
Preface

Background

The term meta-programming refers to the ability of writing programs that have other
programs as data. It is usual to refer to the programs that play the role of data as object
programs, and to the manipulating programs as meta-programs. To be more precise,
meta-programs work on a representation of object programs.

Meta-programming has played a fundamental role both in the foundations of computer
science and in its practical developments. Its roots go back to mathematical logic, more
specifically to Kleene's normal form theorem that states that for some primitive recursive
functions T, U every partial recursive function equals U(µy.T(e, x, y)) (usually denoted
by <Pe) for some natural number e. We can view <Pe as the function computed by the
program e, and U and T as meta-programs that work on the object program e.

The choice of logic programming as a basis for meta-programming offers a number of
practical and theoretical advantages. One of them is the possibility of tackling critical
foundational problems of meta-programming within a framework with a strong theoret
ical basis. Another is the surprising ease of programming.

However, to formally deal with meta-programs, the usual framework of logic pro
gramming, or more generally, of first order logic has to be modified and appropriately
extended. The reason is that various phenonemena relevant to meta-programming, like
the representation of object programs and their syntax, the interplay between the ob
ject level and meta-level, the use of modules, the representation of proof strategies etc.
require logics that are richer and more expressive.

We denote these extensions of logic programming and first order logic collectively by
the term of meta-logics. Their definitions, formal properties and use form the main theme
of this book. The other is meta-programming in logic programming.

Let us discuss now some of the issues mentioned above in more detail. This will provide
us with a better insight into the problems that need to be solved on the meta-logical level.

From the viewpoint adopted above, it is certainly true that compilers can be considered
as meta-programs in their full right. But, is it reasonable to consider a text editor as a
meta-program, when it is applied to a file containing the representation of a program?
In this case the most sensible answer seems to be "no", and, in order to cope with
this contradiction, we propose to refine our informal definition into: meta-programming
refers to the ability of writing programs that have other programs as data and exploit their
semantics.

Preface
x

Among the examples of useful meta-programs we can list compilers, interpreters, pro

gram analyzers, and partial evaluators.
In the application field, things get even more interesting when the meta-program and

the object program are written in the same language. The deep and far reaching phe

nomenon that arises in this case is that the very same piece of syntax can play, in

principle, either the passive role of datum or the active role of program construct in

different contexts and in different stages of the program execution.

In Prolog, the minimal example of this phenomenon is represented by the clause

eval(x) :- x
that allows a programmer to "lift" any ordinary term (a Prolog datum) to the status of

being an atom (a Prolog programming construct).
Such a double role for the same piece of syntax has been typical for many knowledge

representation systems that have been realized and experimented with.

The idea is simple. Write a program that takes as input the representation of a program

written in a superset of the language, and execute it according to the following strategy:

if a construct is a new one then call a special procedure to handle it, otherwise let the

construct be executed as it is. Many books on the use of Lisp or Prolog for artificial

intelligence applications contain extensive examples of this approach. What these books

lack, however, is a justification of this approach from the logical point of view.

The most critical problem of meta-programming is certainly the representation prob

lem, i.e. how object programs are represented within meta-program. The first part of

the volume deals with this essential problem and discusses various meta-logical solutions

to it. The second part of the volume is concerned with language extensions that make

meta-programming easier and more elegant. Finally, the third part of the volume deals

with the use of meta-logics for advanced knowledge representation purposes. Let us

discuss now the individual contributions to this volume.

Part I: Foundations

A classical problem in the foundations of meta-logic programming is the justification

of the formally incorrect (untyped) Vanilla meta-interpreter, which uses a non-ground

representation of object variables. In particular, the unwell-typedness of Vanill<:l. leads

to the presence of unrelated atoms in the least Herbrand model of the Vanilla meta
interpreter.

The paper of Kalsbeek overviews and compares various approaches towards the prob

lem of the occurrence of unrelated atoms in the semantics of the Vanilla meta-interpreter:

the use of the (correct) typed version, restriction to language independent object pro

grams, and the use of S-semantics. In particular, Kalsbeek argues that Hill and Lloyd's

Preface xi

seminal procedural correctness result for the typed version Vanilla is also a proof for the
procedural correctness for the untyped version of the Vanilla meta-interpreter. It is also
shown that the various correctness proofs are insensitive to the precise representation
of the object level language. In addition, she discusses the use of ambivalent syntax as
the underlying syntax for the Vanilla meta-interpreter, in particular for amalgamated
extensions and enhanced versions. She presents a separate proof for the declarative
correctness of the Vanilla meta-interpreter with ambivalent syntax as the underlying lan
guage. This result is then used to prove the correctness of a simple amalgamation of the
object program with the associated Vanilla meta-program.

