
CORREC'ltiESS PROOl"S
OP

DIS'l'RIBOTED TERMINATION ALGORI'l'BMS

Krzysztof R. Apt
L.I.T.P, Universit~ Paris 7

2, Place Jussieu, 75251 Paris, FRANCE

Abstract The problem of correctness of the solutions to the distributed
tennination problem of Francez [FJ is addressed. Correctness criteria are
formalized in the customary framework for program correctness. A very simple
proof method is proposed and applied to show correctness of a solution to the
problem.

1. INTRODUCTION

This paper deals with the distributed termination problem of Francez
[FJ which has received a great deal of attention in the literature. several
solutions to this problem or its variants have been proposed, however their
correctness has been rarely discussed. In fact, it is usually even not
explicitly stated what properties such a solution should satisfy.

A notable exception in this matter are papers of Dijkstra, Feijen and
Van Gasteren [DFGJ and Topor [T] in which solutions to the problem are
systematically derived together with their correctness proofs. On the other
hand they are presented in a simplistic abstract setting in which for example
no distinction can be made between deadlock and termination. Also, as we shall
see in the next section, not all desired properties of a solution are
addressed there. systematically derived solutions in the abstract setting of
[DFGJ are extremely helpful in understanding the final solutions presented in
CSP. However, their presentation should not relieve us from providing rigorous
correctness proofs of the latter ones - an issue we address in this paper.

Clearly, it would be preferable to derive the solutions in CSP
together with their correctness proofs, perhaps by transforming accordingly
the solutions provided first in the abstract setting. Unfortunately such
techniques are not at present available.

This paper is organized as follows. In the next section we define the
problem and propose the correctness criteria the solutions to the problem
should satisfy. Then in section 3 we formalize these criteria in the usual
framework for program correctness and in section 4 we propose a very simple
proof method which allows to prove them. In section 5 we provide a simple
solution to the problem and in the next section we give a detailed proof of
its correctness. Finally, in section section 7 we assess the proposed proof
method.

NATO AS! Series, Vol. F13
Logics and Models of Concurrent Systems
Edited by K. R. Apt
© Springer-Verlag Berlin Heidelberg 1985

148

Throughout the paper we assl.Dlle from the reader knowledge of
C011111unicating sequential Processes (CSP in short), as defi~ed in Hoare [HJ,
and some experience in the proofs of correctness of very sunple loop free
sequential programs.

2. DISTRIBUTED TERMINATION PROBLEM

suppose that a CSP program

where for every l ..;: i ..;: n Pi : : INITi ; * [Si] is given. We assume that
each si is of the form a gi,j - si,j for a multiset ri and

jer1

i) each 9'i,j contains an i/o command adressing Pj,
ii) none of the statements INITi, si,j contains an i/o command.

we say then that p is in a normal form. suppose moreover that with
each Pi a stabll/ty condition Bi, a Boolean expression involving variables of
Pi and possibly some auxiliary variables, is associated. By a global stablllty
condition we mean a situation in which each process is at the main loop entry
with its stability condition Bi true.

We now adopt the following two assumptions :

a) no comnunication can take place between a pair of processes whose stability
conditions hold,

b) whenever deadlock takes place, the global stability condition is reached.

The distributed termination problem is the problem of transforming P
into another program P' which eventually properly terminates whenever the
global stability condition is reached.

This problem, due to Francez [FJ, has been extensively studied in the
literature.

We say that the global stability condition is (not) reached in a
computation of P' if it is (not) reached in the natural restriction of the
computation to a computation of P. In turn, the global stability condition is
reached (not reached) in a computation of P if it holds in a possible (no)
global state of the computation. We consider here partially ordered
computations in the sense of [LJ.

We now postulate four properties a solution P' to the distributed
termination problem should satisfy (see Apt and Richier [ARJ) ,

l. Whenever P' properly terminates then the global stability
condition is reached.
2. There is no deadlock.

149

3. If the global stability condition is reached then P' will
eventually properly terminate.
4. If the global stability condition is not reached then infinitely
often a statement from the original program P will be executed.

The last property excludes the situations in which the transformed
parallel program endlessly executes the added control parts dealing with
termination detection. we also postulate that the communication graph should
not be altered.

In the abstract framework of [DFG] only the first property is proved.
second property is not meaningful as deadlock coincides there with
termination. In turn, satisfaction of the third property is argued informally
and the fourth one is not mentioned.

