraged by imperative programming

languages, and the set-oriented approach, enforced by database languages. Apparently,

object-oriented applications would benefit from an object-oriented data model at the in-

terface with the DBMS to reduce the complexity for the application developer.

One way of achieving an object-oriented data model at the interface is to use an object

wrapper. An object wrapper, however, considers the RDBMS as a black box. The object

wrapper has to provide its own query optimizer, as the optimizer of the RDBMS does

not know the strategy that generates the many queries resulting from a single query at the

object level. Garlic [CHN+95] is an example of a system that integrates special-purpose

data servers using object wrappers. It contains its own optimizer that bases its decisions on

statistics and tactical information obtained from the object wrappers. Unfortunately, even

with provisions like these, performing such processing outside the scope of the database

system may cause serious performance degradation, see, e.g.,[dVEK98].

To effectively deal with the impedance mismatch problem, people have attempted to de-
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velop a full-fledged object-oriented DBMS. An example of an OODBMS is Objectstore

[LLOW91], which offers direct support for persistent objects. Its programmatic user-

interface, however, is non-declarative and it didn’t handle data independence well: the

class structure used in the application often dictated the physical layout of the data in

the DBMS. As known from RDBMSs, data independence is essential for scalability and

data distribution. More like a real DBMS is the also well-known system of O2 [BDK92],

which has a structural object-oriented data model. An optimization technique that has

been applied successfully in O2’s query language OQL is the transformation of a path

expression into a join, which deals with the second kind of impedance mismatch we men-

tioned. But O2 as well suffers from the data independence problem we mentioned. In the

end, OODBMSs never became the success as anticipated, because the performance and

flexibility problems were not solved. In our opinion, the lack of data independance is at

the root of these problems.

Object-relational databases As Date and Darwen point out in [DD98], extensibility

with user-defined data types does not require a new data model per se. The original def-

inition of the concept domain says nothing about what can be physically stored. Object-

relational DBMSs are still based on the relational data model, but allow new domain types

to be defined thus enriching the relational data model. Other features of these systems are,

for example, references, set-valued attributes, and type inheritance.

Evaluation experiments with the Bucky benchmark [CDN+97], designed to evaluate espe-

cially the extra features of the data models in OR-DBMSs, showed that a pure relational

schema achieved much better performance in most cases than a schema using object-

relational features such as set-valued attributes. Furthermore, encapsulation of data and

operations inside objects or ADTs affect query evaluation: optimization by the DBMS

becomes infeasible, and query processing too often resolves into object-at-a-time evalua-

tion.

A promising approach to counteract this problem is the E-ADT approach of Predator

[SP97]. In the implementation of the Predator DBMS, an E-ADT can implement an

optimization interface to optimize the query plan using its own algebra, it can perform the

evaluation of a query plan, it can extend the catalog with its own schema information and

statistics, and it can provide multiple physical implementations of values of its type.

The E-ADT approach adheres to what is known in the field of software engineering as the

open implementation approach [KLL+97]. Since ancient times, software has been con-

structed according to the principle that a module should expose its functionality, but hide
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Figure 1: A module has two interfaces according to the open implementation approach.

its implementation. This black-box abstraction helps a developer to deal with complexity.

In many cases, however, there is more than one possible implementation for the module.

A developer may choose one, or try to build some intelligent code that transparently se-

lects one. In some cases, however, the client of the module is better able to make a choice,

so it is desirable to extend the interface of the module in such a way that the client can ad-

vise the module which implementation to take. This interface is called the meta-interface

(see Figure 1). A typical example from operating systems is the memory management

advice a program can give to the operating system that it, for example, will traverse a

huge memory block sequentially, thus enabling the operating system to adjust its caching

strategy accordingly. The optimization interface of an E-ADT is a further example of a

meta-interface according to the open implementation approach.

The typical example of Predator is an E-ADT for images where

Clip(Rotate(img,90),10,20,19,39) and Rotate(Clip(img,20,40,39,49),90) are equiva-

lent, but that the latter is faster, because Rotate is an expensive operation and should

preferrably be done on a small image. In the E-ADT, facilities exist to define that Clip

can be pushed through a Rotate in the same way a select can be pushed through a join.