While logic programming is formally based on first order predicate logic, many of its
applications use non-standard syntaxes, which are characterised by syntactical ambiva
lence between formulas, terms, predicates, and functions. Examples are the meta-variable
facility of Prolog, the overloading of predicate and function symbols allowed in Prolog,
the identity naming of object level constructs used in Vanilla meta-programming, and
the use of generic predicates in databases.

The paper of Kalsbeek and Jiang discusses Ambivalent Logic, which provides a gen
eral framework for first order predicate logic with various levels of syntactic ambivalence.
A conservativity result shows that Ambivalent Logic is a conservative extension of first
order predicate logic. They prove a series of results which justify the use of ambivalent
syntax in logic programming. In particular, they prove termination and correctness of
an appropriate version of the Martelli-Montanari unification algorithm, and show that
resolution is a sound and complete inference method for Ambivalent Logic.

The two best known semantics for definite logic programs are least Herbrand semantics
and S-semantics. It is however not a priori clear that these semantics lead to meaningful
results for meta-programs in the Prolog-style non-typed tradition, using a non-ground
representation for object level variables like the well-known vanilla meta-interpreter.
Since this style of meta-programming seems to be of considerable practical importance,
this situation must be judged unsatisfactory.

In their contribution, Martens and De Schreye study the relation between the
semantics of definite object programs and the corresponding untyped vanilla meta
programs, both in the context of least Herbrand and S-semantics. They also investigate
various enhanced meta-programs, some of which feature limited forms of amalgamation.
The latter extension is enabled through the overloading of function and predicate sym
bols, a technique that essentially coincides with allowing a certain degree of syntactical
ambivalence in the language. For these programs and semantics, they establish under
which conditions there is a strong correspondence between object and meta-level seman
tics, thus shedding light on the question to what extent meta-programming of this kind
can be judged meaningful.

xii

. blern In their
Also the paper by Brogi and Turini addresses the representat10n pro · h . e

. 1 t tion tee niqu
contribution they propose a semantic 1ust1ficat10n for a s1mp e represen a ..

. . . . 1 . Th representation
in the field of a generalised not10n of meta-programming m ogic. e

. . d h enerahsat1on
technique is again based on the notion of ambivalent syntax, an t e g , ..

. b' s defined v 1t.i
consists in specifying the meta-programs with respect to o 1ect program _ . ..

f . h 't of operations
program expressions. The expressions are defined by means o a nc sm e

'ld . h f d d oncise rneta.,
on logic programs. The technique allows one to bm stra1g t orwar an c ·

programs via the representation of object level variables by meta-level variables.

One of the interesting features of Prolog is that it allows us to extend its syn~<~X iu

a simple way, by means of meta-variables. This property is used to define negatwn 111

Prolog, using meta-variables, clause ordering and the cut operator. In logic progra~11 n1

negation is defined in quite a different way, by means of so-called SLDNF-resolutwn.

The paper by Apt and Teusink compares these two uses of negation - in Prolog a.nd

in logic programming. This requires a careful reexamination of the assumptions aboni

the underlying syntax and a precise definition of the computational processes involved

After taking care of these matters, among others by adopting an ambivalent syntax, tJH'.Y

prove an equivalence in appropriate sense between these two uses of negation. This t

allows them to argue about correctness of Prolog programs that use negation.

Part II: Language Support for Meta-Logics

High-level languages such as Lisp and Prolog are often chosen because the syntactic

similarity between programs and data makes it very convenient to write meta-programti in

those languages. If we desire a truly declarative programming language however) it can rw
seen that we have been tempted down a blind alley in the approach these languages tab·

to meta-programming, because they do not provide the means for a declarative treatrrwut

of object variables in the meta-program. Without a ground representation, any but th~·

simplest of meta-programs can have no declarative semantics. Unfortunately, using ;~

ground representation apparently incurs a significant overhead in program compl~~x
and computation time.

