
ON THE INTEGRATION OF IR AND

DATABASES
Arjen P. de Vries and Annita N. Wilschut

Centre for Telematics and Information Technology

University of Twente

The Netherlands

{arjen,annita}@cs.utwente.nl

Abstract: Integration of information retrieval (IR) in database management
systems (DBMSs) has proven difficult. Previous attempts to integration suffered
from inherent performance problems, or lacked desirable separation between
logical and physical data models. To overcome these problems, we discuss a
database approach based on structural object-orientation. We implement IR
techniques using extensions in an object algebra called MOA. MOA has been
implemented on top of the database backend Monet, a state-of-the-art high­
performance database kernel with a binary relational interface. Our prototype
implementation of the inference network retrieval model using MOA and Monet
demonstrates the feasibility of this approach. We conclude with a discussion of
the advantages of our database design.

INTRODUCTION

Information retrieval (IR) is concerned with the retrieval of (usually text) doc­
uments that are likely to be relevant to the user's information need as expressed
by his request (van Rijsbergen, 1979). IR retrieves documents based on their
content. Because the request (or query) is never a perfect expression of the
information need, IR is an iterative process.

Database management systems (DBMSs) traditionally support a different
kind of retrieval. Van Rijsbergen summarizes the differences as follows. Re­
trieval in databases is deductive and exact. Retrieval in IR uses inductive
inference and is approximate. Objects in a database possess attributes both
necessary and sufficient to belong to a class. Conversely, no attribute of a doc­
ument's content is necessary nor sufficient to judge relevance to an information
need.

1

2

As a result, DBMSs do not sufficiently support searching on content and IR
systems do not handle structured data. However, many applications of informa­
tion systems have requirements that can only be matched with a combination of
data retrieval and information retrieval: e.g. patient's data in hospital systems,
multimedia data in digital libraries, and business reports in office information
systems. The characteristic feature of such applications is the combination
of content management with the usual manipulation of formatted data; these
two aspects are often referred to as the logical structure and the content
structure of a document (Meghini et al., 1991).

Consider an information request in a digital library for 'recent news bulletins
about earthquakes in California'. In this example, 'recent' and 'news' refer to
attributes of the objects in the library (which are in its logical structure), while
'earthquake' and 'California' refer to the content of those objects (which is its
content structure). Note that the combination between constraints on content
and other attributes of the documents is also important for the implementation
of Mizzaro's different notions of relevance in the IR process (Mizzaro, 1998).

Another argument in favour of integrated systems is from an architectural
point of view. Databases and IR systems share requirements like concurrency
control, recovery, and internal indexing techniques. Database management
systems (DBMSs) already provide such support. The integration of IR in
databases can also help the IR researcher to concentrate on retrieval models
and reduce the effort of implementation involved with experimental IR.

This paper presents an implemented prototype of an integrated IR and
database system. In the next section we review previous approaches to such
integration, discuss some problems with these systems, and present an outline
of our design.

BACKGROUND AND PROBLEM STATEMENT

Information retrieval systems

The development of an IR system consists of three steps (see e.g. (Wong
and Yao, 1995)). First, we choose an appropriate scheme to represent the
documents. Second, we model query formulation. Third, we select a ranking
function which determines the extent to which a document is relevant to a
query. The combination of these three steps is known as the retrieval model.

Usually, documents and queries are simply represented as a collection of
words. Sometimes, the words are reduced to their stems (stemming) and
often frequent words with little semantics are left out (stopping). Techniques
from natural language processing may be applied to identify phrases. The
resulting features of these procedures are called the indexing terms.

A wide variety of ranking formulas exists; see (Zobel and Moffat, 1998) for
an overview of the most common ones. Typically, the ranking is determined
using statistics about the distribution of the indexing terms over the document
collection. Most statistics are based on the term frequency (tf), the num­
ber of times that a term occurs in a document. Usually, the raw values are

ON THE INTEGRATION OF IR AND DATABASES 3

normalized to account for document length before they are used for ranking,
e.g. by dividing with max tf. Sometimes, log-normalization is used because
the difference between one or two occurences of a query term in a document is
much more significant than the difference between fifteen or sixteen times. For
example, the term frequency component (tf) in the ranking formula of the
popular retrieval system InQuery is (Callan et al., 1995):

0.4 + 0_6 . log(t/ + 0.5)
log(max tf + 1.0)

(1.1)

The document frequency (df) is the number of documents in which a term
occurs. Because a high term frequency of 'car' in a document from a collection
of documents about cars does not add much information about the relevance
of that document for the query 'red sports cars', tf is usually multiplied with
the inverse document frequency. The inverse document frequency (idf) is
usually defined as log !Ji-, and expresses the amount of surprise when we observe
a term in a document. The product tf · idf is the most popular weighting in
IR and is used in most ranking formulas.

