
Some Remarks on Boolean Constraint Propagation 

Krzysztof R. Apt 1•2 

1 CWI 
P.O. Box 94079, 1090 GB Amsterdam, the Netherlands 

K.R.Apt©cwi.nl 
2 University of Amsterdam, the Netherlands 

Abstract. We study here the well-known propagation rules for Boolean con
straints. First we propose a simple notion of completeness for sets of such rules 
and establish a completeness result. Then we show an equivalence in an appro
priate sense between Boolean constraint propagation and unit propagation, a form 
of resolution for propositional logic. 
Subsequently we characterize one set of such rules by means of the notion of 
hyper-arc consistency introduced in Mohr & Masini ( 1988). Also, we clarify the 
status of a similar, though different, set of rules introduced in Simonis ( 1989) and 
more fully in Codognet & Diaz ( 1996). 

1 Introduction 

1.1 Motivation 

Boolean constraints form a special case of constraint satisfaction problems in which the 
constraints are defined by means of Boolean formulas. The most common representation 
uses basic constraints that represent the typical connectives, such as and, not etc. 

To reason about Boolean constraints one often uses rules such as: 

"for x !\ y = z, if z holds, then both :randy hold" (l) 

or 

"for :r V y = z, if :r does not hold, then y = z holds." (2) 

These rules allow us to propagate the information that some values in a Boolean 
constraint are known. This type of inferences have been used for a long time. In McAlle
ster (1980) they are explained informally; in McAl!ester (1990) they are called Boolean 
constraint propagation. In Simonis ( 1989) such rules are formulated explicitly and used 
to propagate known values through the circuit when generating tests for combinatorial 
circuits. More recently, these rules were used in Codognet & Diaz (1996) as a basis for 

an efficient implementation of a Boolean constraint solver. 
In this paper we put together various simple observations concerning Boolean con

straint propagation. The main difficulty lies in a proper setting up of the framework. 
Once this is done the results easily follow. 

To start with, in Section 2, we answer the question in what sense a set of such rules can 
be complete. To this end we introduce a notion of completeness based on the notions of 

K.R. Apt etal. (Eds.): New Trends in Constraints, LNAI 1865, pp. 91-107, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 



92 K.R. Apt 

minimal rules and valid rules and show completeness for one set of such rules. In Section 
3 we relate Boolean constraint propagation to unit propagation, a form of resolution for 
propositional logic, by explaining in what sense each method can be simulated by the 
other. 

Next, in Section 4 we introduce proof rules that act on CSP's. This allows us to 
provide in Section 5 an alternative characterization for one set of rules by means of the 
notion of hyper-arc consistency of Mohr & Masini (1988) (we use here the terminology 
of Marriott & Stuckey (1998)). In Section 6 we clarify the status of another, more 
commonly used, set of such rules given for the and constraint in Simonis (1989) and 
for other connectives in Codognet & Diaz ( 1996). In the final section we relate Boolean 
constraint propagation to the CHR language ofFrilhwirth (1995). 

1.2 Preliminaries 

We review here the notions used in the sequel. 
Consider a finite sequence of variables Y := Yi, ... , Yk where k ;::: 0, with respective 

domains V := Di, ... , Dk associated with them. So each variable Yi ranges over the 
domain D;. By a constraint Con Y we mean a subset of Di x ... x Dk· If C equals 
Di x ... x Dk. then we say that C is solved. 

Now, by a constraint satisfaction problem, CSP in short, we mean a finite sequence 
of variables X := xi, .. . , Xn with respective domains V := Di, . .. , Dn, together with 
a finite set C of constraints, each on a subsequence of X. We write such a CSP as 
(C; 'D&), where VE. := xi E Di, .. .,xn E Dn and call each construct of the form 
x E D a domain expression. To simplify the notation from now on we omit the"{ }" 
brackets when presenting specific sets of constraints C. 

Consider now an element d := di, ... , dn of Di x ... x Dn and a subsequence 
Y := Xi1 , ••• , Xil of X. Then we denote by d[Y] the sequence di 1 , •.• , dil" By the 
domain of Y we mean the set of all tuples from Di1 x · · · x Di,. By a solution to 
(C ; xi E Di, ... , Xn E Dn) we mean an element d E Di x ... x Dn such that for 
each constraint C E C on a sequence of variables X we have d[X] E C. 