Solutions to the distributed termination problem are obtained by
arranging some additional communications between the processes Pi. Most of
them are programs P' = [P1 11 ••• 11 Pnl in a normal form where for every i,
l. < i < n

Pi:: INITi ; ... ,
*[0 · · • I gi, j - •..

jeri
o CONTROL PARI'i

where ••• stand for some added Boolean conditions or statements not containing
i/o commands, and CONTROL PARTi stands for a part of the l.oop deal.ing with
additional communications. we assume that no variable of the original process
Pi : : INITi 1 *[Sil can be altered in CONTROL PARTi and that all i/o commands
within CONTROL PARTi are of new types.

we now express the introduced four properties for the case of
solutions of the above form using the customary terminology dealing with
program correctness.

3. FORMALIZATION OF THE CORRECTNESS CRITERIA

Let p,q,I be assertions from an assertion language and let s be a
CSP program. We say that {p} s {q} holds in the sense of partial correctness
if all properly terminating computations of s starting in a state satisfying
p terminate in a state satisfying q. we say that {p} s {q} holds in the
sense of weak total correctness if it holds in the sense of partial correctness
and moreover no computation of s starting in a state satisfying p fails or
diverges. We say that s is deadlock free relative to p if in the
computations of s starting in a state satisfying p no deadlock can arise.
If p .,. true then we simply say that P is deadlock free.

Finally, we say that {p} S {q} holds in the sense of total
correctness if it holds in the sense of weak total correctness and moreover s

150

is deadlock free relative to p. Thus when
total correctness then all computations of
p properly terminate.

{p} S {q} holds in the sense of
s starting in a state satisfying

Also for CSP programs in a normal form we introduce the notion of a
global. invariant I. we say that I is a global Invariant of P relative to p
if in all computations of P starting in a state satisfying p, I holds
whenever each process Pi is at the ma.in loop entry. If p • true then we
simply say that I is a global Invariant of P.

Now, property J. simply means that
n

{~~} P' { A Bi}
i=l

holds in the sense of partial correctness.

Property 2 means that P • is deadloek free.

(1)

Property 3 cannot be expressed by refering directly to the program
P'. Even though it refers to the termination of P' it is not equivalent to
its (weak) total. correctness because the starting point - the global. stability
condition - is not the initial one. It is a control point which can l>e reached
in the course of a computation.

However, In the case of P' we can still express property 3 by refering
to the weak total correctness of a program derived from P • • Consider the
following program

COl.llTROL PART "'
[P1 I I *[CONTROL PART1] II ... II Pn : I *[CONTROL PARTn]].

We now claim that to establish property 3 it is sufficient to prove
for an appropriately chosen global invariant I of P'

n
{I A A Bi} CONTROL PAR!' {true} (2)

i•l
in the sense of total correctness.

Indeed, suppose that in a computation of P' the global stability
n

condition is reached. Then I A A Bi holds where I is a global
i=l

invariant of P' • By the assumption a) concerning the original program P no
statement from P can be executed any more. Thus the part of P' that remains
to be executed is equivalent to the program CONTROL PART. Now, on virtue of
(2) property 3 holds .

consider now property 4. As before we can express it only by refering
to the program CONTROL PART. clearly property 4 holds if

151

n
{ I II. -, II. Bi} CONTROL PART {true}

i=l
(3)

holds in the sense of weak total correctness. Indeed, (3) guarantees that in
no computation of P' the control remains from a certain moment on
indefinitely within the added control parts in case the global stability
condition is not reached.

Assuming that property 2 is already established, to show property 3 it
is sufficient to prove (2) in the sense of weak total corrctness. Now (2) and
(3) can be combined into the formula

{I} CONTROL PART {true} (4)

in the sense of weak total correctness.

The idea of expressing an eventuality property of one program by a
termination property of another program also appears in Grumberg et al. [GFMHJ
in one of the clauses of a rule for fair termination.

4.PROOF METHOD

we now present a simple proof method which will allow us to handle the
properties discussed in the previous section. It can be applied to CSP
programs being in a normal form. So assume that P "' [P1 II .•• II Pnl is such a
program.

Given a guard gi,j we denote by bi,j the conjunction of its Boolean
parts. we say that guards gi, j and gj, i match if one contains an input
command and the other an output command whose expressions are of the same
type. The notation implies that these i/o commands address each other, i.e.
they are within the texts of Pi and Pj, respectively and address Pj and
Pi, respectively.

Given two matching guards gi,j and 9j,i we denote by Eff(gi,j'
9j,i) the effect of the communication between their i/o commands. It is the
assignment whose left hand side is the input variable and the right hand side
the output expression.