Unfortunately, E-ADTs have their restrictions. Equivalence rules are defined solely within

an E-ADT. We call this intra-structure optimization, since expressions within the E-ADT

can be optimized with rules defined for that specific E-ADT. A query that, for example,

selects images with a particular annotiation from a collection of images that are clipped

and rotated, cannot, however, be optimized into an execution plan that will first do the

selection and then the clipping and rotation. This is an example of inter-structure opti-

mization where rules from different E-ADTs and/or relational operations cooperate; in

this case, the select should be pushed down.
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2.2 Multi-model architecture

From the above, it becomes clear that a few trade-offs have eluded researchers when try-

ing to make DBMS technology better suitable to non-traditional applications. The first

concerns data model expressiveness. The suitability of a DBMS for an application is

closely related to the expressiveness of its data model. The data model of the conceptual

level should fit the universe of discourse, since end-users have to understand this model

of the real world in order to formulate their queries. If the application area inherently ma-

nipulates complexly structured data, a data model is required that supports the handling of

such data. On the other hand, performance is expected from the DBMS, which typically

means that it should be able to effectively optimize queries. The more complex the data

model, however, the harder it gets to develop an effective optimizer, as the research on

object-oriented DBMSs clearly showed. In the DBMS market today, the object-relational

data model dominates claiming to be simple enough for query optimization, but expres-

sive enough to handle special application areas, but as the Bucky benchmark has shown,

room for improvement concerning performance exists.

To be able to deal with this trade-off, [Vri99] introduces the multi-model DBMS architec-

ture with different data models on different layers. The conceptual level would typically

have an object-oriented data model or a hierarchical semi-structured one. But instead of

using such a data model throughout the DBMS architecture, we choose other, more ‘sim-

pler’ data models for the logical and physical layers of the DBMS architecture. Obviously,

this comes at a cost, namely additional mappings between layers, that map a query ex-

pression from one language to another. A typical choice for a data model and algebra on

the physical level, would be one close to the machine, so for example, the same storage

level relational algebra as ordinary RDBMSs, or, what we have used in many cases, the

binary relational data model of main-memory DBMS Monet [BK99]. This leaves us with

a gap to bridge going from such complex data models to a simple (binary) relational one.

The XNF2-data model [SP82] is very suitable as intermediairy data model, i.e., for the

logical level. It handles complex data structures as nested relations, but still comes with

an algebra that is not much more complex than an ordinary relational one. The idea of a

DBMS based on XNF2 [DKA+86] lost interest when it appeared too difficult to build one

that performed well. In this report, we will show how we adapted the XNF2 data model

(see Section 4) and used it effectively on the logical level of our multi-model DBMS

prototype Moa (see Section 6).

The second trade-off concerns extensibility. To be able to manage complexity, one needs

a module concept to hide implementation details. On the other hand, a module (or ADT)
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Figure 2: The multi-model DBMS architecture (a) next to the object relational (b) and
E-ADT DBMS architectures (c).

as a black-box also hides implementation to the query optimizer, thus restricting its pos-

sibilities to effectively optimize queries. The open implementation approach provides an

answer to this trade-off, as Predator has shown with its E-ADTs.

In effect, object-relational DBMSs only offer extensibility on the level of the physical

algebra. Compared to this, the E-ADT approach of Predator seems to blur the distinction

between logical and physical level. Our multi-model approach offers different kinds of

extensibility on each level. A comparison of these different approaches to extensibility

is shown in Figure 2. In Section 5, we show how the extensibility of Moa provides the

possibility of inter-structure optimization.

Summarizing, the Moa DBMS prototype with its multi-model architecture has the po-

tential of better meeting the demands of non-traditional application domains. By using

different data models at different levels, it is possible to provide a data model supporting

complex structures at the top while still being able to evaluate queries efficiently. We

achieve the latter through several provisions. First, by utilizing an NF2-based algebra

as an intermediairy, we are able to more gradually and effectively translate queries on

complexly structured data to efficient storage-level operations on decomposed (binary)

relational data. Secondly, extensibility at all levels allows to better integrate domain-

specific algorithms into the DBMS, thus improving the performance of domain-specific

operations. Finally, the facilities for extensibility in the Moa language are defined in

such a way that extensions are not black-boxes, but open to the optimizer, hence possible

optimizations can be better exploited.
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In the following three sections, we present the Moa system architecture, language, and

framework, which is our realisation of a DBMS based on the multi-model DBMS archi-

tecture. The system evolved during several research projects of which more details are

given in Section 6.

8



3 Query processing in Moa

3.1 NF2 background

As early as 1982, Schek and Pistor argued that the relational data model is inconvenient

for a domain like information retrieval [SP82]. To attack these shortcomings, they pro-

posed to drop the first normal form (1NF) requirement to effectively allow non-atomic

attribute domains such as sets of values. The 1NF relational data model can be regarded

as a special case in this Non First Normal Form (or NF2 for short) data model. This means

that many definitions and theoretical conclusions of the relational model not dependent

on 1NF, are also valid in NF2.