Integration of IR in object databases

Previous approaches to IR and database integration have suggested the ap­
plication of object-oriented databases. Object data models allow nesting, and
in addition to sets, work with multiple collection types. Therefore, an object­
oriented model is very suited for the implementation of IR. A good example of
the design of IR in an OODBMS is the Cobra system described in (Mills et al.,
1997).

Unfortunately, the design of OODBMSs often provides little support for
data independence. Although object-orientation is very useful for data mod­
eling of complex objects and their behaviour, this does not necessarily imply
that the implementation of the objects at the database level should be the same
as the view on the objects at the conceptual level. Often, the implementation
of object databases uses conventional programming languages to extend the
OODBMS. The structure of the complex objects is hard-coded in the imple­
mentation of the object, and only the interface of the complex object is known
to the database. The system cannot 'look inside' the objects to plan the execu­
tion of a query that involves several method-calls. For many operations on the
complex objects, this will lead to object-at-a-time processing instead of the of­
ten preferrable collection-at-a-time processing. Algebraic optimization of query
expressions, as proven very succesful for relational databases, is hard to achieve
because the structure of the objects is hidden inside of the object. Concurrency
control and parallellization can only be defined at object granularity.

Data independence in 00: structural object-orientation

We can obtain better data independence in object databases when we base
their design on structural object-orientation. In a database system with

4

support for structural object-orientation, we distinguish between atomic data
types and structures over these types. The structure definitions are part of
the extensible data model. Because the database manages the structure of
the objects, and not an extension module written in an external programming
language, it can 'look inside' the objects and make better decisions with respect
to query processing and concurrency control.

In this paper, we study an approach based on structural object-orientation
for the design of an integrated IR and database system. This design consists
of three levels. At the top level of our design, we model the information re­
trieval functionality. We define extensions that model the three components of
a retrieval model: document representation, query formulation, and the rank­
ing process. This level implements the management of content and adds it to
the object algebra. The second level is our object algebra called MOA. MOA
provides a nested object data model using bags, objects, and tuples. The for­
mal definition of structuring primitives allows the addition of the specific
structures for information retrieval. MOA provides the functionality required
to manage the logical structure of the documents. At the bottom level, MOA
object algebra is mapped to a flat binary relational model. This datamodel is
employed by Monet, an efficient database kernel that is used as a backend for
query execution. The use of a different physical data model brings us the ben­
efit of data independence and avoids the pitfalls of object-oriented databases
mentioned before.

In the remainder of this paper, we discuss the implementation of an inte­
grated IR and database system using structural object-orientation. We con­
centrate on the database aspects of our design. We start in section 1 with a
quick overview of the Monet database and MOA object algebra. In section 2,
we discuss the integration of IR in MOA and Monet. We design new MOA
structures that support IR functionality, introduce the physical data model,
and define algebraic operations to support IR. After discussing the resulting
design in section, we finish the paper with conclusions and further research.

MONET AND THE MOA OBJECT ALGEBRA

In this section, we give overviews of the database Monet, the MOA object
algebra, and its implementation on Monet.

Monet

Monet is an extensible parallel database kernel that has been developed at the
UvA and the CWI since 1994 (Boncz and Kersten, 1995). Monet implements
a binary relational model; the data is stored in Binary Association Tables
(BATs). BATs are tables with two columns, the head and the tail, each
storing an atomic value. Structured data is decomposed over many narrow
tables. The system is intended to serve as a backend in various application
domains. In this research, we used Monet to implement an IR retrieval model
with algebraic database operations. Monet has also been used succesfully as

ON THE INTEGRATION OF IR AND DATABASES 5

back.end for geographic information systems as well as commercial data mining
applications.