Finally, let
TERMINATED = ll. -, bi,j·

i.;;i.;;n,
je:ri

Observe that TERMINATED holds upon termination of P.

consider now partial correctness. we propose the following proof rule:

152

RULE l : PARTIAL CORRECTNESS

{p} INIT1 ; ... ; INITn {I},
{I A bi,j h bj,i} Eff(gi,jt gj,i) ; si,j ; sj,i {I}

for all i,j s.t. i 6 rj, j 6 ri and 9i,j• 9j,i match

{p} P {I h TERMINATED}

This rule has to be used in conjunction with the usual proof system
for partial correctness of nondeterministic programs (see e.g. Apt [A1 l) in
order to be able to establish its premises. Informally, it can phrased as
follows. If I is established upon execution of all the INITi sections and is
preserved by a joint execution of each pair of branches of the main loops with
matching guards then I holds upon exit. If the premises of this rule hold
then we can also deduce that I is a global invariant of P relative to p.

Consider now weak total correctness. We adopt the following proof
rule:

RULE 2 : WEAK TO'l'AL CORRECTNESS

{p} INIT1 ; ••• ; INITn {I h t ~ O},
{I A bi,j h bj,i A z-t h t ~ O} Eff(9i,j•9j,i);Si,j1Sj,i{I h 0 ~ t < z}
for all i,j s.t. i 6 rj, j E ri and 9i,j• gj,i match

{p} P {I h TERMINATED}

where z does not appear in P or t and t is an integer valued expression.

This rule has to be used in conjunction with the standard proof system
for total correctness of nondeterministic programs (see e.g. Apt [A1 J) in order
to establish its premises. It is a usual modification of the rule concerning
partial correctness.

Finally, consider deadlock freedom. Let

Observe that in a given state of P the formula BLOCKED holds if and
only if no communication between the processes is possible. we now propose the
following proof rule

RULE 3 : DEADLOCK FREEDOM

I is a global invariant of P relative to p,
I h BLOCKED - TERMINATED

P is deadlock free relative to p

The above rules will be used in conjunction with a rule of auxiliary
variables.

153

Let A be a set of variables of a program s. A is called the set
of auxiliary variables of s if

i) all variables from A appear in s only in assignments,
ii) no variable of s from outside of A depends on the variables
from A • In other words there does not exist an assignment x:=t in
S such that x ~ A and t contains a variable from A.

Thus for example { z} is the only (nonempty) set of aUXiliary
variables of the proqram

[P1 :: z:=y; P2! x II P2 :: Pi? u; u:=u+l]

We now adopt the followinq proof rule first introduced by OWicki and
Gries in [OG1, OG2],

RULE 4 1 AUXILIARY v.P.RIABLES

Let A be a set of auxiliary variables of a program s. Let s • be
obtained from s by deletinq all assignments to the variables in A. Then

{p} s {q}

{P} S' {q}

provided q has no free variable from A.
Also if s is deadlock free relative to p then so is s•.

we shall use this ru1e both in the proofs of partial and of (weak)
total correctness. Also without mentioning we shall use in proofs the wel.1-
known consequence rule which allows to strengthen the preconditions and weaken
postconditions of a program.

5 • A SOLt1I'ION

we now present a simple solution to the distributed termination
problem. It is a combination of the solutions proposed by Francez, Rodeh and
Sintzoff [FRS] and (in an abstract setting) Dijkstra, Feijen and van Gasteren
[OFG].

we assume that the graph consistinq of all communication channels
within P contains a Hamiltonian cycle. In the resulting ring the neighbours
of Pi are Pi-l and Pi+l Where counting is done within {l, ... ,n}
clockwise.

we first present a solution in which the global stability condition is
detected by one process, say P1 . It has the following form where the
introduced variables si, sendi and movedi do not appear in the original
program P :

Por i .. l

Pi :: sendi 1-~;

*[o gi,j - si,j
jEri

154

o Bi ; sendi ; Pi+i! ~ - sendi :• false
o Pi-l ? si - [si - halt c I si - sendi := trueJ

andfor ii!l
Pi : : sendi:-~ ; movedi:-false ;

*[c gi,j - movedir~ ; si,j
jEri
o Pi-l? si - sendi:~
c Bi ; sendi 1 Pi+l! (s1 II. I moved.i) - sendi:"'false ;

movedi:=false

In this program we use the halt instruction with an obvious meaning.
Informally, P1 decides to send a probe ~ to its right hand side neighbour
when its stability condition B1 holds. A probe can be transmitted by a
process Pi further to its right hand side neighbour when in turn its
stability condition holds. Each process writes into the probe its current
status being reflected by the variable moved. moved turns to true when a
communication from the original program takes place and turns to ~ when
the probe is sent to the right hand side neighbour. P1 decides to stop its
execution when a probe has ma.de a full cycle remaining true. This will happen
if all the moved variables are false at the moment of receiving the probe from
the left hand side neighbour.

we now modify this program by arranging that P1 sends a final
termination wave through the ring once it detects the glol>a.l. stability
condition. To this pu:r:pose we introduce in all Pi• s two new Boolean variables
detectedi and donei. The program has the following form :

For i -= l

Pi r: send11-true 1 donei:-~ detectedi:-false ;
* [0-, donei, gi,j - si,j

jEri

o I donei B1 1 sendi ; Pi+l!~ - sendir•false
o I donei 1 Pi-l ? si -

[si - detectedi:-true c -1 si - sendi:=trueJ
o detectedi 1 Pi+ll ~ - detectedi:•false
a I donei 1 Pi-l? end - done1:~

155

and for i ~ l.

