
Schedulers for Rule-Based Constraint Programming

* Krzysztof R. Apt
CWI, P.O. Box 94079

1090 GB Amsterdam, the Netherlands
and University of Amsterdam, the Netherlands

K.R.Apt@cwi.nl

ABSTRACT
We study here schedulers for a class of rules that naturally
arise in the context of rule-based constraint programming.
We systematically derive a scheduler for them from a generic
iteration algorithm of Apt [4]. We apply this study to so­
called membership rules of Apt and Monfroy [5]. This leads
to an implementation that yields for these rules a consid­
erably better performance than their execution as standard
CHR rules.

Keywords
Constraint propagation, rule-based programming

1. INTRODUCTION
In this paper we are concerned with schedulers for a class of
rules that naturally arise in the context of constraint pro­
gramming represented by means of rule-based programming.
An example of such rules are so-called membership rnles, in­
troduced in Apt and Monfroy [5]. Their relevance stems
from the following observations there made for constraint
satisfaction problems (CSP's) with finite domains:

• constraint propagation can be naturally achieved by
repeated application of the membership rules;

• in particular the notion of hyper-arc consistency can
be characterized in terms of the membership rules;

• for constraints explicitly defined on small finite do­
mains all valid membership rules can be automatically
generated (For a most recent reference on the subject
of such an automatic rule generation see Abdennadher
and Rigotti [2].);

• many rules of the CHR language (Constraint Handling
Rules) of Fri.ihwirth [7] that are used in specific con­
straint solvers are in fact membership rules. Now,

*Currently on leave at School of Computing, National Uni­
versity of Singapore

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC 2003, Melbourne, Florida, USA

© 2003 ACM 1-58113-624-2/03/03 ... $5.00. 14

Sebastian Brand
CWI, P.O. Box 94079

1090 GB Amsterdam, the Netherlands
S.Brand@cwi.nl

in the logic programming approach to constraint pro­
gramming CHR is the language of choice to write con­
straint solvers.

In the resulting approach to constraint programming the
computation process is limited to a repeated application of
the rules intertwined with splitting (labeling). So the viabil­
ity of this approach crucially depends on the availability of
efficient schedulers for such rules. This motivates the work
here reported. We provide an abstract framework for such
schedulers and use it as a basis for an implementation.

The abstract framework is based on an appropriate modi­
fication of the generic approach to constraint propagation
algorithms introduced in Apt [3] and Apt [4]. In this frame­
work one proceeds in two steps. First, a generic iteration
algorithm on partial orderings is introduced and proved cor­
rect in an abstract setting. Then it is instantiated with spe­
cific partial orderings and functions to obtain specific con­
straint propagation algorithms. In this paper, as in Apt [4],
we take into account information about the scheduled func­
tions. Here we consider functions in the form of the rules
b-> g, where band g satisfy a number of natural conditions.
We call such functions good rules. The relevant observation
is that membership rules are good rules. Then we propose a
specific scheduler in the form of an algorithm R, appropriate
for good rules.

The implementation is provided as an ECL'PS' program
that accepts as input a set of membership rules and con­
structs an ECLips• program that is the im;tantiation of the
R algorithm for this set of rules. As membership rules can
be naturally represented as CHR propagation rules, one can
assess this implementation by comparing it with the perfor­
mance of the standard implementation of membership rules
in the CHR language. We found by means of various bench­
marks that our implementation is considerably faster than
CHR.

CHR is available in a number of languages including the
ECLips• and the Sicstus Prolog systems. In both cases
CHR programs are compiled into the source language. There
is also a recent implementation in Java, see [1]. A great deal
of effort was spent on implementing CHR efficiently. For an
account of the most recent implementation see Holzbaur et
al. [8]. Since, as already mentioned above, many CHR rules
are membership rules, our approach provides a better im­
plementation of a subset of CHR. While being stricly smaller

than full CHR, the actual class of relevant rules is wider than
the class of membership rules. The essential properties, such
as monotonicity of condition and conclusion, are enjoyed
by many rules that describe constraint propagation. This,
hopefully, may lead to new insights into design and imple­
mentation of languages appropriate for writing constraint
solvers.

It is important to stress that the discussed implementation
was obtained by starting from "first principles" in the form
of a generic iteration algorithm on an arbitrary partial or­
dering. This shows the practical benefits of studying the
constraint propagation process on an abstract level.

2. REVISIONS OF THE GENERIC ITERA-
TION ALGORITHM

2.1 The Original Algorithm
Let us begin our presentation with recalling the generic algo­
rithm of Apt [4]. We slightly adjust the presentation to our
purposes by assuming that the considered partial ordering
also has the greatest element T.