Next, we call a CSP failed if some of its domains is empty. Given two CSP's </> and 
1/J, we call </> a reformulation of 'If; if the removal of solved constraints from </> and 'If; 
yields the same CSP. We call two CSP's with the same sequence of variables equivalent 
if they have the same set of solutions. Clearly, two CSP's such that one is a reformulation 
of another are equivalent. 

Finally, given a constraint c on the variables xi, . .. , Xn with respective domains 
Di, ... , Dn. and a sequence of domains D1, .. ., D~ such that for i E [l..n] we have 
D~ ~ D;, we say that c' equals c restricted to the domains D1, ... , D~ if c' =en (D1 x 
... x D~). 

In this paper we focus on Boolean constraint satisfaction problems. They deal with 
Boolean variables and constraints on them defined by means of Boolean connectives 
and equality. Let us introduce the relevant definitions. 

By a Boolean variable we mean a variable which ranges over the domain which 
consists of two values: 0 denoting false and 1 denoting true. By a Boolean domain 
expression we mean an expression of the form x E D where D ~ {O, l}. In what 



Some Remarks on Boolean Constraint Propagation 93 

follows we write the Boolean domain expression x E {1} as x = 1 and x E {O} as 
x = 0. 

In the sequel x, y, z denote different Boolean variables. We distinguish four Boolean 
constraints: 

- x = y; we call it the equality constraint, 
- •X = y; we call it the NOT constraint, 
- x /\ y = z; we call it the AND constraint, 
- x V y = z; we call it the OR constraint, 

and interpret them in the expected way. 
Finally, by a Boolean constraint satisfaction problem, in short Boolean CSP, we 

mean a CSP with Boolean domain expressions and each constraint of which is a Boolean 
constraint restricted to the adopted domains. 

For example, the Boolean CSP 

(x /\ y = z, --ix = y; x = 1, y E {0, 1 }, z E {0, 1}) 

can be alternatively written as 

(C1,C2; x = 1,y E {0,1},z E {O, l}), 

where C1 = {(1, 1, 1), (1, 0, O} is aconstraintonx, y, z andC2 = {(1, O)} is a constraint 
on x,y. 

In this paper we shall relate Boolean constraints to clauses as used in the resolution 
method. The relevant notions are the following ones. 

A literal is a Boolean variable or its negation; a clause is a (possibly empty) disjun
ction of different literals. We denote the complement of the literal u by u. A clause with 
a single literal is called a unit clause. We write u V Q to denote a clause that contains 
the literal u as a disjunct; Q is the disjunction of the remaining literals. 

2 The Proof System BOOL and Its Completeness 

The rules such as the ones given in Section 1.1 can be naturally interpreted as implications 
over the constraint formed by the truth table of the connective in question. For instance, 
rule (1) can be viewed as the implication 

z = 1--+ x = 1, y = 1 

over the AND constraint on the variables x, y, z determined by the table: 

lxlylzl 
OOO 
0 1 0 
100 
l 1 1 



94 KR.Apt 

With this interpretation "completeness" of a set of such rules can be naturally inter
preted as the question whether the set implies all other valid rules. These concepts can 
be made precise as follows (see essentially Apt & Monfroy ( 1999)). 

Definition l. Consider a constraint C on a sequence of variables VAR. two disjoint 
non-empty subsequences X and Y of VAR. a tuple s of elements from the domain of X 
and a tuple t of elements from the domain ofY. We call X = s-+ Y = ta rule (for C ). 

- Hi· sav that X = s --> Y = t is valid (for C) if for every tuple d E C the equality 
d(Xj ·= s the equality d[Y] = t. 

- ~~\;·say that X = s -t Y = t is feasible (for C) if for some tuple d E C the equality 
= s holds. 

Suppose that a sequence of variables Z extends X and a tuple of elements u from 
the domain of Z exte11ds s. We say then that Z = u extends X = s. We now say that the 
rule z = 11 ~ r: ::= l' is implied by the rule x = s -7 y = t if z = u. extends x = .s 
and Y = t exunds U = v. 

We call a rule minimal if it is feasible and is not properly implied by a valid rule. 
Finally, II'<' call a set of rules 'R for a constraint C complete if it consists of all minimal 
valid rules ji.ir C'. D 

Take for example the AND constraint. The rule z = 1 -t y =--= 1 is implied by the rule 
:; = l --:> z = 1, y = 1. Since both of them are valid, the former rule is not minimal. 
Both rules are feasible, whereas the rule z = 0, x = 1 -t y = 0 is not. One can check 
that the rule:;= 1 -t x = 1, y = 1 is minimal. 