Two types of nested algebras can be distinguished: the nest/unnest algebra, and the nested

algebra, with and without explicit nesting. The respective algebras differ in the provi-

sions that are taken for accessing attributes of relations nested within relations. In the

nest/unnest algebra, tuples of relation-valued attributes are brought to the top level by

unnesting these attributes. In the nested algebras, the operations to be applied to subre-

lations are brought to the subrelations concerned, either by using one or more algebraic

operators as a navigator, or by employing path expressions. The main difference between

NF2 and eXtended NF2 (XNF2) data models such as that of the AIM DBMS [DKA+86],

is that XNF2 data models support additional data types such as lists and allow for arbi-

trary nesting of type constructors. For a more detailed overview of algebras for the nested

relational model, we refer to [Ste95].

The main part of the work on NF2 concerns, however, the definition of algebras, not their

function, which is to facilitate efficient query evaluation. Query processing in the context

of the second type of nested algebras, where operations are brought to the subrelations,

often results in nested-loop processing, which is often rather inefficient. Unnesting in a

nest/unnest algebra, on the other hand, can cause data redundancy. Moreover, restruc-

turing just to allow access to relation-valued attributes can be considered as pure com-

putational overhead. Furthermore, such an algebra may even suffer from the infamous

COUNT-bug, since in the presence of empty subsets, unnest is not the inverse of nest.

The advantages of a nested relational model in the logical layer are evident, but its fea-

sibility in a system where efficiency plays a role is another issue. [Ste95] has made a

large contribution to the area of query optimization of nested relational algebras, among

others, with the introduction of a special nestjoin-operator [SAB94]. Moa is an extension

of XNF2, where not only type constructors can be arbitrarily nested, but also new type

constructors can be added (see Section 5).
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3.2 Mapping structure on flat data

As explained earlier, we use a ‘flat’ relational data model in the physical layer. The nested

structures, therefore, need to be mapped to flat data, or in other words, NF2 needs to be

mapped to 1NF. Suppose, our database db is structured as a set of sets of n-tuples.1 More

formally in terms of a database universe, db ∈ P P V1 × . . .×Vn, where P is the powerset

operator and Vi are domains of atomic values. For example, our database could look like

db = {{(a,11),(b,12)},{},{(c,13)}}. The subsets of Vi used here are v1 = {a,b,c} and

v2 = {11,12,13}. Such a database can be represented as flat data in the following way:

ID1 = set of as many unique id’s as there are subsets in the database. (1)

ID2 = set of as many unique id’s as there are n-tuples in the database. (2)

SI = subset index as a set of pairs ⊆ ID1 × ID2 (3)

Ai = columns as a set of pairs ⊆ IDi × vi (i ∈ {1,2}) (4)

The above is illustrated for our example db in Figure 3. At the bottom, the above sets are

represented as flat tables and the rounded rectangles illustrate how these sets construct the

original nested db.

3.3 Efficient query processing avoiding NF2 pitfalls

In Section 3.1, we mentioned that both types of nested relational algebras are succeptible

to inefficient query evaluation, either caused by nested-loop processing or by restructur-
1This is obviously a rude simplification, but the principles behind a generic mapping are apparent in this

simplified case.
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ing overhead and data redundancy. The advantage of a nest/unnest algebra is its ability to

map operations on a nested structure to operations on flat data, thus avoiding nested-loop

pitfalls, but at the expense of restructuring data redundancy. For the nested algebra, it is

the other way around. Moa attempts to employ the advantages of both types, by using

flat data processing while avoiding unnecessary restructuring. It does this by keeping an

explicit structure definition in the form of type constructors connected to the flat data,

and by having both nest/unnest operators as well as navigators such as map in the lan-

guage. Furthermore, it effectively deals with the COUNT-bug by explicitly generating

counteracting operations where needed, see the next section for examples.

The rounded rectangles in Figure 3 are in fact Moa type constructors and the tables at the

bottom are called columns. As shown, Moa type constructors have columns or other Moa

structures as arguments. The figure furthermore illustrates the distinction between a value

and an identified value set (or ivs). Note that a column not only represents one atomic

value, but a set of atomic values. By constructing a TUPLE structure using columns, the

TUPLE structure actually represents a set of tuples, called an ivs, rather than one tuple

value. It is the SET structure above it that introduces a partitioning of this set of tuples

according to SI. This SET structure represents a set of sets, rather than one set, so it too

is an ivs. The top-most SET doesn’t introduce another partitioning, but only wraps things

in a proper (nested) value. The top-most SET is, therefore, a Moa value. All structures

in Moa have a value and an ivs form each with their own, albeit equally named, type

constructor. The third argument of the SET ivs is used to deal with the COUNT-bug.

Note that, based on SI alone, it is impossible to determine that an element identified by

2 exists that represents an empty subset, or that more empty subsets exist. The third

argument of the SET ivs lists all elements. An empty subset, hence, is represented by an

occurrence in the third argument and no occurrence in the first argument.