Monet's design is based on two trends. First, the average main memory in
workstations gets larger and larger. Therefore, processing should be focused
on operations that are performed in main memory instead of on disk; all prim­
itive operations in Monet assume that their data fit in main-memory. Second,
operating systems evolve towards micro-kernels, i.e. they make part of the OS
functionality accessible to applications. A DBMS should therefore not attempt
to 'improve' or 'replace' the OS-functionality for memory management. If the
tables in Monet get too large for main memory, the database uses memory
mapped files. It uses the lower level OS primitives to advice on the buffer
management strategy. This way, the MMU can do the job in hardware.

The Monet Interface Language (MIL) consists of the BAT-algebra, which
contains basic operations on bags including select, join, and semijoin, as
well as a collection of control structures. The algebra operations materialize
their results and never change their operands. They perform an additional
dynamic optimization step before execution. Based on the properties of
the operands, the most efficient algorithm is chosen. For instance, the join
algorithm may be a hashjoin, but also a mergejoin that assumes the join
columns to be ordered, or a syncjoin that assumes the join columns to be
identical. When two BATs have an identical head column, they are said to be
synced. Join operations can be performed very efficiently on synced BATs,
because we do not have to compare the values - we know beforehand that the
head values in the operands are equal. This way, the extra cost for re-assembling
the vertically fragmented multi-attribute data is reduced significantly, which
has been demonstrated on the TPC-D decision support benchmark in (Boncz
et al., 1998).

MOA, an algebra on an extensible object datamodel

MOA consists of an extensible object datamodel and an algebra on this data
model. This section summarizes the datamodel and the algebra. Note that we
do not introduce MOA as a language for end-users. We aim at support for a
full-fledged declarative object query language like OQL (Catell et al., 1997).
MOA is only an implementation platform for such a language. At present, we
have not yet implemented a full translation of OQL to MOA. Therefore, our
current systems should be considered only as a basis for application developers.

Datamodel. The MOA data model is based on the concepts of base types
and structuring primitives. MOA assumes a finite set of ADT-style base
types. Base values (which are instances of base types) are atomic; their internal
structure cannot be accessed, and is only accessible via operations. Base types
are implemented at the level of the physical storage system, and therefore allow
efficient implementation in a general-purpose programming language. The base
types for our implementation of MOA are provided by the underlying physical

6

system, Monet. Therefore, MOA inherits the base type extensibility provided
by Monet.

A structuring primitive, or structure for short, combines known types to cre­
ate a structured type. Structures can be used recursively. The set, bag, and
tuple are well-known structuring primitives that are provided in all 00 data
models. The MOA kernel supports a generic notion of orthogonal structures.
Actual implementations of structures are added to the kernel in separate mod­
ules. MOA also supports the notion of classes and objects. As these concepts
are not directly relevant in the context of this paper, they are not discussed
here. MOA's type system can now be summarized as follows:

base types: r is a type if r is an atomic type.

structured types: If r 1 , · · ·, Tn is a, possibly empty, list of types and T is a
structure defined over r 1 , ···,Tm then T(r1, · · ·, rn) is a structured type.

The collection of structures constitutes the datamodel at the logical level.
These structures are mapped by the MOA implementation on the physical sys­
tem. This mapping provides data independence between the MOA data model
and the physical storage system. The logical-to-physical mapping also allows
the system to optimize query execution plans. Our implementation of MOA
provides bag and tuple structures. The result is an orthogonal type system that
consists of atomic types, a bag structure, and a tuple structure, that is exten­
sible with user-defined structures. In this paper, we further assume that MOA
is supplied with the bag and the tuple structure, and we will define a number
of structures to model documents, and statistics over document collections.

Algebra. The algebra on the MOA data model consists of the operations
defined on the available atomic and structured types. Each atomic type has
its own accessor functions. The accessor functions on the atomic types are
executed directly in the physical system. Each structure definition comes with
operations on the structure. The logical MOA operations on structures are
translated into efficient physical execution plans. In MOA, the bag structure
implements many operations that are usual in query algebras, like the selection,
map, join, semijoin, nest, unnest, etc. The tuple structure implements an
operation to extract an attribute from the tuple. Atomic types simply add
their accessor functions to the algebra.