Pi :: sendi:=false; movedi:=false; donei:=false detectedi:=false
* [o I donei 9i,j - movedi:~rue ; si,j

jeri
o I donei Pi-l. ? si - sendi:=true
o I donei Bi; sendi; Pi+J.!(si A -imovedi)

sendi:=fal.se ;
movedi:=false

o I donei ; Pi-1 ? end - detectedi:=true ; donei:=true
o detectedi ; Pi+l! end - detectedi:=false

We assume that end is a signal of a new type not used in the original
program. (Actually, to avoid confusion in the transmission of the probe we
also have to assume that in the original program no messages are of type
Boolean. If this is not the case then we can always repl.ace the probe by a
Boolean valued message of a new type).

6. CORRECTNESS PROOF

We now prove correctness of the solution given in the previous section
using the proof method introduced in section 4. we do this by proving the
formalized in section 3 versions of properties 1-4 from section 2.

Proof of property l

We first modify the program given in the previous section by
introducing in process P1 auxiliary variables received1 and forward1 . The
variable received1 is introduced in order to distinguish the situation when
s 1 is initi.a.lly true from the one when s 1 turns true after the conununication
with Pn· forward1 is used to express the fact that P1 sent the end signal to
P2 • Note that this fact cannot be expressed by referring to the variable
detected1 . This refined version of P1 has the following form :

Pi :: send1 :*true; done1 :•false; detected1 :-fa1se
received1 :-fals~ ; forward1 :=false

* [o I done1 ; 9i,j - S1,j
jer1
o I done1 ; B1 1 send1 ; P2 ! true - send1 :=false
o I done1 1 Pn?s1 - received1 :=true ;

[s1 - detected1 :=true o I s 1 - send1 :=true]
o detected1 ; P 2 ! end - forward1 : =true ;

detected1 :=false
o I done1 ; Pn ? ~nd - done1 :=true

other processes remain unchanged. call this modified program R. On
virtue of rule 4 to establish property l it is sufficient to find a global

n
invariant of R which upon its termination impl.ies A Bi.

i=l

156

we do this by establishing a sequence of successively stronger global
invariants Whose final element is the desired I. We call a program Eff(9i,j•
gj,i) ; si,j ; sj,i corresponding to a joint execution of two branches of the
main loops with matching guards a transition. Here and elsewhere we
occasionally identify the Boolean values false, true with o and 1,
respectively. To avoid excessive use of brackets we assume that "-" binds
weaker than other connectives.

Let
n

I 1 .,. E sendi < 1.
i=l

Then r 1 is clearly a global invariant of R : it is established by
the initial assignments and is preserved by every transition as setting of a
send variable to ~ is accompanied by setting of another true send variable
to false.

--consider now
I 2 s """i > 1 [si I\ sendi - ("""j(l ~ j < i - Bj) v 3 j .., i movedjl

A rs1 A received.1 - """j (1" j < n - Bj)l.

We now claim that I 1 I\ r 2 is a global invariant of R. First note
that I 2 is established by the initial assignments in a trivial way.

Next, consider a transition corresponding to a conanunication from the
original program P. Assume that initially r 1 /l. I 2 and the Boolean
conditions of the guai:ds hold.

Consider now the first conjunct of r 2 • If initially for no i > 1
si l\ sendi holds then this conjunct is preserved since the transition does not
alter si or sendi. suppose now that initially for some i > 1 si I\ sendi
holds. If initially also 3 j .., i movedi holds then this conjunct is
preserved. If initially Vj (l. llil j < i - Bj) holds then by assumption a) from
section 2 at least one of the processes involved in the transition has an
index .., i. The transition sets its moved variable to true which establishes
3 j ... i movedj•

The second conjunct of r 2 is obviously preserved - if initially s 1 A
received1 does not hold then it does not hold at the end of the transition
either. If initially s 1 l\ received.1 holds then also Vj (1 llil j < n - Bj)
initially holds so by assumption a) from section 2 the discussed transition
cannot take place.

consider now a transition corresponding to a sending of the probe from
Pi to Pi+l { 1 < i. < n). Suppose that at the end of the transition sk 11. sendJc

for some k {l < k < n) holds. Due to the gl.obal invariant r 1 and the form of
the transition k = i+l. Thus in the initial state Bi I\ si I\ -, movedi A sendi

holds. Now, on virtue of r 2 initially

Vj (l < j < i - Bj) v 3 j ;i. i movedj
hol.ds. Thus initial.ly

157

holds. This formula is not affected by the execution of the transition. Thus
at the end of the transition the first conjunct of I 2 holds.