Each operator in our language is defined on two levels: on structure level and on data

level. For example, the ivs variant of the aggregate count has the effect of converting a

set-of-sets-valued argument to a set of atomic values on structure level, while at the same

time generating a grouped count operation on the flat data underlying its argument. In

other words, a query in Moa is translated into both a physical algebra expression on flat

data, and the explicit (nested) structure definition of the result.

This two-level approach to query evaluation is illustrated in Figure 4. The general form of

a Moa query is a Moa expression which uses columns from underlying tables (the leftmost

pyramid). As explained, a column is only an abstraction for a set of atomic values. It

is theoretically not obligatory that these atomic values are stored in a relation, but we
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Figure 4: Moa query evaluation steps.

have, until now, used as physical storage representation of a column either a binary table

(BAT) of Monet or a column from a table in some RDBMS. In the latter case, the column

notation |Emp:name| represents the name attribute of table Emp. In the first rewrite step

of the figure, Moa operations are mapped onto their respective column operations and

result structure (second pyramid). Note that this is just a rewrite operation which causes

only minimal overhead. Furthermore, note that this step converts a query on a nested

structure to operations on flat data. In the third pyramid, the column operations have

been translated to the table operations of the physicial layer. The third step performs the

actual execution of the table operations producing result tables connected to a Moa result

structure. In case an RDBMS is used for storage of columns and two or more columns

are actually stored in the same table, operations on these columns can often be combined,

for example, a selection on one column and a subsequent restriction of another to the

corresponding values, becomes one select on the underlying table.

In the following section, we present the Moa language in more detail, in which the prin-

ciples sketched above play an important role.
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4 Moa logical language

The Moa logical language consists of two parts: the structures in which the data is mod-

eled and the operations that can be applied on those structures. This section first intro-

duces an example, that is used in the two subsequent subsections to illustrate the two parts

of the Moa logical language.

4.1 Introduction

To illustrate the XNF2-based model implemented in the Moa system and the logical lan-

guage used therein to specify the data structure (schema) and queries, we use the well-

known example of an organisation that has a number of departments and a number of

employees that work in those departments, i.e., an organisation consists of a set of depart-

ments, which in turn consist of a set of employees.

A specific instantiation of such an organisation is shown in the organisation diagram pre-

sented in Figure 5. As can be seen from the figure, the organisation, a University, consists

of the departments "Computer Science", "Electrical Engineering", and "Technical Healt-

care". Three employees work in the computer science department, two employees work

in the Electrical Engineering department, and the technical healtcare department has no

employees (yet), as it is a newly founded department. The departments have a name and

address attribute and the employees have a name and a salary attribute.

Name: Technical Healthcare
Address: Ocean Drive 20

Name: Computer Science
Address: Park lane 5

Name: Electrical Engineering
Address: Park lane 5

University

Name: Jordan
Salary: 75.000

Name: Williams
Salary: 150.000

Name: McLaren
Salary: 275.000

Name: Sauber
Salary: 175.000

Name: Smith
Salary: 100.000

Figure 5: Example organisation structure.

In traditional 1NF relational terms, the department entity has a multi-valued attribute, i.e.,

the employees. It should be transformed into a seperate entity type with an additional

relationship to the department entity type if this schema were to be stored in a relational
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DBMS that adheres to the strict 1NF requirements. In the Moa system however, the

nested structure of the schema can be preserved. Figure 6 shows the entire structure

specification of the example organisation in the Moa logical language. In a first glance,

without knowing the Moa logical language, one sees that the organisation is modeled

more naturally, since the nesting is preserved and not flattened as is the case in the 1NF

model. The next subsection explains the specification in detail by introducing the kernel

structures of the Moa system.

SET<
|Department:_key|,
TUPLE<
Atomic<|Department:DName|>: dname,
Atomic<|Department:DAddress|>: daddress,
SET<
|EmpDep:_inverse|,
TUPLE<
Atomic<|Employee:EName|>: ename,
Atomic<|Employee:Salary|>: salary

>: Employee,
|Department:_key|

>: Employees
>: Department

>: University

Figure 6: Schema of University.

4.2 Kernel structures

The structures Atomic, TUPLE, and SET in Figure 6 comprise the kernel structures that

are implemented in the Moa system. These are called kernel structures being the bare

minimum required to support the NF2 data model. Other structures, e.g., LIST, are also

implemented in the Moa system, but are not essential to the NF2 data model and are

therefore not considered as part of the kernel of the system, but as an extension structure

(see Section 5).

Atomic< |column-identifier| > [: label]

For example, taken from the organisation structure:

Atomic<|Department:DName|>: dname

Figure 7: The Atomic kernel structure syntax.

The Atomic type constructor represents an atomic value as it is stored in the underly-

ing database system. Figure 7 shows the syntax of the Atomic structure, together with
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an example taken from the organisation example. An atomic structure is specified by a

keyword (Atomic), a column identifier, and an optional label.2 The column identifier is

the direct reference to the stored data of the underlying database system, which, in the

case of a relational DBMS, is a column of a table. For example, |Department:DName|

refers to the dname column of the Department table. The label of the structure is used as

a convenience mechanism to be able to reference it in certain operations.