Consider now the set of rules presented in Table 1, where for the sake of clarity we 
attached to each implication the Boolean constraint in question. Call the resulting proof 
system BOOL. 

A natural question arises whether some rules have been omitted in the proof system 
BOOL. Observe for example that no rule is introduced for x /\ y = z when z = 0. In 
this case either .r = 0 or y = 0 holds, but x = 0 V y = 0 is not a legal conclusion of 
a rule. Alternatively, either i: = z or y = z holds, but x = z V y = z is not a legal 
conclusion of a rule either. The same considerations apply to x V y = z when z = 1. 

Also, we noted already that rule AND 6 corresponds to rule (1 ). In contrast, no rule 
corresponds to rule (2). The following simple result clarifies the situation. 

Theorem 1 (Completeness). For each Boolean constraint the corresponding set of rules 
given in the proof system BOOL is complete. 

Proof. The claim follows by a straightforward exhaustive analysis of the valid rules 
for each considered Boolean constraint. Clearly, such an argument can be mechanized 
by generating all minimal rules for each Boolean constraint. This was done in Apt 
& Monfroy ( 1999) for the case of arbitrary finite constraints and rules of the form 
X = s---+ Y # t that have an obvious interpretation. Now, for the case of Boolean 
constraints each domain has two elements, so each rule of the form X = s ..-..+ Y i= t 
has a "'dual" of the form X = s -t Y = t', where t' is obtained from t by a bitwise 
complement. D 



Some Remarks on Boolean Constraint Propagation 95 

Table 1. Proof system BOOL 

EQU 1 x = y, x = 1-+ y = 1 
EQU 2 x = y, y = 1-+ x = 1 
EQU 3 x = y, x = O-+ y = O 
EQU 4 x=y,y=O-+x=O 

N 0 T 1 •X = y' x = 1 -+ y = 0 
N 0 T 2 •X = y' x = 0 -+ y = 1 
NOT 3 •X = y,y = 1-+ x = 0 
NOT 4 •x = y, y = 0-+ :r = 1 

ANDJ xf\y=z,x=l,y=l-+z=l 
AND 2 x /\ y = z, x = 1, z = 0-+ y = 0 
AND 3 x /\ y = z, y = 1, z = 0-+ x = 0 
AND 4 x /\ y = z, x = 0 -+ z = 0 
AND 5 x /\ y = z, y = 0-+ z = 0 
AND 6 x /\ y = z, z = 1-+ x = 1, y = 1 

OR 1 
OR 2 
OR 3 
OR 4 
OR 5 
OR 6 

xVy=z,x=l-+z=l 
xv y = z, x = 0, y = 0-+ z = 0 
x v y = z, x = 0, z = 1 -+ y = 1 
x v y = z, y = 0, z = 1 -+ x = 1 
xVy=z,y=l-+z=l 
xv y = z, z = 0-+ x = 0, y = 0 

It is useful to mention that the abovementioned program, implemented in ECLip5e, 
generated the appropriate rules for the AND constraint in 0.02 seconds and similarly for 
the other three Boolean constraints. 

3 Relation to Unit Propagation 

The considerations of the previous section clarify the matter of completeness. We still 
should explain how the rules of the proof system BOOL are supposed to be applied. To 
this end we consider finite sets of Boolean constraints and literals and interpret the rules 
as proof rules applied to such sets. We illustrate it by means of an example. 

Consider OR 3 rule. We interpret it as the following proof rule: 

X V y = Z, •X, Z 

-i:r,y, z 

We define now the result of applying a rule of BOOL to a finite set of Boolean 
constraints and literals as expected: an application of the rule results in the replacement of 
(the subset corresponding to) the premise by (the subset corresponding to) the conclusion. 
This interpretation of the rules of BOOL allows us to derive conclusions that coincide 
with the informal use of such rules. In the case of OR 3 rule the constraint x V y = z 
is dropped as no other inference using it can be made, while the literal z is retained as 
other inferences using it are still possible. 



96 K.R.Apt 

In this section we relate so interpreted proof system BOOL to unit propagation, a 
form of propositional resolution (see, e.g. Zhang & Stickel ( 1996)) that is a component of 
the Davis-Putnam algorithm for the satisfiability problem (see Davis & Putnam (1960)). 

We consider two types of operations on a set of clauses: 

- unit resolution (w.r.t. the literal u): given a unit clause u and a clause u V Q replace 
u v QbyQ, 

- unit subsumption (w.r.t. the literal u): given a unit clause u and a clause u V Q delete 
uVQ. 

