
Preface 

Historical Background 

Logic programming was founded some 25 years ago. Its birth is usually asso
ciated with the seminal paper of Robert Kowalski [5] in which a computation 
mechanism was proposed that made it possible to use logical formulas as 
programs. About the same time this idea was realized by Alain Colmerauer 
and his team in a programming language, Prolog. 

The creation of logic programming is the outcome of a long history that 
for most of its course ran within logic and only later inside computer science. 
For a proper historical perspective to this volume let us briefly retrace this 
history. 

Logic programming is based on the syntax of first-order logic, which was 
originally proposed in the second half of the 19th century by Gottlob Frege 
and later modified to its current form by Giuseppe Peano and Bertrand 
Russell. 

In the 1930s Kurt Godel and Jacques Her brand studied the notion of com
putatibility based on derivations. These works can be viewed as the origin 
of the "computation as deduction" paradigm. Additionally, Herbrand diss
cussed in his PhD thesis a set of rules for manipulating algebraic equations 
on terms that can be viewed now as a sketch of a unification algorithm. 

Another thirty years passed before Alan Robinson published, in 1965, his 
seminal paper that lies at the foundations of the field of automated deduction. 
In this paper he introduced the resolution principle, the notion of unification 
and a unification algorithm. 

Using the resolution method, one can prove theorems of first-order logic, 
but another step was needed to see how one could compute within this frame
work. In 1971 Kowalski and Kuehner introduced a limited form of resolution, 
called linear resolution. This finally formed the basis for Kowalski's subse
quent proposal of what we now call SLD-resolution. This form of resolution 
is more restricted than the one proposed by Robinson in the sense that only 
clauses with a limited syntax are allowed. However, this restriction now has a 
side effect in that it produces a satisfying substitution, which can be viewed 
as the result of a computation. 

A number of other ideas to realize the computation-as-deduction paradigm 
were proposed around the same time, notably by Cordell Green and Carl He-



VI Preface 

witt, but Kowalski's proposal, probably because of its simplicity, elegance 
and versatility, became most succesful. In particular, the crucial insights of 
Alain Colmerauer on the programming side and David H. D. Warren on the 
implementation side made it possible to turn this approach to computing into 
a realistic approach to programming. 

By now Prolog is standardized - see [3] and new books on Prolog and 
logic programming keep appearing, for instance [1] and [2]. 

Why This Volume 

Logic programming is an unusual area of Computer Science in that it cuts 
across many fields that are themselves autonomous Computer Science ar
eas. More specifically, chapters on it or its uses can be found in standard 
textbooks on programming languages such as [7] (see Chapter 8 "Logic Pro
gramming"), database systems such as [9] (see Chapter 3 "Logic as Data 
Model" that describes the datalog), compiler writing (see Chapter 4 "Com
pilation of Logic Programming Languages" in [10]), artificial intelligence (see, 
e.g., [8] in which all algorithms are implemented in Prolog), natural language 
processing (by employing Prolog, as in [4]), and more recently machine learn
ing (see Chapter 10 "Learning Sets of Rules" in [6] that deals with inductive 
logic programming). 

This richness of the logic programming paradigm can be attributed to the 
remarkable simplicity and conciseness of its syntax that, in its basic form, 
consists of Horn clause logic. The major discovery of Kowalski and Colme
rauer 25 years ago was that this syntax is sufficient for computing. One of the 
first application areas of logic programming was natural language processing. 
Time has shown that this formalism can also be profitably used for a number 
of other purposes, for instance, knowledge representation, parallel computing, 
and machine learning. Further, various simple extensions made this formal
ism applicable for such diverse uses as database systems, formalization of 
commonsense reasoning, and constraint programming. 

At the same time this omnipresence of logic programming is a sign of its 
weakness. In most of these areas logic programming has found a niche but 
did not become the main technology. In particular, in the case of software 
engineering the world seems to be ruled by the imperative programming 
paradigm, and the declarative programming paradigm embodied by logic 
programming and functional programming has not gained enough ground to 
be widely recognized by the industry. 

On the other hand the number of industrial applications developed using 
the logic programming technology is steadily growing and is much larger than 
most of us realize. Originally, these applications have been developed using 
mainly Prolog. In more recent applications also constraint logic programming 
and inductive logic programming systems have been used. 



Preface VII 

These and related considerations about the current role of logic program
ming were behind the organization of a meeting in Shakertown, Kentucky, 
USA in April 1998. 