MOA example. Let X be a value of the nested structured type defined in
code example 1. MOA's select operation selects those tuples from the operand
bag into a result bag for which the zeroth (integer) attribute has value 1. The
result is a value of the same type as the operand. After the selection operation,
we may remove the integer attribute from the resulting tuples using a map

operation.

Example 1

X: BAG<TUPLE<integer, string, BAG<string>>>;

ON THE INTEGRATION OF IR AND DATABASES 7

....

Figure 1 The mapping of the MOA data

model on Monet's binary tables
Figure 2 MOA query execution by trans­

lation to MIL

select[attr(THIS,O) = 1](X);

map[TUPLE<attr(THIS,1), attr(THIS,2)>] (

select[attr(THIS,O) = l](X)
) ;

Assume now that Y is a value of type BAG<integer>. The following join
operation joins the elements of bag X with bag Y on the equality of the count
of the bag attribute in the tuples in X and value of the integers in Y:

join[count(attr(THIS,2)), THIS, TUPLE<>] (X,Y);
This join uses the TUPLE structure to generate the result. Consequently, the

type of the result is

BAG<TUPLE<TUPLE<integer, string,BAG<string>>,integer>>.

Implementation. We illustrate the main idea using the definition of struc­
tured value X given in example 1. The full details of the mapping of MOA
on Monet and an evaluation of its performance are described in (Boncz et al.,
1998). Because Monet only has binary tables, we have to use full vertical
decomposition (Copeland and Koshafian, 1985) to store structured data. The
combination of BATs storing values with a structure function on those BATs
forms the representation of a structured value.

The structure function allows the reconstruction of value X from its decompo­
sition. Figure 1 shows the mapping of X on Monet. The rectangles correspond
to BATs, and the ovals together constitute its structure function:

BAG< indexX,
TUPLE< Atomic<AO>, Atomic<A1>,

BAG< indexA2, Atomic<A2>, idsA2 >>>;
There is a one-to-one correspondence between a structure function and the

structured type that is mapped via the structure function. The idea behind
the algebra implementation is to translate a query on the representation of
the structured operands into a representation of the structured query result.
Figure 2 illustrates this process: the query is a MOA expression on a structure

8

function on BATs; its translation is a MIL program on the operand BATs that
generates result BATs, which in turn are the operands of another structure
function representing the result.

INTEGRATION OF IR IN MOA/MONET

IRin MOA

In this section, we extend MOA with structures for querying document collec­
tions by content. Note that, aiming for data independence, we add the rep­
resentation of documents as a structured type rather than following common
practice using base type extensions.

We first define structuring primitive DOCREP for the representation of docu­
ment content. DOCREP's implementation manages the document representation
at the physical level. The combination of DOCREP with other MOA structures
allows us to flexibly model document collections. The data model most similar
to 'normal' IR systems is the specification of a document collection as a BAG of
DOCREPs. A more interesting specification uses the standard structure TUPLE to
describe a document as the combination of its content and its logical structure.
Example 2 shows the selection of 'News' documents from a document collection
docs, in which documents are modelled as a tuple of category and content.

Example 2

• document collection structure definition:

BAG< TUPLE< Category : str,

Content DOCREP > >;

• its associated structure function:

docs : :=

BAG<docidx, TUPLE<Atomic<Category>,
DOCREP< dj, ti, tfij, docidx >>>;

• expression for subset selection:

select[=(THIS.Category, "News")] (docs);

When querying a collection on content, we compute a score to express the
belief that a document is relevant for the query. The computation of this be­
lief usually requires global statistics of the document collection. Because we
may have several document collections in one database, we model the collection
statistics explicitely in the DCSTAT structure. Also, when we reduce a collection
using conditions on the logical structure of documents, we may in some cases
want to use the statistics of the subcollection for content querying (e.g. when
selecting documents that are news items), but in other cases use the statistics
of the original collection (e.g. when selecting the documents written at Univer­
sity of Twente). An explicit structure for the collection statistics makes both
strategies possible.