So we consider a partial ordering (D, ~) with the least
element J_ and the greatest element T, and a set of functions
F := {!1 , •. ., fk} on D. We are interested in functions that
satisfy the following two properties.

Definition 1.

• f is called inflationary if x ~ f(x) for all x.

• f is called monotonic if x ~ y implies f(x) ~ f(y)
for all x, y. D

Then the following algorithm is used to compute the least
common fixpoint of the functions from F.

d := J_;

G:=F;
while G =f 0 and d =IT do

choose g EC;
G := G - {g};
G :=GU update(G,g,d);
d := g(d)

end

Figure 1: Generic Iteration Algorithm (GI)

where for all G, g, d the set of functions update(G, g, d) from
F is such that

A {! E F - G I f(d) = d /\ f(g(d)) =I g(d)} <:;: update(G,g,d),

B g(d) = d implies that update(G, g, d) = 0,

C g(g(d)) =/= g(d) implies that g E update(G,g,d).

Intuitively, as~;umption A states that update(G, g, d) con­
tains at least all the functions from F - G for which the
"old value", d, is a fixpoint but the "new value", g(d), is
not. So at each loop iteration such functions are added to

15

the set G. In turn, assumption B states that no functions
are added to G in case the value of d did not change. As­
sumption C provides information when g is to be added
back to G as this information is not provided by A. On the
whole, the idea is to keep in G at least all functions f for
which the current value of d is not a fixpoint.

The use of the condition d =I T, absent in the original pre­
sentation, allows us to leave the while loop earlier. Our
interest in the GI algorithm is clarified by the following re­
sult.

THEOREM 1 (CORRECTNESS). Suppose that all func­
tions in F are inflationary and monotonic and that (D, r;;;)
is finite and has the least element J_ and the greatest ele­
ment T. Then every execution of the GI algorithm termi­
nates and computes in d the least common fixpo'int of the
Junctions from F.

PROOF. (Sketch). The following statement is an invariant
of the while loop of the algorithm:

(VJ E F - G f(d) = d) /\(VJ E F f(T) = T).

This implies that the algorithm computes in d a common
fixpoint of the functions from F. The fact that this is the
least common fixpoint follows from the assumption that all
functions are monotonic.

In turn, termination is established by considering the lexi­
cographic ordering of the strict partial orderings (D, ::J) and
(N, <), defined on the elements of D x N by

(d1,n1) <1ex (d2,n2) iff d1 ::J d2 or (d1 = d2 and n1 < n2)­

Then with each while loop iteration of the algorithm the
pair (d, card G), where card G is the cardinality of the set
G, strictly decreases in the ordering <tex· D

2.2 Removing Functions
We now revise the GI algorithm by modifying dynamically
the set of functions that are being scheduled. The idea is
that, whenever possible, we remove functions from the set
F. This will allow us to exit the loop earlier which speeds
up the execution of the algorithm.

To realize this idea we proceed as follows. First, we in­
troduce the following property that will be satisfied by the
considered functions.

Definitfon 2. Suppose d E D and f E F. We say that f
is stable above d if d r;;; e implies j(e) =e. We then say that
f is stable if it is stable above f (d), for all d. 0

That is, f is stable if for all d and e, f(d) ~ e implies
f(e) = e. So stability implies idempotence, which means
that J(f(d)) = f(d), for all d. Moreover, if d and J(d) are
comparable for all d, then stability implies inflationarity. In­
deed, if d ~ f(d), then the claim holds vacuously. And if
f(d) ~ d, then by stability f(d) =d.

Next, we assume that for each function g E P and each
element d E D, two lists of functions from F are given,

friends (g, d) and obviated (g, d) that satisfy the following
condition

'dd'de;;;) gog1 o ... ogk(d)

VJ E jriends(g,d) U obviated(g,d) (J(e) = e) (1)

where Jriends(g, d) = [g1, ... , 9k]-

That is, for all d, each function f in friends(g, d) U
obviated(g, d) is stable above go gi o ... o 9k(d).

Now we modify the GI algorithm in such a way that each ap­
plic~tion of g to d will be immediately followed by the appli­
cations of all functions from jriends(g, d) and by a removal
of the functions from friends (g, d) and from obviated (g, d)
both from F and C. This modified algorithm is shown in
Fig. 2. To keep the notation uniform we identified at some
places the lists friends(g, d) and obviated(g, d) with the sets.

d := J..;
Fo :=F;
G:=F;
while G ::/= 0 and d :/:- T do

choose g E G;
G := G- {g};
F := F - (friends(g, d) U obviated(g, d));
G := G- (Jriends(g,d) U obviated(g,d));
G :=GU update(G, h,d),

where h =go g1 o ... o 9k and friends(g, d) = [g1, ... , gk];
d := h(d)

end

Figure 2: Revised Generic Iteration Algorithm (RGI)

The following result then shows correctness of this algo­
rithm.