TUPLE< Moa-structure, ..., Moa-structure > [: label]

For example, taken from the organisation structure, a tuple that consists of two atomic structures. Note
that any structure defined in Moa can be used as an attribute in a TUPLE structure:

TUPLE<
Atomic<|Employee:EName|>: ename,
Atomic<|Employee:Salary|>: salary

>: Employee

Figure 8: The TUPLE kernel structure syntax.

The TUPLE type constructor represents a product structure that consists of one or more

Moa structures that can be of any type as shown in Figure 8. The purpose of assigning a

label to a TUPLE structure is the same as for an Atomic structure, see above. The Moa

tuple structure is similar to tuples found in relational database management systems.

SET< |key_mapping| ,
Moa-structure,
|key_of_enclosing_set| > [: label]

For example, an excerpt taken from the organisation structure: the sets containing all employees that
belong to the departments.

SET<
|EmpDep:_inverse|,
TUPLE<
...

>: Employee,
|Department:_key|

>: Employees

In the above, ‘_inverse’ and ‘_key’ refer to special columns disclosing schema information, in this case
the inverse of the relationship between employees and departments and the primary key of the depart-
ment table, respectively. To avoid confusion, the |EmpDep:_inverse| column contains the relationship
(‘Smith’,CS), (‘Jordan’,CS), (‘Williams’,CS), (‘Sauber’,EE), and (‘McLaren’,EE), where CS is ‘Com-
puter Science’ and EE is ‘Electrical Engineering’.

Figure 9: The SET kernel structure syntax.

The SET type constructor represents a collection of Moa structures. The possibility of
2represented by the square brackets
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unrestricted nesting of type constructors makes it, in particular with this type constructor,

possible to support all nestings of the NF2 data model. The syntax of the type constructor,

shown in Figure 9, consists of the SET keyword, an index mapping, the structure of the

elements of this set, the index of the set that encloses the specified set, and an optional

label. The index mapping is the mapping of the index3 of the enclosing set to the index

of the set being specified. Again, the label is used in the same way as the label for the

atomic and tuple structures. Note that the outermost set, by contrast, is not an ivs (see

Section 3.3), as it does not have an enclosing set and, hence, does not require the index

mapping and the index of the enclosing set in its specification.

4.3 Operations

Several operations are defined on the kernel structures presented in the previous section.

This section presents some of the most important of these operations, which, at the same

time, illustrate how the Moa system avoids the typical pitfalls encountered in the mapping

between the NF2 data model and the flat relational data model, as already mentioned in

Section 3.3.

The syntax to specify an operation uses a notation in which the operands are placed be-

tween parenthesis and the modifiers are placed between square brackets. A modifier is

an expression that is brought to a sub-structure by some operations that have navigational

capabilities. The operations described in this section are:

• count( operand ),

• select[ modifier ] ( operand ),

• attr( operand ),

• map[ modifier ] ( operand ),

• join[ modifier, modifier ] ( operand, operand ), and

• flatten( operand )

The operations are illustrated using queries in the context of the organisation structure in-

troduced before. The example queries increase in complexity, e.g., by combining several

operations, and each query shows a specific characteristic of the Moa system.
3In relational terms, the index is the same as the primary key of a table.
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Note that the structure specification of the example organisation as shown in Figure 6 is

stored in the data dictionary of the system. In this way, it is available by name (“Uni-

versity” in the example). A name and the expression it represents are equivalent, so the

expression of Figure 6 is simply substituted in the queries below.

count(University);

The result of the query is:

3

Figure 10: Query 1: Counting the number of departments in the organisation.

The query shown in Figure 10 presents an example of an aggregate function, i.e., the count

operation. The count operation is applied to the organisation structure (the operand) and

counts the number of elements in that structure. In this case, the organisation is a set of

department tuples, so that the count operation results in the number of departments.

select[=(attr(THIS, dname), "Computer Science")]
(University);

is equivalent to the query:

select[=(%dname, "Computer Science")]
(University);

The result of the query is:

{
<Computer Science,Park lane 5,
{

<Smith,100000.0>,
<Jordan,75000.0>,
<Wiliams,150000.0>

}
>

}

Figure 11: Query 2: Select the department named “Computer Science”.

Figure 11 shows the attr and select operations. The select operation is similar to the select-

operation of relational algebra. The modifier (in square brackets) specifies the selection

criterion and the operand (in round brackets) specifies the set-valued argument on which

the selection should be applied. The THIS keyword in the modifier refers to an element

of the argument. In this way, the modifier expression is brought to the sub-structure of

SET similar to the navigation operators of the nested algebras mentioned in Section 3.1.