ON THE INTEGRATION OF lR AND DATABASES 9

In the current implementation, a DCSTAT is constructed using a collection
name, the dictionary (or indexing vocabulary), the number of documents in the
collection, and the document frequencies (dj) of the indexing terms. A DCST AT
can also be obtained from a given document collection, using the aggregate
getStats defined in structure DOCREP. DCSTAT operation nidf encapsulates the
calculation of normalized inverse document frequency scores for the query terms
in its operand. If we leave out the query terms, nidf returns tuples of term
identifier with normalized idf values for all terms in the indexing vocabulary.
Thus, we get the same answer with a semijoin between its result and the query
terms. Example 3 shows the queries for both approaches, assuming that stats
and query are extents of the structure definitions of nidf's input arguments.

Example 3

• nidf method definition:

in: DCSTAT, BAG< oid >

out: TUPLE< term.id: oid, nidf: dbl >

• equivalent expressions for idf of query terms:

nidf(stats, query);

semijoin[THIS.nidf, THIS, TUPLE<>](

nidf(stats), query);

Because an IR retrieval model calculates a belief score for a document given
a query, one would expect the full belief calculation to be specified in a method
of DOCREP. Anticipating the multimedia retrieval model that we proposed in
(de Vries and Blanken, 1998), we prefer to introduce an extra structure INFNET
that models belief combination. Structure DOCNET is a subclass of this struc­
ture, that handles networks with default beliefs. The complete process of belief
computation is now divided in two steps, see example 4. First, for each doc­
ument in the collection, the getBL operation, defined on DOCREP, constructs a
DOCNET that encapsulates the term beliefs for the query terms. Next, a DOCNET
operation combines these term beliefs into a final document judgement. This
separation of belief computation in two steps allows for future extensions of
the retrieval model with structured types for multimedia content, e.g. IMGREP,
that will also produce DOCNETs for a given query.

Example 4

map [sum(THIS)] (

map[getBL(THIS, query, stats)](docs)

) ;

In example 5 we take full advantage of the integration of IR and databases,
combining retrieval by content with constraints on the document's logical struc­
ture: the MOA expression computes the ranking of documents that match the

10

query and are in the 'news' category. When applied first, the select on cate­
gory may significantly reduce the number of computations required in the IR
processing of the document content.

Example 5

map[sum(getBL(THIS.Content, query, stats))](
select (= (THIS. Category, "News")] (docs)

) ;

We conclude the overview of MOA's IR extensions with an example illus­
trating another advantage of this combination. Often, we would prefer to rank
compound documents on logical units like sections or chapters, rather than
on their full content. MOA's nested data model makes it relatively easy to
model IR on compound documents. In example 6, we model the document
content as a bag of items. The topology of the inference network specified by
this particular query is taken from (Callan, 1994). His experiments suggested
that the best results are achieved when a document is ranked by the contribu­
tion of its best component. Of course, variations in the network topology can
be expressed in MOA in a similar manner.

Example 6

• document collection structure definition for compound documents:

BAG< TUPLE< Category : str,
Content BAG< DOCREP > > >;

• ranking news documents by their best items

map[max(INFNET<THIS>)] (
map [map [sum (getBL (THIS,

query, stats))](THIS.Content)] (
select [= (THIS. Category, "News")] (docs))) ;

Algebraic processing in IR implementation

Representation of document content. In this subsection, we describe the
bottom layer of our IR implementation. The MOA structures and expressions
on document content are translated to operations in the physical database.
Thus, the information about the documents that is used in the IR process
must be stored in BATs. We term this the flattened document representation.
At a first sight, this mapping may seem clumsy and only an introduction of
extra complexity. This representation is however the foundation of an algebraic
implementation of IR in Monet, hence the key to data independence, query
optimization and parallellization.