By unit propagation we mean one of the above two operations. 
We now translate each Boolean constraint to a set of clauses as follows. We replace 

- each equality constraint x = y by the clauses x V -iy, -ix Vy, 
- each NOT constraint -,x = y by the clauses x Vy, -ix V -iy, 
- each AND constraint x /\ y = z by the clauses -ix V -iy V z, x V -,z, y V -,z, 
- each OR constraint x Vy= z by the clauses -,x V z, -iy V z, x Vy V -,z. 

Given a finite set of Boolean constraints and literals S we denote by <Ps the resulting 
translation of this set into a set of clauses. It is straightforward to see that this translation 
maintains equivalence. 

In what follows, given two sets of Boolean constraints and literals Si and S2, we 
write S1 I-BOOL S2 to denote the fact that S2 is obtained by a single application of a 
rule of the BOOL system to Si, and Si 1-~~0L S2 to denote the fact that S2 is obtained 
by up to i applications of the rules of the BOOL system to Si. 

Analogously, given two sets of clauses <Pi and c/J2, we write <P1 1-u NIT <P2 to denote 
the fact that cjJ2 is obtained by a single application of the unit propagation to c/Ji. and 
c/Ji HJ iv IT <P2 to denote the fact that <P2 is obtained by up to i applications of the unit 
propagation to <Pi. 

The following result relates the proof system BOOL to unit propagation. 

Theorem 2 (Reduction 1). Consider two finite sets °.lBoolean constraints and literals 
Si and S2. Suppose that Si I-BOOL S2. Then c/Js1 1-v NIT <Ps2 • 

Proof. We need to analyze each of the 20 rules of BOOL. We illustrate the argument on 
one, arbitrary selected rule, OR 3. 

Suppose that S2 is the result of applying rule OR 3 to Si. Recall that this rule is 
interpreted as 

x Vy= z, -ix, z 
-,x, y, z 

The assumption of this rule translates to the following set of clauses: 

{-ix V z,-,y V z,x Vy V -,z,-,x, z}. 

By the application of the unit resolution w.r.t. z we obtain the set 

{-ixV z,-,yV z,xVy,-,x,z}, 



Some Remarks on Boolean Constraint Propagation 97 

from which by two applications of the unit subsumption w.r.t. z we obtain the set 

{ x v y' -.x' z}. 

By the application of the unit resolution w.r. t. -.x we now obtain the set 

{-.x,y,z} 

which corresponds to the conclusion of rule OR 3. 
For other rules the argument is equally straightforward. D 

The converse relation is a bit more complicated since to translate clauses to Boolean 
constraints we need to use auxiliary variables. First, we translate each expression of the 
form Q = z, where Q is a clause and z a variable, to a finite set of Boolean constraints 
and literals. We proceed by induction on the number of literals in Q. 

If Q is a unit clause, then Q = z is either an equality constraint or a NOT constraint 
and we put trans(Q = z) := {Q = z}. Otherwise Q is of the form u V Qi and we 
define 

trans(x V Qi = z) := {x Vy= z} U trans(Qi = y), 

where y is a fresh variable, 

trans(-.x V Qi = z) := {-.x = v, v Vy= z} U trans(Q 1 = y), 

where v and y are fresh variables. 
Finally, we put for a unit clause u 

trans(u) := {u}, 

and for a non-unit clause Q 

trans(Q) := {z} U trans(Q = z), 

where z is a fresh variable. 
Note that for a non-unit clause Q the resulting finite set of Boolean constraints and 

literals trans(Q) depends on the order in which the literals of Q are selected and on 
the specific choice of the fresh variables, so it is not uniquely determined. However, it is 
clear that for each such translation trans( Q), the clause Q is equivalent to 3ztrans( Q), 
where z is the sequence of the introduced fresh variables. 

Given now a finite set of clauses</> we translate each of its clauses separately and call 
thus obtained finite set of Boolean constraints and literals a translation of cP to a finite 
set of Boolean constraints and literals. 

Below, given two sets of Boolean constraints and literals C and S we say that C 
semantically follows from a set S if every valuation that satisfies Scan be extended to 
a valuation that satisfies C. 

We then have the following result. 

Theorem 3 (Reduction 2). Consider two finite sets of clauses </>1 and c/J2. Suppose that 
</> 1 1-u NIT </>2. Then for some translations Si and S2 of </>i and </>2 to finite sets of 
Boolean constraints and literals and some set of Boolean constraints and literals C we 
have Si 1-~boL S2 UC, where C semantically follows from S2. 