THEOREM 2. Suppose that all functions in F are infla­
tionary and monotonic and that (D, i:;:;) is finite and has the
least element J.. and the greatest element T. Additionally,
suppose that for each Junction g E F and d E D two lists of
Junctfons from F are given, friends(g, d) and obviated(g, d)
such that condition {1) holds.

Then the Correctness Theorem 1 holds with the GI algorithm
replaced by the RGI algorithm.

PROOF. In view of condition (1) the following statement
is an invariant of the while loop:

VfEF-G(J(d)=d) /\ 'rlfEF(J(T)=T) /\

'r!f E Fa - F 'de-;;;}. d (J(e) = e). (2)

So upon termination of the algorithm the conjunction of this
invariant with the negation of the loop condition, i.e.,

G=0 v d=T

holds, which implies that 'df E Fu (!(d) = d).

The rest of the proof is the same. 0

In the next section we shall focus on functions that are in
a special form. For these functions we shall show how to
construct specific lists friends(g, d) and obviated (g, d).

16

2.3 Functions in the Form of Rules
Jn what follows we consider the situation when the scheduled
functions are of a specific form b __, g, where b is a condition
and g a function, that we call a body. We call such functions
rules.

First, we explain how rules are applied. Given an element
d of D, a condition b evaluates in d to either true or false,
denoted Holds(b, d) and -.Holds(b, d), resp.

Given a rule b-+ g we define then its application as follows:

(b)(d) __ { g(d) if Holds(b, d)
->g .- d if-.Holds(b,d) .

The rules introduced in the next section will be of a specific
type.

Definition 3. Consider a partial ordering (D, i:;:;).

• We say that a condition b is monotonic if Holds(b, d)
and d ~ e implies Holds(b, e), for all d, e.

• We say that a condition b is precise if the least d exists
such that Holds(b,d). We call then d the witness for
b.

• We call a rule b --t g good if b is monotonic and precise
and g is stable. D

When all rules are good, we can modify the RGI algorithm by
taking into account that an application of a rule is a two step
process: testing of the condition followed by a conditional
application of the body. This will allow us to construct the
lists friends(g, d) and obviated(g, d) before the execution of
the algorithm, without using the parameter d. Moreover,
the list friends(g) can be constructed in such a way that
the conditions of its rules do not need to evaluated at the
moment they are applied, as they will all hold. The details
of a specific construction that we shall use here will be given
in a moment, once we identify the condition that is crucial
for the correctness. This revision of the RGI algorithm is
given in Fig. 3.

Again, we are interested in identifying conditions under
which the Correctness Theorem 1 holds with the GI algo­
rithm replaced by the R algorithm. To this end, given a rule
b-+ g in F and d E D, define as follows:

f . d (b d) { friends(b-> g) if Holds(b, d)
rien s -> g, := [] if -.Holds(b, d)

{
obviated(b->g)

obviated(b->g,d) := [b->g]

[l

if Holds(b, d)
if Ve-;;;}. d
-.Holds(b, e)
otherwise

We now have the following counterpart of the Correctness
Theorem 1.

THEOREM 3 (CORRECTNESS). Suppose that all func­
tions in F are good rules of the form b-> g, where g is infla­
tionary and monotonic, and that (D, ~) is finite and has

d := ..L;
Fo :=F;
G:=F;
while G :f= Q) and d :f= T do

choose f E G; suppose f is b-> g;
G := G - {b--+ g };
if Holds(b, d) then

F := F - (Jriends(b-> g) U obviated(b-> g));
G := G - (Jriends(b-> g) U obviated(b-> g));
G :=GU update(G, h, d),

where h = g o 91 o ... o 9k
and friends(b-> g) = [b1 -> 91, ... , bk -> g,.,];

d := h(d)
else

if Ve ;;;J d -iHolds(b, e) then
F:=F-{b->g}

end
end

end

Figure 3: Rules Algorithm (R)

the least element ..L and the greatest element T. Further, as­
sume that for each rule b--+ g the lists friends(b-> g, d) and
obviated(b-+ g, d) defined as above satisfy condition (1) and
the fallowing condition:

Vd(b'-> g' E friends(b-> g) /\ (3)

Holds(b, d)-+ Ve;;;;] g(d) Holds(b', e)

Then the Correctness Theorem 1 holds with the GI algorithm
replaced by the R algorithm.