Table 1 shows an example of a flattened collection consisting of two documents. 1

A document representation is described with the three synced BATs dj, ti,

ON THE INTEGRATION OF IR AND DATABASES 11

Table 1 Representation of documents in BATs

d1: accac query
dz: aebbe

~
dj ti tfij intermediate results
1 a 2
1 c 3 qdj qti qtfij qntfij

2 a 1 1 a 2 0.796578

2 b 2 2 a 1 0.621442

2 e 2 2 b 2 0.900426

document collection

and tfij. These BATs store the frequency tjij of term ti in document dj for
each term ti occuring in document d;. When computing document scores for
query q we proceed as follows. First, we join the query terms with the doc­
ument terms. Next, using additional joins we look up the document ids and
term frequencies. Note that these joins are executed very efficiently, because
the BATs are synced. Assuming the belief in a term is given by equation 1.1,
we need the document-specific values of max tj. Given our flattened document
representation, these are computed using a set-aggregate version of max. The
normalized term frequencies are computed from the tf and max tf tables with
a user-defined operator ntf. Similarly, we can compute normalized inverse
document frequencies from the collection statistics, and use these in combina­
tion with normalized term frequencies and document lengths to produce a wide
variety of ranking formulas.

User-defined operators in Monet. To support the belief computations
in Monet, we extend MIL with new algebraic operations. Monet allows the
definition of new operations in two ways: define new procedures in MIL, or add
extensions written in C or C++. MIL procedure ntf, defined in code example
7, computes normalized term frequency tf using equation 1.1. Because there
exists not yet a 'best' model for information retrieval, many different ranking
formulas may be used in retrieval experiments. Implementing these ranking
formulas as MIL procedures is very convenient for experimentation; we do not
have to recompile our code every time we want to try a new ranking formula.

Example 7

PROC ntf(tf, maxtf) ·=

12

Table 2 lntermedi;ate t;ibles with ;and without outer 101n

doc term bdit•f
di a 0.56
di b default
d2 a 0.67
d2 b 0.82

doc h•rm belief
d1 fl 0.56
d2 Cl 0.67
d2 b 0.82

RETURN 0.4 + 0.6•(log10(tf + 0.5)/log10(maxtf + 1.0));

Probabilistic reasoning in Monet. After the term-based probability esti­
mates have been calculated, a combined score is computed to express the belief
in a document given the qu.:-ry. We use Mouet's modular extension frame­
work for the efficient implementation of this belief computation. The extension
framt>wurk supports tht• impl<>m<>ntation of u.'*'r-defined data types. usf•r-defined
search accelerators, and user-defined functions.

\\.'e compute the document belief scores base<i on the well-known inference
network retrieval model (Turtle and Croft, 1992). This retrieval model is
based on a restricted da..o;;s of Bayesian inference networks. Au efficient imple­
mentation of this model. the lnQut>ry system, has been shown very effective
in the TREC evaluations (Callan et al., 1995). (Va..'18.nthakuma.r et al., 1996)
expressed the computations in the inference retrieval network model as SQL
queries in the DEC Rdb V6.0 relational DBMS. llser-defined functions encap­
sulated the implementation of InQuery's probabilistic operators. Our imple­
mentation of this retrieval model resembles their approach. The probabilistic
operator PICEval, that combiut'S the term beliefs into document beliefs, is
b&.;;ed on the algorithms given in (Greiff et al., 1998).

A problem with the datab&~ implementation of the inference network given
in (Vasanthakumar et al., 1996) is the computationofa full outer join between
the terms occuring in the query and the terms occurin.g in the documents. Thus,
the query terms not occurring in a document, are represented physically in the
intermediate results. If the query consists of Tlq query terms and the document
collection consists of Nd documents. then the intermediate result requires space
for nq ·Nd records. Becau.."!E' most documents will only match a small portion of
the query, the intermediate result is likely to be a long but sparse table. The
storage requirements for this table will cause a performance bottleneck. Note
that even when the user enters a short query, it is eommon in IR systems to
increase the number of query terms using query expansion techniques.

The full outer join is only used to assign default beliefs to the terms that do
not occur in the document. A solution without the full outer join is possible
when we handle the assignment of default beliefs locally, inside the probabilistic
operators. Hereto, we developed th.:- aggregate function queryPICEval, a spe­
cial version of PICEval that takes the query terms as an extra operand. Instead
of inserting default beli.:-fs for all documents beforehand, these are only inserted

1.l\ rm. l'\TU:H.nll.•:" OF m A'\!l llA!ABASES !:1

pt.•r doem1wnt during tht> 1·ombmal1un of t>vtdem·p 1tsdL Tablt• 2 ill11strntt>s tht•
diffen.•1wt· in l.i<•iw1 • 'll t b1,• two