98 K.R.Apt 

Informally, the reduction from S1 toS2 yields additionally some redundant set of Boolean 
constraints and literals C. 

Proof. Consider first the unit resolution. It leads to a replacement of fi V Q by Q in 
presence of the unit clause u. Suppose that u is a Boolean variable x. Then fi is -ix. 

We now have for some fresh variables v, y and z 

trans(-ix V Q) = {z} U {-ix= v,v Vy= z} U trans(Q = y). 

So the clauses x and -ix V Q translate to the set of Boolean constraints and literals 

{x,z,-,x = v,v Vy= z} Utrans(Q = y). 

By the application of the NOT 1 rule we now obtain the set 

{x, z, -iv, v Vy= z} U trans(Q = y), 

from which by the OR 3 rule we obtain 

{x,z,-,v,y}Utrans(Q = y). (3) 

Now, if Q is a unit clause, then the set (3) equals 

{x, z,-,v,y, Q = y} 

from which we get by the EQU 2 rule 

{x, z, -,v, y, Q}, 

i.e., the set trans(x) U trans(Q) U { z, -iv, y }. Since v, y and z are fresh, { z, -iv, y} 
semantically follows from trans(x) U trans(Q). 

If Q is a non-unit clause we can assume that 

trans(Q) = {y} U trans(Q = y), 

so the set (3) equals trans( x) U trans( Q) U { z, -,v}. Since v and z are fresh, { z, -,v} 
semantically follows from trans(x) U trans(Q). 

The argument in case u is negation of a Boolean variable is even more straightforward. 

Consider now the unit subsumption. It leads to a deletion of the clause u V Q in 
presence of the unit clause u. Suppose that u is --.x for some Boolean variable x. We 
have for some fresh variables v, y and z 

trans(•x V Q) = {z, •X = v, v Vy= z} U trans(Q = y). 

So the clauses •X and •X V Q translate to the set of Boolean constraints and literals 

{•x,z,-,x = v,v Vy= z} U trans(Q = y). 



Some Remarks on Boolean Constraint Propagation 99 

By the application of the NOT 2 rule we now obtain the set 

{--ix,z,v,v Vy= z} Utrans(Q = y), 

from which by the OR 1 rule we obtain 

{--ix,z,v}Utrans(Q = y). 

It is now easy to see that the set { z, v} U trans ( Q = y) semantically follows from 
{-ix}. Indeed, a straightforward proof by induction shows that for any clause Q the set 
trans(Q = y) is satisfiable. D 

The above two results clarify the relationship between Boolean constraint propaga
tion and unit propagation. They show that each method can be simulated by another in 
constant time, albeit the simulation of the unit propagation by means of the Boolean 
constraint propagation leads to a generation of redundant constraints. 

A relation between Boolean constraint propagation and the Davis-Putnam algorithm 
was already mentioned in McAllester (1980, page 1), where it is stated without any 
further explanation that "propositional [i.e., Boolean] constraint propagation [ ... ] was 
originally described, in essence, by Davis & Putnam ( 1960) ".But to our knowledge this 
connection was not made precise. 

4 A Proof Theoretic Framework 

We now proceed towards another characterization of the proof system BOOL in constraint 
processing terms. In the previous section we considered finite sets of Boolean constraints 
and literals. We now need to translate them into Boolean CSP's by interpreting in an 
appropriate way the literals belonging to such a set. 

Given a Boolean variable x there are four sets of literals concerning x. We interpret 
each of them as a Boolean domain expression, as follows: 

- 0byx E {0,1}, 
{x}byxE {1}, 

- {-ix} by x E { 0}, 
- { x, -ix} by x E 0. 

This interpretation entails a translation of finite sets of Boolean constraints and 
literals to Boolean CSP's. For example, the set { x V y = z, -ix, z} (that corresponds to 
the premise of OR 3 rule) translates to the Boolean CSP 

(x Vy= z; x E {0}, y E {O, 1}, z E {1}). 

It is straightforward to see that this translation preserves equivalence in the sense 
that (di, ... , dn) is a solution to a Boolean CSP P := (C; xi E Di, ... , Xn E Dn) iff 
the assignment (xif di, ... , xn/ dn) satisfies the original set of Boolean constraints and 
literals. 



100 K.R. Apt 

This translation also leads to another interpretation of the rules of the proof system 
BOOL. We interpreted them as rules on the finite sets of Boolean constraints and literals. 
By means of the above translation they become rules on Boolean CSP's. 