The attr operation (shorthand for attribute) is Moa’s equivalent of projection, i.e., it eval-

uates to a particular attribute of its tuple-valued argument. ‘dname’ is the label specified
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for the atomic structure that represents the department name, see Figure 6. As an abbrevi-

ation, the attr operation can be replaced by a direct reference to the desired attribute using

the label of the structure prefixed with a ‘%’, which is shown in Figure 11 as the second

query.

The example query selects the department named "Computer Science". The result of the

query is the entire department structure including all attributes of that department, i.e., the

name, address, and the set of employees belonging to it.

map[TUPLE<%dname, count(%Employees)>]
(University);

The result of the query is:

{
<Computer Science,3>,
<Electrical Engineering,2>,
<Technical Healtcare,0>

}

Figure 12: Query 3: Proper count handling.

The query of Figure 12 counts the number of employees per department. Not explicitly

shown, but this query is not simply rewritten into a grouped count on the |EmpDep:_inverse|

column shown in Figure 9, because of the so-called COUNT-bug mentioned in Sec-

tion 3.3. If it was, it would have failed to produce the result for the ‘Technical Healthcare’

department. The third parameter of the SET type constructor is used to identify the de-

partments for which to count the employees, see also Section 4.2.

This query also introduces the map operation and a structure constructor. The map oper-

ation is a pure navigational operator: it evaluates the modifier for each of the elements of

its operand and collects the results in a SET structure. In this example, the count operation

is performed on the elements of the organisation structure, i.e., the count is performed on

the departments. The THIS keyword is present in the modifier here, but it is hidden in

the ‘%’ shorthand that we saw earlier. The structure constructor TUPLE<...> is used to

specify the structure of the result elements. In this example, the result will be a tuple that

contains the department name and the number of employees.

The avoidance of the nested-loop processing pitfall, as mentioned in Section 3.3, is shown

by the query in Figure 13. The query selects all employees, grouped by department, and

converts their salaries from dutch Guilders into Euros by dividing the salary through the

currency conversion factor (i.e., 2.20371). The nested-loop pitfall is avoided by applying

the data processing (the division operation) on the one column that contains the salary
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map[
map[TUPLE<%ename, /(%salary, 2.20371)>]
(%Employees)]
(University)

The result of the query is:

{
{
<Smith,45378.0216090139>,
<Jordan,34033.5162067604>,
<Wiliams,68067.0324135208>

},
{},
{
<Sauber,79411.5378157743>,
<McLaren,124789.559424788>

}
}

Figure 13: Query 4: Illustrate the set-oriented processing.

values, as shown in Figure 6. The other operations, like the group by, are processed using

rewrite steps, as explained in Section 3.3.

map[TUPLE<attr(%0,dname), attr(%1,zipcode)>](
join[%daddress, %address]
(University, Zipcodes) )

The result of the query is:

{
<Computer Science,7500 AE>,
<Electrical Engineering,7500 AE>,
<Technical Healtcare,1122 AA>

}

Figure 14: Query 5: Joining two sets.

The join operation joins two structures based on equality of certain attributes of those

structures, similar to the join operation in relational algebra. In the example shown in

Figure 14, the organisation structure and the zipcodes structure are joined based on the

same value of the address attribute. The zipcodes structure is a set of tuples, in which each

tuple relates an address to a zipcode. The result of the query is a set of tuples, created

by the tuple-constructor, containing the department name and its corresponding zipcode.

The ‘%0’ and the ‘%1’ refer to the first and second argument of the operand, i.e., the ‘%0’

refers to the “University” set and the ‘%1’ refers to the “Zipcodes” set, of which the tuple

constructor only takes the dname and the zipcode attributes.
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(a) Input/output window.

(b) Column algebra tree view. (c) Target language tree view.

Figure 15: Screendump of Moa System executing Query 5
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Figure 15 shows a screen dump of the Moa system in which this query (Query 5) has

been executed. The graphical user interface, shown in Figure 15(a), is used to execute the

queries and the display the result. Figure 15(b) and Figure 15(c) show, using graphs, some

intermediairy results of the rewrite steps that are explained in Section 3.3. The column

algebra tree is the state of the query after rewriting to column algebra. The target language

tree shows the operations as they will be executed by the target database system in which

the actual data is stored. In this case, the target database is a relational database system.4

Therefore, the query is eventually translated to SQL. A detailed explanation of the column

algebra and target database mapping is beyond the scope of this report; a report on this

topic is currently being written.

Note that all operations described above, can either affect the structure of the operands,

the data itself, or, in most cases, both. The map and attr operations are examples of

operations that only affect the structure, select and count affect both. Another operation

that mainly has an effect on the structure, is flatten, which converts a set of sets to one set

by taking the union of all sets, i.e., it removes one level of nesting. Figure 16 shows the

use of an application of this operation.