Suppose now that at the end of the transition s 1 A received1 holds.
If initially s 1 A received1 holds then also Vj (1 ~ j ~ n - Bj) initially
holds. Suppose now that initially s 1 A received1 does not hold. Thus the
transition consists of sending the probe from Pn to P1 • Then initially Bn A
Sn A -, movedn A sendn holds so on virtue of I 2 initially Vj (l ~ j ~ n -
Bj) holds, as well. But this formula is preserved by the execution of the
transition. so at the end of the transition the second conjunct of I 2 holds.

The other transitions do not affect r 2 . so I 1 A I 2 is indeed a
global invariant of R. Now, r 1 A Iz upon termination of R does not

n
imply yet A Bi. But it is now sufficient to show that upon termination of

i=l
R s 1 A received1 holds.

consider now

Then r 3 is clearly a global invariant of R. Next, let

Then r 3 A I 4 is a global invariant of R. Indeed, when forward1
becomes true, initially detected1 holds, so on virtue of r 3 s 1 A received1
initially holds. But s1 A received1 is not affected by the execution of the
transition in question.

Now we show that upon termination of R forward1 hold. To this
purpose consider

r 5 = done2 - forward1 .

Clearly r 5 is a global invariant : done2 and forward1 become true in the same
transition.

Let now

Then I is the desired global invariant
n

done2 holds and done2 A I implies A Bi.
i=l

upon termination of R

158

Proof of propertl.2,

we now also modify processes Pi for i ~ 1, by introducing in it the
auxiliary variable fo.rwardi for the same reasons as in P1 .

The refined versions of Pi (i ~ 1) have the following form

Pi:: sendi:·-~ 1 movedi:•false 1 donei:-false
detected.ii·~ 1 forwardi:-~

*[o I done1 1 9i,j - movedi:~rue ; si,j
jEfi
o I donei Pi-l ? si - send1:-true
o I done1 Bi; sendi; Pi+i!Csi h -imovedi) -

send1 :=false ;
moved1 , .. _;als~

o I donei ; Pi-l ? enq - detectedi:=true
donei:-true

o detected1 ; Pi+i! ~ - forwardi:-true 1

detected1 :=false

Call this refined version of the program s. We now prove that S is
deadlock free. In the subsequent proofs it will be more convenient to consider
second premise of rule 3 in the fo:i:m I A I TE~INATED - I BLOCKED. Let for i
• l, ... ,n

Note that if in a deadlock situation of S TERMINATEDi holds then Pi
has terminated. The following natural decomposition of I TERMINATED allows us
to car:ry out a case analysis.

I TERMINATED ,..

[I TERMINATED1 A Yi (i~l - TERMINA'l.'EDi)]
v .3 i (1 < i < n A I TERMINATEDi A TE~INATEDi+ 1)

v Yi I TERMINATEDi.

~.1: It corresponds to a deadlock situation in 'Which P1 did not terminate
and all P1 for i~l have terminated.

Let
I 6 e I detectedn A donen - forwardn,
1 7 e forwardn - done1 •

It is straightforward to see that I 6 and I 7 are global invariants of
s. Let now

18 e done2 - forward1,
n

I 9 s detected1 - L send1 • o,
i-1

159

n
I 10 e forward1 [sendi ~ o,

i=l
Iii e fo:r:ward1 - ldetected1 •

Then I9, Ig, Ig h I10• I 9 h I 10 h I 11 are all global invariants of
s. To see this consider by way of example I 9 h I 10 h I 11 under the
assumption that Ig h I 10 is already shown to be a global invariant. It is
obviously established by the initial assignments of s. The only transition
which can falsify I 9 h I 10 h I 11 in view of invariance of r 9 h I 10 is the
one involving recpetion of the probe by P1 . But then initially sendn holds so
by Iio initially -, forward1 holds. The transition does not change the value
of forward1 • So forward1 remains false and I 11 holds at the end of the
transition.

Let now

J is a global invariant of S. Observe now that

J A TERMINATEDn - done1

on the account of I 6 and I 7

and
J h TERMINATED2 - I detected1

on the account of Is and I11·

Thus

J h TERMINATED2 A TERMINATEDn - TERMINATED1 ,

i.e.
J h [-, TERMINATED]. A Vi (i?!l - TERMINATEDi)]

is unsatisfiable.

case 2 It corresponds to a deadlock situation in which for some i, 1 < i < n,
Pi did not terminate whereas Pi+l did terminate. Let some i, l. < i < n, be
given.