Note that for a set L of literals concerning x that translates into the Boolean domain 
expression x E D, the set L U { x} translates into the Boolean domain expression 
x E D n {1 }, and similarly for the literal -ix. Consequently, the rule 

translates into 

and the rule 

translates into 

In addition the rule 

-ix= y, y = 0-+ x = 1, 

{-ix= y; x E Dx, y = 0) 

{; x E Dx n {1},y = 0) 

x /\ y = z, z = 1 -+ x = 1, y = 1, 

(x /\ y = z; x E Dx, y E Dy, z = 1) 
(; x E Dx n {1}, y E Dy n {1}, z = 1) 

xv y = z, x = 0-+ y = z, 

that naturally corresponds to rule (2) of in Section 1.1, translates into 

{x Vy = z ; x = 0, y E Dy, z E Dz) 

(y = z; x = 0, y E Dy, z E Dz) 

This brings us to the proof theoretic framework introduced in Apt (1998). We briefly 
recall the relevant definitions. The crucial concept that we need is that of a CSP being 
closed under the applications of a proof rule. In the above paper we introduced two types 
of proof rules for CSP's: deterministic and splitting. Here we only use the deterministic 
ones. These rules are of the form 

where <P and 1/; are CSP's. 
Consider now a CSP of the form (CU C1 ; VU V1) and a deterministic rule of the 

form 
(C1 ; V1) 
(C2; V2) 

We then say that rule (4) can be applied to (CU C1 ; VU V 1) and call 

(4) 

the result of applying it to ( C UC i ; V U V1). If ( C U C2 ; V U V2) is not a reformulation 
of (C U C1 ; VU V1). then we say that it is the result of a relevant application of rule 
(4) to (CU C1 ; VU V1)· 

Finally, given a CSP ef> and a deterministic rule R, we say that </; is closed under 
the applications of R if either R cannot be applied to </; or no application of it to </; is 
relevant. 



Some Remarks on Boolean Constraint Propagation 101 

Take for example the Boolean CSP</>:= (x /\ y = z; x = 1, y = 0, z = 0). This 
CSP is closed under the applications of the rule 

(xf\y=z; x=I,yEDy,zEDz) 
(y = z; x = I,y E Dy,z E Dz) 

Indeed, this rule can be applied to</>; the outcome is'!/; := (y = z; x = 1, y = 0, z = 0). 
After the removal of solved constraints from <P and 1/; we get in both cases the solved 
CSP (0 ; x = 1, y = 0, z = 0). 

Incontrast,theBooleanCSPr/; := (x/\y = z; x = 1,y E {0,1},z E {0,1}) 
is not closed under the applications of the above rule because (y = z ; x = 1, y E 

{O, I}, z E {O, 1}) is not a reformulation of</>. 
In what follows we identify the rules of the proof system BOOL with their counter

parts that act on Boolean CSP's. At this stage we introduced two interpretations of the 
rules of the proof system BOOL: one on the finite sets of Boolean constraints and literals 
and the other on Boolean CSP's. It is straightforward to check that these interpretations 
correspond in the following sense. Consider two finite sets of Boolean constraints and 
literals S1 and S2 that translate respectively to the Boolean CSP's P1 and P2 and a rule 
r of BOOL. Then in the first interpretation r transforms S 1 into S2 iff in the second 
interpretation it transforms P 1 into P2. 

It is worthwhile to note that the Characterization Theorem 4 can be proved indirectly 
by using the theoretical results established in Apt & Monfroy (1999) together with the 
output of the already mentioned in Section 2 program that automatically generates proof 
rules from the truth tables, or more generally, from a table representing a finite constraint. 

5 Relation to Hyper-arc Consistency 

We now return to CSP's. In Mohr & Masini (1988) a generalization of the notion of arc 
consistency of Mackworth ( 1977) from binary constraints to arbitrary constraints was 
introduced. Let us recall the definition. 

Definition 2. 

- A constraint C is called hyper-arc consistent if for every variable of it each value in 
its domain participates in a solution to C. 

- A CSP is called hyper-arc consistent if every constraint of it is. D 

The following result characterizes the proof system BOOL in terms of the notion of 
hyper-arc consistency for Boolean CSP's. 

Theorem 4 (Characterization). A non-failed Boolean CSP is closed under the appli
cations of the rules of the proof system BOOL iff it is hyper-arc consistent. 