PROOF. It suffices to show that the R algorithm is an in­
stance of the RGI algorithm. On the account of condition (4)
and the fact that the rule bodies are inflationary functions,
Holds(b, d) implies that

((b-> 9)o(b1-> 91)0 .. . o(bk-+ 9k))(d) = (9og10 ... ogk)(d),

where friends(b-+ 9) = [b1-> 91, .. . , bk--+ 9k]· This takes
care of the situation when if Holds(b, d).

In turn, the definition of friends(b-+ g, d) and
obviated(b-+ 9, d) and assumption B take care of the
situation when if -iHolds(b, d). When the condition b fails
for all e ;:;;i d, then we can conclude that for all such e we
have (b -> 9) (e) = e. This allow8 us to remove at that
point of the execution the rule b-+ g from the set F. This
amounts to adding b-> 9 to the set obviated(b-+ 9, d) at
runtime. Note that condition (1) is then satisfied. D

We now provide an explicit construction of the lists friends
and obviated for a rule b-> g in the form of the algorithm
in Fig. 4. GI(d) stands here for the GI algorithm activated
with ..L replaced by d and the considered set of rules as the
set of functions F. Further, given an execution of GI(e), we
call here a rule g relevant if at some point 9(d) :f= d holds
after the "choose 9 E G" action.

Note that b--+ g rj! friends(b-> g) since b-+ 9 is a good
rule, while b-+ 9 E obviated(b--+ 9) since by the stability of 9
9(e) = e holds.

17

e := witness of b;
e := GI(9(e));
friends(b-> g) := list of the relevant rules h E F

in the execution of GI(g(e));
obviated(b->g) := [];
for each (b'-+ g') E F - friends(b-> g) do

if g' (e) == e or Ve' ;;;J e -.Holds(b', e') then
obviated(b-> g) := [b'-> g'jobviated(b-> g)]

end
end

Figure 4: Friends and Obviated Algorithm (F & o)

The following observation now shows the adequacy of the
F & 0 algorithm for our purposes.

LEMMA 1. Upon termination of the F fJ a algorithm con­
ditions { 1) and { 4) hold, where the lists friends (b -> g, d) and
obviated(b-> g, d) are defined as before Theorem S. O

Let us summarize now the findings of this section that cul­
minated in the R algorithm. Assume that all functions are
of the form of the rules satisfying the conditions of the Cor­
rectness Theorem 3. Then in the R algorithm, each time
the evaluation of the condition b of the selected rule b -> g
succeeds,

• the rules in the list friends (b -> g) are applied directly
without testing the value of their conditions,

• the rules in friends(b-> g) U obviated(b-> g) are per­
manently removed from the current set of functions G
and from F.

2.4 Recomputing of the Least Fixpoints
Another important optimization takes place when the R al­
gorithm is repeatedly applied to compute the least fixpoint.
More specifically, consider the following sequence of actions:

• we compute the least common fixpoint d of the func­
tions from F,

• we move from d to an element e such that d !; e,

• we compute the least common fixpoint above e of the
functions from F.

Such a sequence of actions typically arises in the framework
of CSP's, further studied in Section 3. The computation of
the least common fixpoint d of the functions from F cor­
responds there to the constraint propagation process for a
constraint C. The moving from d toe such that d !; e corre­
sponds to splitting or constraint propagation involving an­
other constraint, and the computation of the least common
fixpoint above e of the functions from F corresponds to an­
other round of constraint propagation for C.

Suppose now that we computed the least common fixpoint
d of the functions from F using the RGI algorithm or its
modification R for the rules. During its execution we per­
manently removed some functions from the set F. Then

these functions are not needed for computing the least com­
mon fixpoint above e of the functions from F. The precise
statement is provided in the following simple, yet crucial,
theorem.

THEOREM 4. Suppose that all junctions in F are infla­
tionary and monotonic and that (D, i;) is finite. Suppose
that the least common fixpoint do of the junctions from F is
computed by means of the RGI algorithm or the R algorithm.
Let Ffin be the final value of the variable F upon termination
of the RGI algorithm or of the R algorithm.

Suppose now that do i; e. Then the least common fixpoint
ea above e of the functions from F coincides with the least
common fixpoint above e of the functions from Ffiri.

PROOF. Take a common fixpoint e1 of the functions from
Ffin such that e i; e1 . It suffices to prove that ei is common
fix point of the functions from F. So take f E F - Ffin.
Since condition (2) is an invariant of the main while loop
of the RGI algorithm and of the R algorithm, it holds upon
termination and consequently j is stable above do. But
do i; e and e [;;; e1, so we conclude that j(e1) = ei. D

Intuitively, this result means that if after splitting we re­
launch the same constraint propagation process we can dis­
regard the removed functions.