Let
Iiz e donei+l - forwardi,
113 ~ detectedi - donei,
114 ~ forwardi - done1 A -Jdetectedi.

It is straightforward to see that Ii2• I13 and I13 A I14 are global
invariants. Let

160

Then K is a global invariant and

on the account of r 12 and I14 ·

Thus
K ll. "l TERMINATEDi ll. TERMINATEDi

is unsatisfia:ble.

In fact we showed that neither case 1 nor case 2 can arise.

case 3 It corresponds to a deadlock situation in Which none of the processes
has tenninated.

Let

Ils is a global invariant. Also r 12 for all i s.t. 1 < i < n and
I13 /!. r 14 for all i s.t. l < i ~ n are global invariants.

Let
n-1

L :a Il5 ll. ll.
i=2

n

I12 ll. ll. (I13 ll. I14).
i:2

Then L is a global invariant and

L /!. 3 i (i~2 /!. done1) - ::t i TERMINATEDi
n-l n

on the account of r 15 , ll. r12 and !I. r 14 .

Thus

Hence

i=2

L ll. Vi "1 TERMINATEDi - Yi (i?'2 - "1 donei) .

L !I. Vi "1 TERMINATED1 ll. done2 -
detected2 ll. "1 done3 - 'l BLOCKED.

(5)

It remains to consider the case when I done2 holds. Let
n

i=O
Ii7 = s1 ll. received1 ll. 'l detected1 - forward1 ,
Iie = forward1 - done2 .

Then I15, Ii7 and r 18 are global invariants.

161

Let BLOCKED (P) stand for the formula BLOCKED constructed for the
original program P from section 2. Assumption b) of section 2 simply means
that

n
$ s BLOCKED(P) - A Bi

i=1

is a global invariant of P. But by the form of s $ is also a global
invariant of s as the added transitions do not alter the variables of P.
Thus

is a global invariant of s.

we now have

M A V"i -, TERMINATEDi A -1 done2 A BLOCKED - (by (5))
M A Vi -, donei A BLOCKED (by the form of s)
M /'J. Vi I donei ll. BLOCKED ll. BLOCKED(P) - (since $ is a part of M)

n
M /'J. Vi I donei ll. BLOCKED /'J. /'J. Bi - (by the form of s)

i=1

n
M /'J. Vi I donei /'J. E sendi - o ll. -1detected1 - (since r 16 , r 17 and

.i.=1

I1e are parts of M)

which is a contrad.iction.

This simply means that

M /'J. V"i I TERMINATEDi ll. -, done2 - -, BLOCKED

which concludes the proof of case 3.

By rule 3 s is now dead.lock free where J ll. K ll. M is the desired
global invariant. By rule 4 P' is deadlock free.

Proof of properties 3 and 4

we first modify the program CONTROL PAR!' by introducing in process P1

an auxiliary variable count1 which is used to count the nl.llllber of times
process P1 has received the probe. other processes remain unchanged. 'l'hus the
processes have the following form :

162

Let

Then I 1 h r19 h r20 is a global invariant : when count1 becomes 2

then initially due to 119 Vj (l < j < i - -1 movedj) holds. At the end of
the transition additionally I movedn holds. Moreover, no movedi variable is
ever set to true.

Let
I 21 a Vi > l (count1 = 2 h sendi - si>·

21
Consider now I 1 h h Ij and suppose that by an execution of a transition

j=l9
sendi is set to true when count1 = 2. If i = 2 then s 2 holds as s 2 is
always set to true. So assume that i > 2. Then initially by r 20 and r 21

si-l h I movedi-l holds. At the end of the transition si = si-l h I movedi-l
so si holds as desired.

Also when count1 becomes 2 then for the same reasons as in the case
Of

21

I19 no sendi for i > l can be true. This shows that r 1 h h Ij
j=l9

is a global invariant.

Let now
n

I22 a count 1 = 3 - [sendi = o
i=l.

22
Then I 1 h h Ij is a global invariant. Indeed, when at the end of

j=19
a transition, count1 becomes 3 then initially on the account of r19 , r 20 and

I21 sendn h Vi < n I sendi h Sn h -1 movedn holds. Thus at the end of the
transition s1 h detected1 h 'V'i -1 sendi holds.

n
Also t sendi = o is preserved by every transition.

Finally, let

Then
I 23 e count1 ~ 3.

23

N"" I1 h h Ij
j=l9

is a global invariant of T.

163

Indeed, When at the beginning of a transition count1 is 3 then on the
account of I 22 no sending of the probe can take place thus count1 cannot :be
incremented. we thus showed that count1 is bounded.