Proof. Let <P be the CSP under consideration. Below C := x /\ y = z is some AND 
constraint belonging to</>. We view it as a constraint on the variables x, y, z. Let Dx, Dy 
and Dz be respectively the domains of x, y and z. 
(:::::})Consider the AND constraint C. We have to analyze six cases. 

-.. -



102 K.R.Apt 

Case 1. Suppose 1 E Dx. 
Assumethatneither(l, 1) E Dy x Dz nor (0,0) E Dy x Dz. Theneither Dy= {1} 

and Dz = {O} or Dy= {O} and Dz = {l}. 
If the former holds, then by theAND 3 rule we get Dx = {O} which is a contradiction. 

If the latter holds, then by the AND 5 rule we get D z = { 0} which is a contradiction. 
We conclude that for some d we have (1, d, d) E C. 

Case 2. Suppose 0 E Dx. 
Assume that 0 rf_ Dz. Then Dz = {1}, so by the AND 6 rule we get Dx = {1} 

which is a contradiction. Hence 0 E Dz. Let now d be some element of Dy. We then 
have (0, d, 0) E C. 

Case 3. Suppose 1 E Dy. 
This case is symmetric to Case 1. 

Case 4. Suppose 0 E Dy. 
This case is symmetric to Case 2. 

Case 5. Suppose 1 E Dz· 
Assume that (1, 1) rf_ Dx x Dy. Then either Dx = {O} or Dy= {O}. If the former 

holds, then by the AND 4 rule we conclude that Dz = {O}. If the latter holds, then 
by the AND 5 rule we conclude that Dz = {O}. For both possibilities we reached a 
contradiction. So both 1 E Dx and 1 E Dy and consequently (1, 1, 1) EC. 

Case 6. Suppose 0 E Dz· 
Assume that both Dx = {1} and Dy = {l}. By the AND 1 rule we conclude that 

Dz = {1} which is a contradiction. So either 0 E Dx or 0 E Dy and consequently for 
some d either (0, d, 0) E C or (d, 0, 0) E C. 

( <:= ) We need to consider each rule in turn. We analyse here only the AND rules. For 
other rules the reasoning is similar. 

AND I rule. 
Suppose that D x = { 1 } and DY = { 1}. If 0 E D z, then by the hyper-arc consistency 

for some di E Dx and d2 E Dy we have (di, d2, 0) E C, so (1, 1, 0) E C which is a 
contradiction. 

This shows that D z = { 1} which means that <P is closed under the applications of 
this rule. 

AND 2 rule. 
SupposethatDx = {l}andDz = {O}.lfl E Dy,thenbythehyper-arcconsistency 

for some di E Dx and d2 E Dz we have (d1 , 1, d2) E C, so (1, 1, 0) E C which is a 
contradiction. 

This shows that Dy = {O} which means that <P is closed under the applications of 
this rule. 

AND 3 rule. 
This case is symmetric to that of the AND 2 rule. 



Some Remarks on Boolean Constraint Propagation 103 

AND4 rule. 
Suppose that Dx = {O}. If 1 E Dz, then by the hyper-arc consistency for some 

di E Dx and d2 E Dy we have (di, d2, 1) E C, so (1, 1, 1) E Cwhich is a contradiction. 
This shows that Dz = {O} which means that <P is closed under the applications of 

this rule. 

AND 5 rule. 
This case is symmetric to that of the AND 4 rule. 

AND6 rule. 
Suppose that Dz = {l}. If 0 E Dx, then by the hyper-arc consistency for some 

di E Dy and d2 E Dz we have (0, d 1 , d2) EC, so 0 E Dz which is a contradiction. 
This shows that Dx = {l}. By a symmetric argument also Dy = {1} holds. This 

means that <P is closed under the applications of this rule. 

An analogous reasoning can be spelled out for the equality, OR and NOT constraints 
and is omitted. 

D 

Note that the restriction to non-failed CSP's is necessary: the failed CSP (x /\ y = 
z ; x E 0, y E {O, 1 }, z E {O, 1}) is not hyper-arc consistent but it is closed under the 
applications of the rules of BOOL. 

It is also easy to check that all the rules of the BOOL system are needed, that is, this 
result does not hold when any of these 20 rules is omitted. For example, if rule AND 4 
is left out, then the CSP (x /\ y = z ; x = 0, y E {O, 1 }, z E {O, 1}) is closed under the 
applications of all remaining rules but is not hyper-arc consistent. 