In the next section we instantiate the R algorithm by a set of
rules that naturally arise in the context of constraint satis­
faction problems with finite domains. In Section 4 we assess
the practical impact of the discussed optimizations.

3. CONCRETE FRAMEWORK
We now proceed with the main topic of this paper, the sched­
ulers for the rules that naturally arise in the context of con­
straint satisfaction problems. First we recall briefly the nec­
essary background on the constraint satisfaction problems.

3.1 Constraint Satisfaction Problems
Consider a sequence of variables X := x1, ... , Xn where
n ~ 0, with respective domains D1, .. ., Dn associated with
them. So each variable Xi ranges over the domain D;. By
a constraint C on X we mean a subset of D1 x ... x Dn.
Given an element d := d1, .. . ,dn of Di x ... x Dn and a
subsequence Y := Xi 1 , ••• , Xi! of X we denote by d[Y] the
sequence di 1 , .. • , d;c In particular, for a variable x; from
X, d[x;] denotes di.

Recall that a constraint satisfaction problem, in short CSP,
consists of a finite sequence of variables X with respec­
tive domains V, together with a finite set C of con­
straints, each on a subsequence of X. We write it as
(C; X1ED1 1 ... 1 XnEDn), where X := X1,. . .,Xn and
V :=Di, .. .,Dn.

By a solution to \C ; xi E D1, .. ., Xn E Dn) we mean an
element d E D1 x ... x Dn such that for each constraint
C EC on a sequence of variables X we have d[X] EC. We
call a CSP consistent if it has a solution. Two CSP's with
the same sequence of variables are called equivalent if they
have the same set of solutions.

18

3.2 Partial Orderings
With each CSP P := (C ; X1 E D1, ... , Xn E Dn)
we associate now a specific partial ordering. Initially
we take the Cartesian product of the partial orderings
(P(D1), ;;:?), ... , (P(Dn), ;;;?). So this ordering is of the form

(P(D1) x ... x P(Dn), :2)

where we interpret :2 as the the Cartesian product of the
reversed subset ordering. The elements of this partial or­
dering are sequences (E1,. .. ,En) of respective subsets of
(Di, ... , Dn) ordered by the componentwise reversed subset
ordering. Note that in this ordering (D1, ... , Dn) is the least
element while

(0, .. ., 0)
'--v--"
n times

is the greatest element. However, we would like to iden­
tify with the greatest element all sequences that contain as
an element the empty set. So we divide the above partial
ordering by the equivalence relation R0 according to which

(E1, ... ,En) R0 (F1, ... ,Fn) iff

(Ei, ... , En)= (Fi, ... , Fn) or (:Ii E;. = 0 and :lj Fj = 0).

It is straightforward to see that R0 is indeed an equivalence
relation.

In the resulting quotient ordering there are two types of
elements: the sequences (E1, ... , En) that do not contain
the empty set as an element, that we continue to present in
the usual way with the understanding that now each of the
listed sets is non-empty, and one "special" element equal to
the equivalence class consisting of all sequences that contain
the empty set as an element. This equivalence class is the
greatest element in the resulting ordering, so we denote it
by T. In what follows we denote this partial ordering by
(Dp, [;;;).

3.3 Membership Rules
Fix now a specific CSP P := (C ; X1 E D1, .. ., Xn E Dn)
with finite domains. We now recall the rules introduced in
Apt and Monfroy [5] .1 They are called membership rules
and are of the form

where

• 'Y1, ... , Yk are pairwise different variables from the set
{xi, ... ,xn} and S1, .. .,Skare subsets of the respec-
tive variable domains,

• z1, ... ,zm are variables from the set {x1 , ... ,xn} and
a1, ... , am are elements of the respective variable do-
mains.

Note that we do not assume that the variables z1, ... , Zm are
pairwise different.

The computational interpretation of such a rule is:

1 In our presentation we slightly relax the original syntactic
restrictions.

if for i E [l..k] the current domain of the variable
Yi is included in the set Si, then for j E [1..m]
remove the element ai from the domain of Zi.

When each set Si is a singleton, we call a membership rule
an equality rule.

Let us reformulate this interpretation so that it fits the
framework considered in the previous section. To this end
we need to clarify how to evaluate a condition, and how to
interpret a conclusion. We start with the first item.