We can now prove formula (4) from section 3. Indeed, consider premises
of rule 2 for the program T. Choose for p I 1 , for I the global invariant
N of T and for t the expression

n
5 n + 3 - [(n+1).count1 + E donei + ho1ds(send)J

i"=l
where ho1ds (send) is the smallest j for which sendj holds if it exists and
o otherwise.

We already showed that N is a global invariant. It is thus
sufficient to show that t is always non-negative and decremented by each
transition. But for all bi,j and bj,i mentioned in the premises of rule 2

so t is initially positive. Clearly t is decremented by every transition and

so t remains non-negative after every transition.

Thus by rule 2

{p} T {true}

holds in the sense of weak total correctness so by rule 4 formula (4) from
section 3 holds.

This concludes the correctness proof.

7. ASSESSMENT OF THE PROOF METHOD

The proposed in section 4 proof method is so strikingly simple to
state that it is perhaps useful to assess it and to compare it critically with
other approaches to proving correctness of CSP programs. First of all we
should explain why the introduced rules are sound.

soundness of rules l and 2 has to do with the fact that the CSP
programs considered in section 4 are equivalent to a certain type of
nondeterministic programs. Namely consider a CSP program P of the form
introduced in section 2. Let

T(P) ..

where

INIT1 I·,.; INITn I

*[c bi,j ~ bj,i
(i,j)Er

[TERMINATED - skip]
r = {(i,j) : i E rj, j E ri, gi,j and gj,i match}.

164

Note that upon exit of the main loop of T(P) BLOCKED holds (which
does not necessarily imply TERMINA'l'ED). It is easy to see that P and T(P)
are equivalent in the sense of partial correctness semantics (i.e. when
divergence, failures and deadlocks are not taken into account) and "almost" in
the sense of weak total correctness semantics (i.e. when deadlocks are not
taken into account) as deadlocks in P translate into failures at the end of
execution of T(P). Now, both rules 1 and 2 exploit these equivalences.

consider now rule 3. In a deadlock situation every process is either
at the main loop entry or has tez:minated. Thus a global inva.riant holds in a
deadlock situation. Moreover, the formula BLOCKED A -1 TERMINATED holds in a
deadlock situation, as well. Thus the premises of rule 3 indeed ensure that no
deadlock (relative to p) can arise.

Finally, as is well known, rule 4 is sound because auxiliary variables
affect neither the control flow of the program (by requirement i)) or the
values of the other variables (by requirement ii)).

It is worthwhile to point out that the rule of auxiliary variables is
not needed in the correctness proofs. Th.is follows from two facts. First, it
is not needed in the context of nondeterministic programs as the theoretical
completeness results show (see [Al]) . And secondly, due to the equivalence
between P and T(P) and the form of the rules, every correctness proof of
T(P) can be rewritten as a correctness proof of P.

However, as we have seen in the previous section, this rule is very
helpful in concrete correctness proofs.

It is true that the proposed proof method can be only applied to CSP
programs in a normal form. on the other hand it is easy to prove that every
CSP program (without nested parallelism) can be brought into this foz:m (see
Apt and Clermont [AC J) • Thus in principle this proof method can be applied to
prove correctness of arbitrary CSP programs. What is perhaps more important,
many CSP programs exhibit a normal foz:m.

Let us relate now our proof method to two other approaches to proving
correctness of CSP programs - those of Apt, Francez and De Roever [AFR] and of
Manna and Pnueli [MP J •

When discussing the first approach it is more convenient to consider
its simplified and more comprehensive presentation given in [A2]. Consider
then a CSP program in the special form with all INrTi parts being empty. Let
each branch of the main loop constitute a bracketed section. Given a bracketed
section <S> associated with a branch that starts with a Boolean condition b
within the text of process Pi, choose the assumption {b} <S> {true} for
the proof of the {~ru~} Pi {TERMINATEDi}. Then it is easy to see that

Ai I- {t~~} Pi {TERMINATED}
N

where Ai stands for the set of chosen assumptions (and according to the

165

notation of [A2] the subscript "N" indicates a provability in the sense of
partial correctness). Now, the premises of rule l are equivalent to the set of
conditions stating that the chosen sets of assumptions cooperate w.r.t. the
global invariant I. The simple form of the premises is due to the fact that
in their presentation use of the communication axiom, formation rule and arrow
rule is collibined.

This shows that (under the assumption that all INITi parts are empty)
proof rule 1 can be derived in the proof system considered in [A2 J. This
provides another, very indirect proof of its soundness.

Consider now proof rule 2. The main difference between this rule and
the corresponding set of rules of (A2] is that termination is proved here in a
global fashion - expression t can contain variables from various processes.
To cast this reasoning into the framework of [A2] one needs to consider for
each process Pi a modified version of t in which variables of other
processes are replaced by auxiliary variables. once this is done, premises of
rule 2 can be reformulated appropriately and rule 2 can be derived.