Godel is a new programming language aimed at narrowing the gap between theory

and practice in logic programming, and with particular emphasis on declarative rrn.•ta

programming. To achieve its aim, Godel must make the ground representation attractiv1"

to programmers in both ease of use and execution time. The paper by Bowers and G· urr

shows how this might be done, through the careful design of library modules, and t tw

use of partial evaluation and low-level implementation techniques. Their experinwntN

on simple Godel meta-interpreters using the ground representation demonstrate son:w

Preface xiii

dramatic performance improvements from these methods.
The paper by Brogi and Contiero investigates the adequacy of Godel as a meta

language for implementing various forms of logic program composition. Two alternative

implementations of a set of program composition operations are presented, based on the

non-ground and the ground representation of object programs respectively. The merits

of Godel as a meta-language are discussed by comparing the two implementations and
by analysing the results of some experiments with the Godel partial evaluator. Finally,

some directions in which Godel might be extended or improved are identified.

In the paper by Barklund, Boberg, Dell' Acqua, and Veanes theory systems are
proposed as a device for writing software engineering applications and applications that

involve reasoning and meta-reasoning. A theory is a set of sentences that is closed under
inference and a theory system is then a collection of theories that are related through
reflection principles.

The meta-logic programming language Alloy for defining theory systems is introduced
with formal syntax, inference rules and a concept of models for Alloy programs. Several

examples of Alloy programs that define theory systems are given.

Part III: Meta-Logics for Knowledge Management

Traditional logic is concerned with static theories, which do not change over the course

of time. Deductive databases and knowledge bases extend this static form of logic to
include the dynamics of database updates and knowledge assimilation. Such dynamic

theories, however, are still essentially passive, in that, although they change their own

internal state, they do not change the state of the environment.
Kowalski's paper proposes the use of meta-logic programming, within a concurrent

logic programming framework, to extend such theories to active theories, which behave
as intelligent agents. He presents a meta-logic program which defines the observation

thought-action cycle of such an agent, with the intention of giving the definition both a

procedural (process) and declarative (logical) interpretation. Moreover, he argues that,
by adjusting the amount of resources available for thought versus observation and action,

it is possible to simulate both reactive agents (when the amount of resource is small) and

rational agents (when the amount is sufficiently large).
In knowledge representation several formalisms for reasoning about knowledge in a

multi agent scenario have been proposed. More specifically, we can identify a family of
languages based on the use of a modal operator and another one based on the use of

first-order logic enriched with meta-level capabilities.
The paper by Carlucci Aiello, Cialdea, Nardi and Schaerf considers these two

xiv
Preface

approaches by addressing the issues of consistency that arise from selfreferentiality, their
expressiveness and the methods for translating classical modal systems into meta-level

first-order formalisms.
Preferences and strategies are fundamental to model-based diagnosis, for specifying

preferred and fall-back approaches to the diagnosis task, both to capture general and
domain specific criteria, but also to tackle the complexity issue by employing heuristics.

The paper by Damasio, Nejdl, Pereira, and Schroeder presents a formal frame

work based on extended logic programming and meta-programs for the representation of
preferences and strategies required by model-based diagnosis. This framework is clearer
and more expressive than other approaches that have addressed these problems. The
authors show how the concepts of preferences and strategies are directly programmed
and captured by logic meta-programming and meta-reasoning methods, and their im
plementation techniques. The paper is intended as proof-of-principle that all concepts
needed by a model-based diagnosis system can represented declaratively and captured
by a logic meta-program. Specialized more efficient algorithms can be substituted for
the simpler proof-of-principle ones they include, and are the subject of ongoing work.

Meta-programming can also be used as a theoretical basis for defining more expressive
data models. The paper by Sripada and Moller describes a rich temporal data model
for advanced database applications. They illustrate the power of meta-programming for
temporal knowledge representation and reasoning. They then describe how the relational
model can be extended to provide support at the database level for the concepts derived
from metalevel knowledge representation.

Acknowledgments

This volume presents an outcome of research carried out within the Esprit funded
Basic Research Project "Compulog II". (For those interested in numbers - No. 6810.)
The project has started August 1, 1992 and will finish July 31, 1995. The first editor
is the project coordinator and the second one coordinator of the area "Meta- and non
monotonic reasoning" within the project.

The aim of "Compulog II" has been to study various extensions of logic programming
which make it more amenable for knowledge representation and programming. One of the
important elements has been the investigation of the meta-programming within the logic
programming paradigm. This book is devoted to this aspect of Compulog II research.
Many chapters were specially written for this book. They were all internally refereed.
We would like to take this opportunity to thank all the authors for their contributions,
refereeing work and assistance in preparing this preface. Bob Prior from the MIT Press
provided us with the necessary help on the side of the publisher and, last but not least,
Kees Doets and Bonnie Friedman helped us to win in our struggle with the MIT stylefiles.

We hope this volume will not satisfy but rather stimulate readers' interest in this
exciting research area.

K.R.A.
F.T.