Definition 4. Given a variable y with the domain Dy and
E, S 2 Dy we define

Holds(y E S, E) iff E ~ S,

and extend the definition to the elements of the considered
ordering (Dp, i;;;) by putting

Holds(y E S, (E1, ... , En)) iff Ek~ S,
where we assumed that y is Xk,

Holds(y E S, T).

Then we interpret a sequence y1 E 81, .. . , Yk E Bk of condi­
tions as a conjunction, so by putting

Holds(y1 E 81, .. . , Yk E Sk, (E1, ... , En)) iff
Holds(y; ES;, (E1, .. . , En)) for i E [1..k],

and

Concerning the second item we proceed as follows.

Definition 5. Given a variable z with the domain Dz we
interpret the atomic formula z =/:-a as a function on P(Dz),
defined by:

(z =/:- a)(E) := E - {a}.

Then we extend this function to the elements of the consid­
ered ordering (Dp, i;;;) as follows:

• on the elements of the form (E1, ... , En.) we use
"padding", that is we interpret it as the identity on
the other components. If the resulting sequence con­
tains the empty set, we replace it by T,

• on the element T we put (z =/:- a)(T) := T

Finally, we interpret a sequence z1 =/:- a1, ... , Zm =/:- am of
atomic formulas by interpreting each of them in turn. D

In view of the Correctness Theorem 3 the following observa­
tion allows us to apply the R algorithm when each function

19

is a membership rule and when for each rule b -+ 9 the lists
friends(b-+ g) and obviated(b-+ g) are constructed by the
F & 0 algorithm.

Note 1. Consider the partial ordering (Dp, i;;;).

(i) Each membership rule is good.

(ii) Each function z1 =/:- a1, ... ,zm =/:-am on Dp is

• inflationary,

• monotonic. 0

To be able to instantiate the algorithm R with the member­
ship rules we still need to define the set update(G,g,d). In
our implementation we chose the following simple definition:

u date(G b-+ d) := { F - G if Hold~(b, d) /\ g(d) =j:. d
p ' g' 0 otherwise.

To illustrate the intuition behind the use of the lists
friends(b-+ g) and obviated(b-+ g) take the CSP P :=

(C; x1 E {a,b,c},x2 E {a,b,c},x3 E {a,b,c},x4 E {a,b,c})

and consider the membership rules

r1 .- x1E{a,b}-+ x2=/:-a,x4;i:b,

r2 .- x1 E {a,b},x2 E {b,c}-+ X3 ;ii: a,

T3 .- X2 E {b} -+ X3 =j:. a, X4 =j:. b.

Then upon application of rule r1 rule r2 can be applied
without evaluating its condition and subsequently rule r 3

can be deleted without applying it. So we can put rule r 2

into friends(r1) and rule r3 into obviated(r1), and this in
fact is what the F & 0 algorithm does.

4. IMPLEMENTATION
In this section we discuss the implementation of the R al­
gorithm for the membership rules and compare it by means
of various benchmarks with the CHR implementation in the
ECLipg• system.

4.1 Modelling of the Membership Rules in CHR
Following Apt and Monfroy [5] the membership rules are
represented as CHR propagation rules with one head. Recall
that the latter ones are of the form

H==>G1, ... ,G1 I B1, ... ,Bm.

where

• l;::: 0, m > 0,

• the atom H of the head refers to the defined con­
straints,

• the atoms of the guard G1 , ... , G1 refer to Prolog re­
lations or built-in constraints,

• the atoms of the body B1, ... , Bm are arbitrary atoms.

Further, recall that the CHR propagation rules with one head
are executed as follows. First, given a query (that represents
a CSP) the variables of the rule are renamed to avoid vari­
able clashes. Then an attempt is made to match the head
of the rule against the first atom of the query. If it is suc­
cessful and the guard of the instantiated version of the rule
succeeds, the instantiated version of the body of the rule is
executed. Otherwise the next rule is tried.

Finally, let us recall the representation of a membership rule
as a CHR propagation rule used in Apt and Monfroy [5]. Con­
sider the membership rule

Y1 E 81, ... , Yk E Sk--> Z1 =/= a1, ... , Zm =/=am.
related to the constraint c on the variables X1, .. . ,Xn.
We represent it as a CHR rule with the single head
atom c(X1 , . .. ,Xn) and guard atoms in(yi,S;) where
the in/2 predicate is defined by in(X,L) :- dom(X,D),
subset (D, L). The body consists of atomic calls z, ##a,.

In general, the application of a membership rule as defined
in Section 3 and the execution of its representation as a CHR
propagation rules coincide. Moreover, by the semantics of
CHR, the CHR rules are repeatedly applied until a fixpoint is
reached. So a repeated application of a finite set of member­
ship rules coincides with the execution of the CHR program
formed by the representations of these membership rules as
propagation rules.