Now, proof rule 3 is nothing else but a succint reformulation of the
corresponding approach of [A2] where the bracketed sections are chosen as
above.

The way the INITi parts are handled is based on the observation that
these program sections can be moved outside the scope of the parallel
composition. In the terminology of Elrad and Francez [EFJ [INITi II •.. II IN!TnJ
is a communication closed layer of the original program.

In the approach of [AFRJ and [A2 J braeketed sections can be chosen in
a different way thus shifting slightly the emphasis from global to more local
reasoning (for example by reducing I 11 to a local loop invariant). This
cannot be done in the framework of the proposed here method.

Comparison with [MPJ can be made in a much more succint way. In (MPJ
two type of transitions are considered in the case of CSP programs : local
transitions and communication transitions. All proof rules refer to this set
of transitions. When applied to CSP programs INV-rule becomes very similar to
our rule 1. The main difference is that in our framework the only allowed
transitions are those consisting of the joint execution of a pair of branches
of the main loops with matching i/o guards. such a choice of transitions does
not make much sense in the framework of [MPJ where programs are presented in a
flowchart like form and thus have no structure. Appropriate combinations of
IND and TRNS rules become from this point of view counterparts of rules 2 and
3.

From this discussion it becomes clear that the proof method presented
in section 4 does not differ in essence from the approaches of [AFR] [A2] and
[MPJ. It simply exploits the particular form of CSP programs to which it is
restricted.

166

Acknowledgements We would like to thank to L. Boug~, c. De lporte-Ga.llet, N.
Fra.ncez and A. Pnueli for interesting and helpful discussions on the subject
of this paper. Also we are grateful to Mrs A. Dupont for her speedy and
efficient typing of the manuscript.

REl''ERENCES

[Al.] APT, !C.R., Ten years of Hoare•s logic, a survey, part II, Theoretical
Computer science 28, pp. 83-109, 1984.

[A2] APT, K.R., Proving correctness of CSP programs, a tutorial, Tech.
Report 84--24, LITP, unive-rsit~ Paris 7, 1984 (also to appear in
the Proc. International swmner School "Control Flow and Data Flow
concepts of Distributed Programming" , Marktobedorf, 1984) •

[AC] A'PT, K.R. and CLERH:>NT Ph., Two normal form theorems for CSP programs,
in preparation.

[Af'R] A'PT, K.R., ~CEZ N. and DE ROEVER, W.P., A proof system for
communicating Sequential Processes, ACM TOPLAS 2 No 3, pp.
359-385, 1980.

[ARJ A'PT, K.R. and RICHIER, J .L., Real time cloclts versus virtual clocks,
Tech. Report 84--34, LITP, Universit~ Paris 7, 1984, (also to appear in
the Proc. International summer school "control Flow and Data Flow
concepts of Distributed Proqramming" , Markto:bedorf, 1984) •

[DFG] DIJKSTRA, E.W., FEIJEN, w.a. and van GASTEREN, A.J.M., Derivation
of a termination detection algorithm for distri.l:>uted computations,
Inform. Processing Letters 16, 5, pp. 217-219, 1983.

[EFJ ELR.N>, T.E. and FRANCEZ, N., Decomposition of distri.l:>uted programs
into c011111Unication closed layers, science of computer Programming
2, No 3, pp. 155-174, 1982.

[F] FRANCEZ, N., Distributed termination, ACM TOPI.AS 2, No l, pp. 42-55,
1980.

[f'RSJ FRANCEZ , N., RODEH, M. and SINTZOFF, M., Distributed termination
with interval assertions, in : Proc. Int COlloq. Formalization of
Programming concepts, Peniscola, Spain, Lecture Notes in Comp.
Science, vol. 107, 1981.

[GFMRJ GRtJMBERG, o. , FRANCEZ N. , MAKOWSKY J. , and DE ROEVER w. P. , A proof
rule for fair tet111ination of guarded commands, in 1 J.W. de Bakker
and J.C. van Vhet eds., Algorithmic languages, IFIP, North Bolland,
Amsterdam, pp. 399-416, 1981.

167

[HJ HOARE, c.A.R., COllDllunicating sequential processes, CACM 21, 8,
pp. 666-677, 1978.

[Ll LAMPORT, L., Ti.me, clocks and the ordering of events in a
distributed system, CACM 21, 7, pp. 558-565, 1978.

[MPJ MAmm., z. and PNt.IELI, A., How to cook a temporal proof system for
your pet language, in : Proc. of the Symposium on Principles of
Programming Languages, Austin, Texas, 1983.

[T] TOPOR, R.W., Tenninatton detection for distributed computations,
Inform. Processing Letters is, 1, pp. 33-36, 1984.