Discussion

In tlH' pn•virn1s subs••ctiuns. Wt> i;an• an overvit"W of our oflH
quny in the !l.tund cnvirumm•nL based 011 a mixtun' of h•rnd
operators and user-defined functions. Here. we sm11marizt• tht· benefits of tlw
data offered in our

Tht' ('ombi1mtiou of !1.iOA aml its t•xtt:nsions for IR makes it to fkx·
ibly eombiue nmstraints on the content of documents with constraints 011 their

structure. Tht> m•stt~l data modd also allows us to mml<•l compound
doeumt•nts Aud. we nm ea;;ily manage sevnal vt•rsions of the samt'
1mdt•rlyiug collt•ctiou, t>,,g. u:;:ng different stt•mming or t>xtrnct­
ing concepts with varying l\'LP tf·t·l:miques. The separntiou of tasks bt"twt:~·11
the MIL proct'llure:; defined in the database and the structural ddinition of
the document collection in '.\iOA supports tiw of !R experiments. The
MOA expressions that define thi:• t>Xpt•rinwut do not wheu we twPak tlw
parnmett>rs of the retrieval model.

The dear distinction betwet•n the specification of a retrieval model in alge­
braic operatiorn.; and its physical ex••cution is also a niee propt'rty for experi­
mental IR research. The resi>ard1er can dt>vt'lop new rt'trit•va! modt>ls without
worrying too much about !ow-levPI implt'll!Pntation issues like hash tablt>s, in­
dex tret'S and parallellization. The kernel chooses at runtime from a variety
of algorithms to t'xecute tfa' algt'braic operations as efficient as possible. Simi­
lar to the use of indices in relational databa.."es. we may increase performance
by the definition of access structures on the BATs without having to change
the cod<'. Furthermore. wht•n ext:•cuting on a parallel machine. the lR code
automatically benefits from tht> implementation of parn!lel kernel algorithms.

These benefits can m also bt• ad1it•ved using ju;;t Monet. Howt'ver,
writing MIL programs on the tiatkned document representation requires a lot
of knowlt'<ige of tlw mapping from documents to BATs. For example, the ex­
pression given in example 5 is translated iuto a MIL program consisting of :36
opt•rations. and is already quite eomplt•x to comprt'l1end. let alone construct.
Clearly. MOA expressions havt:< a great advantage ovN the low-lt>vt'l BAT ma­
nipulation. Also, tht' '.\IOA expressions ca.n bt• manipulah'd in an algebraic
query optimizer. A ·push select down' strategy that first evaluates constraints
on tht> logical structure and then constraints on the contC'nt should Le easily
implemented for '.\iOA expressions: for '.\UL programs howPver, the search spa.et•
would bt> too largt> to accomplish the Pquiva!ent rewrite.

CONCLUSIONS AND FUTURE RESEARCH

We n'ported the integration of IR and databases using structural object-orientation
and demonstratt>d the feasibility of our design with a prototype implementa­
tion. \\"e explailw<l the b«rwfit:; of an int(•grnted approach to IR and database;;,

14

and gave several examples illustrating the kind of queries that can be speci­
fied in our system. At the top level, we integrated a well known information
retrieval model in MOA object algebra. We defined the belief computations
as algebraic operations in the database kernel, with a strong emphasis on set­
at-a-time operations. This approach provides data independence between the
logical and the physical database. As a result, parallellization and the selec­
tion of access structures have become orthogonal to the development of an
information retrieval model. More importantly, an algebraic approach with an
object-oriented interface allows algebraic query optimization.

The next step in our research is going to be an experimental evaluation of the
performance of the prototype system on standard IR test collections. FUrther
research goals include the implementation of a multimedia digital library, fol­
lowing the structural object-oriented approach used in this paper. We aLqo aim
to implement a variety of text retrieval models, and use Monet's extensibility
to add ADTs for proximity information. With respect to optimization, we are
especially interested in the role of new structures during query optimization.
Also, we plan to study the optimization that can take place when we are only
interested in the N-best matches. Finally, we want to scale-up to very large
document collections via the exploitation of parallellism. For this purpose, we
plan to extend the MOA implementation to generate parallel MIL programs.