4.2 Benchmarks
In our approach the repeated application of a finite set of
membership rules is realized by means of the R algorithm
of Section 2 implemented in ECU pge. The compiler con­
·ists of about 1500 lines of code. It accepts as ir,put a set
f membership rules, each represented as a CHR propagation
ule, and constructs an ECL'PSe program that is the instan­
.ation of the R algorithm for this set of rules. As in CHR, for
ach constraint the set of rules that refer to it is scheduled
eparately.

For each considered constraint we use rules generated by a
program discussed in [5]. Our compiler constructs then for
each rule g the lists friends(g) and obviated(g) by executing
the F & 0 algorithm (essentially computing a fixpoint for
each rule). Time spent on this construction is comparable
with rule generation time.

'v\'e chose benchmarks that embody several successive prop­
agation steps, i. e., propagation interleaved with domain
splitting or labelling. In Table 1 we list the results for se­
lected single constraints. For each such constraint, say C on
a sequence of variables X1, .. . , Xn with respective domains
D1, ... , D,,, we consider the CSP (C; x1 E D1, .. . ,xn E Dn)
together with randomized labelling. That is, the choices of
a variable, value, and an assignment or a removal of the
value, are random. The computation of only the solutions
yields times that are insignificant, so the test program com­
putes also all intermediate fixpoints, where some domains
are not singleton sets. Branching at these recorded points
takes ?lace only once, that is, backtracking occurs immedi­
ately if a recorded point is encountered again. In Table 2
we re~ort the results for CSP's that formalize sequential au­
tomatic test pattern generation for digital circuits (ATPG).

20

These are rather large CSP's that employ the and constraints
of Table 1 and a number of other constraints. They are taken
from a recent study by the first author that will be reported
elsewhere.

We measured the execution times for three rule schedulers:
the standard CHR representation of the rules, the generic
chaotic iteration algorithm GI, and its improved derivative R.
The codes of the latter two algorithms are both produced
by our compiler and are structurally equal, hence allow a
direct assessment of the improvements embodied in R.

An important point in the implementations is the question
of when to remove solved constraints from the constraint
store. The standard CHR representation of membership rules
does so by containing, beside the propagation rules, one CHR
simplification rule for each tuple in the constraint definition.
Once its variables are assigned values that correspond to a
tuple, the constraint is solved, and removed from the store
by the corresponding simplification rule. This 'solved' test
takes place interleaved with propagation. The implementa­
tions of GI and R check after closure under the propagation
rules. The constraint is considered solved if all its variables
are fixed, or, in the case of R, if the set F of remaining rules
is empty.

In the tables we provide for each constraint or CSP the ratio
of the execution times in seconds between, first, R and GI,
and second, Rand CHR. This is followed by the absolute times
for R and GI / CHR.

Const. rcc8 fork and3 and9 and11
MEM
re!. 263/113 433/403 583/47% 133/6% 13%/33
abs. 109 0.23 0.22 70 55.6

419/950 0.54/0.58 0.38/0.47 534/1096 427/2077
EQU
re!. 953/100% 953/893 823/74% 943/973 893/943

abs. 323 18.9 0.31 286 299
341/324 19.9/21.2 0.38/0.42 303/294 335/318

Table 1: Randomized search trees for constraints

Logic 3-valued 9-valued 11-valued 7

MEM
relative 64% / 353 113 / 24% 853 / 863
absolute 1.39 2.16/4.01 124 175/509 797 933/3120

EQU
relative 633 / 10% 44% / 593 393 I 483
absolute 0. 72 1.15/2.58 2.40 5.50/4.09 12.3 31.6/25. 7

Table 2: CSP's formalizing sequential ATPG

4.3 Recomputing of the Least Fixpoints
Finally, let us illustrate the impact of the permanent removal
of the rules during the least fixpoint computation, achieved
here by the use of the lists friends(g) and obviated(g). Given
a set F of rules call a rule g E F solving if friends(g) U
obviated(g) =F.

Take now as an example the equivalence relation = from
three valued logic of Kleene [9] [page 334] that consists of

three values, t (true), f (false) and u (unknown). It is defined
by the truth table

- t f u
t t f u
f f t u
u u u u

The program of Apt and Monfroy [5] generates for it 26
minimal valid membership rules. Out of them 12 are solving
rules. For the remaining rules the sizes of the set friends U
obviated are: 17 (for 8 rules), 14 (for 4 rules), and 6 (for 2
rules).