Figure 16 also demonstrates an optimization opportunity. Both queries aimed at counting

the number of employees in the organisation, are equivalent. It is more efficient to first

execute a flatten on the structure, creating a structure that contains the set of all employees,

and then count those employees, than to count the employees per department and then

take the sum. The fact that the structure operation is more efficient, is clearly shown

in Figure 17. Figure 17(a) is the target database mapping of the query using the flatten

operation, which rewrites to one join and an aggregate, while Figure 17(b) shows the

alternative query, which rewrites to two joins and two aggregates, which is evidently

more expensive to execute.

Besides the operations that are described in this section, other operations are available in

the Moa system, e.g., the nest and unnest operations. However, due to space limitations,

it is infeasible to present an exhaustive list.

4The Moa system currently supports IBM DB2, PostgreSQL, and MySQL.
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count(
flatten(
map[%Employees]

(University) ) );

The above query is more efficient than the query below.

sum[THIS](
map[count(%Employees)]
(University) );

The result of the query is:

5

Figure 16: Query 6: Illustration of optimization potential.

(a) Target language tree of first
alternative.

(b) Target language tree of second alternative.

Figure 17: Illustration of optimization potential.
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5 Extensibility

Besides the features of the Moa system described in the previous sections, another key

feature of the Moa system is extensibility. New structures with accompanying operations

can be defined. In fact, the structures we have seen so far, SET, TUPLE, and Atomic,

do not differ in any way from user-defined structures other than being pre-defined in the

system. Hence, Moa can be better classified as a generic framework in which structures

can be arbitrarily nested. The immediate consequence of the latter combined with our

choice of kernel structures is that this defines an NF2 data model. Since both collection

structures, like LIST, can be defined as well as ‘normal’ domain-specific structures, Moa

can be said to be extensible XNF2, or rather X2NF2.

Another novel aspect of Moa is that an operation is ‘implemented’ in terms of (abstract)

column algebra operators (see Section 3.3), thus allowing a subsequent global optimiza-

tion of the column algebra expression of an entire query, hence providing an opportunity

for the much desired inter-structure optimizations.

To illustrate the extensibility possibilities of the Moa system, it is extended with a simple

new structure ‘FV’ containing a few operations. The name of the new structure ‘FV’ is

an abbreviation for feature vector. Its use in a query is shown in Figure 18. The example

is taken from the multimedia domain, content-based querying is realised by extracting

features from images and retrieving images based on some distance measure between

features. Examples of features are color histogram and color structure.

It is modeled as an identifier and a number of feature values. An operation that is specific

for this new structure is the distance operation. This operation calculates the distance of

two feature vectors, based on the distance measure below (i ranges over the individual

feature values).

distance(~v1,~v2,~w) = ∑
i
|~w[i](~v1[i]−~v2[i])|

The smaller the distance between features, the more similar the images corresponding to

those feature are. The query of Figure 18 returns the three most similar images based

on the features of the images stored in the database and the fixed feature vector FV<"",

2.0, 2.0>. The example is simplified for reasons of clarity; real-life feature vectors can

consist of hundreds of values. Other operations shown in the figure are sort, which sorts

the elements of a collection in either ascending or descending order, and a top operation,

which returns only the first n elements of its operand. These operations are examples of
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the support for ordered sequences in Moa.

top[3](
sort[’ASC’,%dist](
select[sm(%dist,2.3)](
map[TUPLE<dist(this,FV<"",2.0,2.0>):dist,%MediaURL>](
SET<
|FeatBase:_key|,
FV<
Atomic<|FeatBase:MediaURL|>:MediaURL,
Atomic<|FeatBase:Value1|>,
Atomic<|FeatBase:Value2|>

>>))));

The result of the query is:

{
<2.15,http://.../artfinder/AV-Content/V2/8610B12.jpg>,
<2.2,http://.../artfinder/AV-Content/V2/DSCN0492.JPG>,
<2.25,http://.../artfinder/AV-Content/V2/deaf00_symposium_day2_06.JPG>

}

Figure 18: Example query illustrating the feature vector (FV) extension.
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6 Application areas and context

The ideas for Moa and multi-model architecture originate from the Magnum-project

[WvZF+98, BWK98, BQK96]. In this project, a structurally object-oriented DBMS was

developed for the purpose of efficiently integrating spatial and thematic data in a single

data manager. Reseach has shown in the early nineties, that full and efficient integra-

tion of GIS functionality in an extensible relational or an object-oriented DBMS based on

ADT-like GIS extensions, was difficult. Therefore, decomposition and extensibility were

the key features of this project.