Acknowledgements

Jan Flokstra provided us with the infrastructure to make this work possible.
We are also grateful to the Monet team in genera.I for their explanations and
support, and want to thank Peter Boncz in particular, without whom proto­
typing our ideas on Monet would have been impossible.

Notes

I. Notice that we do not model proximity information in our current implementation.
Using Monet's extensibility of data types, we expect however no problems in providing an
efficient implementation of proximity operators. The implementation of an ADT for word
location lists bears similarity with the polygon ADT in the GIS extensions.

References

Boncz, P. and Kersten, M. (1995). Monet: An impressionist sketch of an ad­
vanced database system. In BIWIT'95: Basque international workshop on
information technology.

Boncz, P., Wilschut, A., and Kersten, M. (1998). Flattening an object algebra
to provide performance. In Fourteenth International Conference on Data
Engineering, pages 568-577, Orlando, Florida..

Callan, J. (1994). Passage-level evidence in document retrieval. In Proceed­
ings of the Seventeenth Annual International ACM SIGJR Conference on
Research and Development in Information Retrieval, Dublin, Ireland.

Compound documents in the inference network retrieval model

ON THE INTEGRATION OF IR AND DATABASES 15

Callan, J., Croft, W., and Broglio, J. (1995). TREC and TIPSTER experiments
with INQUERY. Information Processing and Management, 31(3):327-343.

Catell, R., Barry, D., Bartels, D., Berler, M., Eastman, J., Gamerman, S.,
Jordan, D., Springer, A., Strickland, H., and Wade, D. (1997). The Object
Database Standard: ODMG 2.0. Morgan Kaufmann Publishers Inc.

Copeland, G. and Kosha.fi.an, S. (1985). A decomposition storage model. In
Proceedings of the SIGMOD Conference, pages 268-279.

de Vries, A. and Blanken, H. (1998). The relationship between IR and multi­
media databases. In IRSG'98, Autrans, France.

Greiff, W., Croft, W., and 'Turtle, H. (1998). PIC matrices: A computationally
tractable class of probabilistic query operators. Technical Report IR-132,
The Center for Intelligent Information Retrieval. submitted to ACM TOIS.

Meghini, C., Rabitti, F., and Thanos, C. (1991). Conceptual modeling of mul­
timedia documents. IEEE Computer, 24(10):23-30.

Mills, T., Moody, K., and Rodden., K. (1997). Cobra: a new approach to IR
system design. In Proceedings of RIA0'97, pages 425-449.

Mizzaro, S. (1998). How many relevances in information retrieval? Interacting
With Computers, 10(3):305-322. In press.

'Turtle, H. and Croft, W. (1992). A comparison of text retrieval models. The
computer journal, 35(3):279-290.

van R.ijsbergen, C. (1979). Information retrieval Butterworths, London, 2nd
edition.

Vasanthakumar, S., Callan, J., and Croft, W. (1996). Integrating INQUERY
with an RDBMS to support text retrieval. Bulletin of the technical committee
on data engineering, 19(1):24-34.

Wong, S. and Yao, Y. (1995). On modeling information retrieval with proba­
bilistic inference. ACM Transactions on Information Systems, 13(1):38-68.

Zobel, J. and Moffat, A. (1998). Exploring the similarity space. SIGIR Forum,
32(1).

16

Arjen P. de Vries is a PhD student at the Centre for Telematics and
Information Technology (CTIT) a.t the University of Twente. Since 1995,
Arjen does a. multidisciplinary research project between the DOLLS re­
search group of the department of computer science and the department of
ergonomics. He is especia.lly interested in the new requirements on the de­
sign of data.base systems to support content-based retrieva.l in multimedia.
digital libraries.

Annita N. Wilschut has recently started a.job as software architect a.t the
Dutch revenue services. Before, she has been a. researcher in the DOLLS
research group a.t the computer science department of the University of
Twente since 1987. Her research mainly focuses on architectural aspects of
data.base management systems. She has been involved in the MAGNUM
project studying Object-Oriented database technology in the context of
GIS-a.pplica.tions. Before MAGNUM, she worked for several years on the

PRlSMA parallel rela.tiona.l DBMS.