Our idea was to review the state of the art in logic programming, to assess 
the situation in this field, and to clarify what progress has been made in it in 
recent years. We invited the leading researchers in all subareas of logic pro
gramming and asked them to review the field and to present promising future 
directions of research. In addition, we asked for input from colleagues from 
neighboring fields in order to put the situation within the logic programming 
field in an appropriate context. This led to the present volume that provides 
a unique perspective of this field, 25 years after its creation, a perspective 
that is broad in scope and rich in suggestions. 

In fact, the articles here presented cover most of the areas of logic pro
gramming. Their emphasis is on the assessment of achievements in this field 
and on promising future directions. 

Contributions 

Contributions included in this book are organized according to their subject 
areas. The reader will find that, independently of their subjects, the papers 
can be classified into three main types. The first kind provides an assessment 
of a specific subfield of logic programming. The articles in this group deal 
with 

• natural language processing, by Veronica Dahl, 
• planning, by Vladimir Lifschitz, 
• inductive logic programming, by Luc de Raedt, 
• programming methodology, by Danny de Schreye and Marc Denecker, 

and 
• concurrent logic programming, by Kazunori Ueda. 

The contributions of the second kind offer some new lines of research by 
reassessing known ideas and concepts of logic programming and by shedding 
new light on their use. The articles in this group are by 

• Krzysztof Apt and Marc Bezem, on an alternative approach to declarative 
programming, 

• Howard Blair, Fred Dushin, David J akel, Angel Rivera and Metin Sezgin, 
on relating logic programming to continuous mathematics, 

• Marco Bozzano, Giorgio Delzanno, Maurizio Martelli, Viviana Mascardi 
and Floriano Zini, on the use of logic programming for rapid prototyping 
of multi-agent systems, 

• Koichi Furukawa, on the use of inverse entailment in inductive logic pro
gramming, 



VIII Preface 

• Manuel Hermenegildo, German Puebla and Francisco Bueno, on the use 
of abstract interpretations for program development, 

• Gopal Gupta, on use of logic programming for program semantics and 
compilation, 

• Michael Maher, on the addition of constraints to logical formalisms, 
• Victor Marek and Mirek Truszczy:tiski, on an alternative approach to logic 

programming via the use of stable models, and 
• Carlo Zaniolo and Haixun Wang, on logic-based foundations for advanced 

database applications, such as data mining. 

Finally, in the third type of contributions, the ideas originally conceived 
within logic programming are applied to areas that at first glance have noth
ing to do with it. These are contributions by 

• Paul Tarau, on mobile agent programming, 
• Jacques Cohen, on computational molecular biology, and 
• Maarten van Emden, on numerical computing. 

Additionally, 

• Saumya Debray studies program optimization within a multi-language 
environment, 

and, in a contribution from a neighbouring field, 

• Philip Wadler provides some insights into the use of functional program
ming in industry. 

We would like to take this opportunity to thank all the authors of the 
submitted papers for having agreed to contribute to this special issue and for 
their help in putting this volume together, and the referees for giving of their 
time and providing helpful reviews of the papers. 

References 

1. K. R. Apt. From Logic Programming to Prolog. Prentice-Hall, London, 1997. 
2. W. F. Clocksin. Clause and Effect. Springer-Verlag, Berlin, 1997. 
3. P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard. Springer

Verlag, Berlin, 1996. 
4. G. Gazdar and C. Mellish. Natural Language Processing in PROLOG. Addison

Wesley, 1989. 
5. R.A. Kowalski. Predicate logic as a programming language. In Proceedings 

IFIP'74, pages 569-574. North-Holland, 1974. 
6. T. M. Mitchell. Machine Learning. McGraw-Hill, 1997. 
7. R. Sethi. Programming Languages: Concepts and Constructs. Addison-Wesley, 

1989. 



Preface IX 

8. Y. Shoham. Artificial Intelligence Techniques in Prolog. Morgan Kaufmann, 
San Francisco, CA, 1994. 

9. J.D. Ullman. Principles of Database and Knowledge-base Systems, Volume I. 
Principles of Computer Science Series. Computer Science Press, 1988. 

10. R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley, 1995. 

Amsterdam 
Lexington, KY 
Lexington, KY 
Stony Brook, NY 

Krzysztoj R. Apt 
Victor W. Marek 

Miroslaw Truszczynski 
IJavid S. VVarren 