In the R algorithm a selection of a solving rule leads directly
to the termination (G = 0) and to a reduction of the set
F to 0. For other rules also a considerable simplification
in the computation takes place. For example, one of the 8
rules with 17 rules in its set friends U obviated is

r := x E {O},z E {O,u}-+y =j:. 0.

Consider the CSP(=:; x E {O}, y E {O, 1, u}, z E {0, u}). In
the R algorithm the selection of r is followed by the applica­
tion of the rules in friends and the removal of the rules in
friends U obviated. This brings the number of the considered
rules down to 26 - 17 = 9. The R algorithm subsequently
discovers that none of these nine rules is applicable at this
point, so this set F remains upon termination. Then in
a subsequent constraint propagation phase, launched after
splitting or after constraint propagation involving another
constraint, the fixpoint computation by means of the R al­
gorithm involves only these nine rules instead of the initial
set of 26 rules. For solving rules, this fixpoint computation
immediately terminates.

Interestingly, as Table 3 shows, the solving rules occur quite
frequently. We list there for each constraint and each type of
rules the number of solving rules divided by the total number
of rules, followed in a new line by the average number of rules
in the set friends(g) U obviated(g).

and2 and3 and9 and11 fork rcc8 allen

EQU 6/6 13/16 113/134 129/153 9/12 183/183 498/498
6 14 130 148 11 183 498

MEM 6/6 4/13 72/1294 196/4656 0/24 0/912 -/26446
6 7 810 3156 9 556

Table 3: Solving rules

The fork constraint is taken from the Waltz language for the
analysis of polyhedral scenes. The rcc8 is the composition
table for the Region Connection Calculus with 8 relations
from Egenhofer [6]. It is remarkable that all its 183 mini­
mal valid equality rules are solving. While none of its 912
minimal valid membership rule for rcc8 is solving, on the
average the set friends (g) U obviated (g) contains 556 mem­
bership rules. Also all 498 minimal valid equality rules for
the allen constraint, that represents the composition table
for Allen's qualitative temporal reasoning, are solving.

21

The number of minimal valid membership rules exceeds
26,000 and consequently they are too costly to analyze.

The savings obtained by means of the lists friends(g) and
obviated(g) are orthogonal to the ones obtained by a trans­
formation of the CHR propagation rules into the simplifica­
tion rules discussed in Abdennadher and Rigotti [2]. We
think that there is a relation between two approaches that
we plan to study closer.

Acknowledgments
We thank Christian Holzbaur and Eric Monfroy for helpful
discussions on the implementation and on an early version
of this paper, and the referees for useful comments.

5. REFERENCES
[1] S. Abdennadher, E. Kramer, M. Saft, and M. Schmaus.

JACK: A Java Constraint Kit. In International
Workshop on Functional and (Constraint) Logic
Programming (WFLP 2001), Kiel, 2001, 2001.

(2] S. Abdennadher and C. Rigotti. Using confluence to
generate rule-based constraint solvers. In Proceedings of
the 3rd lnt. Conf. on Principles and Practice of
Declarative Programming (PPDP 2001}, Firenze, Italy,
September 2001.

[3] K. R. Apt. The essence of constraint propagation.
Theoretical Computer Science, 221(1-2):179-210, 1999.
Available via http://arXiv.org/archive/cs/.

[4] K. R. Apt. The role of commutativity in constraint
propagation algorithms. ACM Transactions on
Programming Languages and Systems, 22(6): 1002-1036,
2000. Available via http: I I arXi v. org/ archive/ cs/.

[5] K. R. Apt and E. Monfroy. Constraint programming
viewed as rule-based programming. Theory and
Practice of Logic Programming, 1(6):713-750, 2001.
Available via http: I I arXi v. org/ archive/ cs/.

[6] M. Egenhofer. Reasoning about binary topological
relations. In 0. Gunther and H.-J. Schek, editors,
Proceedings of the 2nd International Symposium on
Large Spatial Databases (SSD }, volume 525, pages
143-160. Springer-Verlag, 1991.

[7] T. Friihwirth. Theory and practice of constraint
handling rules. Journal of Logic Programming,
37(1-3):95-138, October 1998. Special Issue on
Constraint Logic Programming (P. Stuckey and K.
Marriot, Eds.).

[8] C. Holzbaur, M. Garcia de la Banda, D. Jeffery, and
P. J. Stuckey. Optimizing compilation of constraint
handling rules. In Proceedings of the 2001 International
Conference on Logic Programming, volume 2237 of
Lecture Notes in Computer Science, pages 74-89.
Springer-Verlag, 2001.

[9] S. C. Kleene. Introduction to Metamathematics. van
Nostrand, New York, 1952.