In terms of the multi-model architecture, the Magnum system consisted of two layers: the

main-memory DBMS Monet as physical layer and Moa as logical layer. This architecture

could be extended in two ways. First, new base types could be defined in Monet, e.g.,

point, line, and polygon, together with a large set of spatial operators on these primitive

base types. Secondly, Moa’s structural extensibility was used to support structures like

polygonal maps, triangulations, and rasters, next to the conventional tuple, set, and list.

Moa mapped these structures to Monet’s binary data model, meaning that the highly struc-

tured data was decomposed in many binary tables. Experiments showed that the Magnum

system performed well on the Sequoia benchmark [SFGM93].

The good experiences with the Moa/Monet combination, especially with the combination

of base type and structural extensibility, sparked off new efforts. If the generic features of

this DBMS could be applied to realise a well-performing GIS, why wouldn’t that work for

other non-traditional domains as well? In the Mirror and AMIS projects, the ideas for a

highly extensible DBMS architecture based on Moa and Monet were further developed in

the realm of text and multimedia retrieval. Mirror concentrated on a generic multimedia

retrieval framework based on belief networks. Experiments showed its feasibility for

content-based retrieval for text, images (based on color and texture features), and music

(based on rhythm features) [dVvDBA99, Vri99]. Since parallelisation and fragmentation

in the physical layer is orthogonal to the logical layer, the architecture design seems to

be better prepared to scale up. The AMIS-project explored this idea by studying the

optimization of top-N IR-queries in a fragmented context [BdVBA01, BHC+01].

In all three projects described above, the integration of data and algorithms from non-

traditional application domains in a single data manager is a central theme. Much the-

matic (tabular) data related to GIS or multimedia objects, however, resides in RDBMSs

with existing applications running on them. Transferring this data to Monet, hence, is,

from an information system engineering point-of-view, not a viable option. Therefore,
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Figure 19: SUMMER federated multi-model architecture.

in the SUMMER-project, the multi-model architecture was taken one step further by us-

ing Moa as a kind of data management middleware, driving both Monet and ‘normal’

RDBMSs (see Figure 19) simultaneously. This allows the ‘addition’ of, for example,

multimedia retrieval functionality to an existing federated information system. The Moa

algebra was extended with a column algebra inspired by Monet’s binary algebra to obtain

more independence from the physical layer. Also in SUMMER, we started the develop-

ment of an XML-based conceptual layer. At the time of writing, the SUMMER-project is

still running, and no references to this work are available, yet.

26



7 Conclusions and future work

In this report, we presented the multi-model DBMS architecture and the Moa logical al-

gebra which plays an important role therein in an attempt to cope with high data manage-

ment demands in non-traditional application domains. In order to support applications

like GIS or digital libraries, one needs an expressive conceptual data model supporting

complexly structured data. Expressiveness, however, is not the only requirement. Since

the managed data is often voluminous and queries are complex in nature, performance

is an important aspect as well. The multi-model architecture supports extensibility in

all three layers thus enabling to integrate domain-specific algorithms in an effective way.

Furthermore, the extensibility mechanism of the Moa language used in the logical layer

of this architecture, has been designed in such a way that optimization across extensions

(inter-structure optimization) is possible. This alleviates the problem with usual ADT-

based extension mechanisms that an ADT is a black-box for the optimizer, thus prohibit-

ing pushing, for example, projections and selections through ADT-operators.

To be able to bridge the gap between an expressive conceptual data model at the top and an

efficient simple physical data model at the bottom, the nested relational approach proved

effective. We placed renewed interest in it, adapted and extended an XNF2 algebra, and

worked on new ways for efficient query evaluation. This resulted in the Moa language

presented in Sections 4 and 5. We regard its role to be vital in the success of the multi-

model architecture.

In several projects, a prototype DBMS evolved into what is now called the Moa system.

Addressing different application domains, the genericity, extensibility, and performance

of the system were put to the test. An overview of those projects was given in Section 6.

In current and future projects, we will continue the work on the DBMS prototype and the

ideas and languages applied therein. First, we are currently developing a conceptual layer

based on XML as data model and XQuery as query language. This will make the DBMS

suitable to be used in web-based environments, providing a more convenient way of man-

aging large XML data volumes with, among others, integrated and efficient multimedia

retrieval. Secondly, we are extending the DBMS prototype with distribution support. In

this way, the Moa system can function as a kind of data management middleware facil-

itating the construction of federated systems. Thirdly, in our research group, the Moa

system is used as an experimentation platform, which imposes a continuous demand for

perfecting the extensibility and efficiency of the system. Finally, we recently started to put

more effort into better exploiting the optimization potential, inter-structure optimization
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in particular. In a PhD project, we are exploring the realm of category theory in search for

ways to fundamentally improve the Moa and column algebra. Furthermore, in a project

which starts in the winter of 2002 concerning information retrieval based on the work of

[Hie01], we intend to improve the optimizer.
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