In view of the fact that all considered proof rules preserve equivalence, the above 
theorem shows that to reduce a Boolean CSP to an equivalent one that is either failed or 
hyper-arc consistent it suffices to close it under the applications of the rules of the BOOL 
system. This provides a straightforward algorithm for enforcing hyper-arc consistency 
for Boolean constraints. We shall return to this point in the final section. 

6 The Proof System of Codognet and Diaz 

Usually, slightly different proof rules are introduced when dealing with Boolean con
straints. For example, in Codognet & Diaz (1996) the set of rules given in Table 2 is 
considered. We call the resulting proof system BOOL'. 

To be precise, the rules EQU 1-4 are not present in Codognet& Diaz (1996). Instead, 
the constraints 0 = 0 and 1 = 1 are adopted as axioms. Note that rules AND 1 ',AND 
2 ', OR 2' and OR 3' introduce constraints in their conclusions. OR 2' rule corresponds 
to rule (2) of Section 1.1. 

The main difference between BOOL and BOOL' lies in the fact that the rules AND 
1-3 of BOOL are replaced by the rules AND 1 'and AND 2' of BOOL' and the rules OR 
2-4 of BOOL are replaced by the rules OR 2 'and OR 3 'of BOOL'. (The fact that the rule 
AND 6 of BOOL is split in BOOL' into two rules, AND 3' and AND 6' and analogously 
for the rules OR 6 of BOOL and OR 3'and OR 6'of BOOL'is of no importance.) 



104 K.R. Apt 

Table 2. Proof system BOOL' 

EQU 1 - 4 as in the system BOOL 

NOT 1 - 4 as in the system BOOL 

ANDJ' 
AND2' 
AND3' 
AND4 
AND5 
AND6' 

ORJ 
OR2' 
OR3' 
OR4' 
ORS 
OR6' 

x/\y=z,x=l-+y=z 
x /\ y = z, y = 1-+ x = z 
x /\ y = z, z = 1 --+ x = 1 
as in the system BOOL 
as in the system BOOL 
x /\ y = z, z = 1-+ y = 1 

as in the system BOOL 
xVy=z,x=O-+y=z 
xv y = z, y = 0--+ x = z 
xv y = z, z = 0-+ x = 0 
as in the system BOOL 
xv y = z, z = 0-+ y = 0 

TheAND rules of the BOOL'system can be found (in a somewhat different format) in 
Simonis (1989). A natural question arises whether the proof systems BOOL and BOOL' 
are equivalent. The precise answer is "sometimes". First, observe that the following 
result holds. 

Theorem 5. If a non-failed Boolean CSP is closed under the applications of the rules 
of the proof system BOOL'. then it is hyper-arc consistent. 

Proof. The proof relies on the following immediate observation. 

Claim Consider a Boolean CSP </> containing the AND constraint x /\ y = z on the 
variables x, y, z with respective domains Dx, Dy and Dz. If</> is closed under the 
applications of the AND J 'rule, then Dx = {1} implies Dy= Dz. If</> is closed under 
the applications of the AND 2' rule, then Dy= {1} implies Dx = Dz. D 

Suppose now that the CSP in question contains the AND constraint x /\ y = z on 
the variables x, y, z with respective domains Dx, Dy and Dz. We present the proof only 
for the cases where the argument differs from the one given in the proof of the hyper-arc 
consistency Theorem 4. 

Case]. Suppose 1 E Dx. 
Assumethatneither(l, 1) E Dy x Dz nor (0, 0) E Dy x Dz. Then either Dy= {1} 

and Dz = {O} or Dy= {O} and Dz = {l}. 
If the former holds, then by Claim 1 Dy = D z, which is a contradiction. If the latter 

holds, then by the AND 5 rule D z = { 0} which is also a contradiction. We conclude that 
for some d we have (1, d, d) E C. 

Case 6. Suppose 0 E Dz. 



Some Remarks on Boolean Constraint Propagation 105 

Assume that both Dx = {1} and Dy = {1}. By Claim 1 Dy = Dz, which is 
a contradiction. So either 0 E Dx or 0 E Dy and consequently for some d either 
(O,d,O) E Cor(d,0,0) EC. 

The reasoning for other Boolean constraints is analogous and omitted. D 

In contrast to the case of the BOOL system the converse result does not hold. Indeed, 
justtaketheCSPcf> := (x/\y = z; x = 1,y E {0,1},z E {0,1}). Note that cf> is 
hyper-arc consistent but it is not closed under the applications of the AND J 'rule. 

In general, there are four such "problematic" CSP's. In each of them the single AND 
or OR constraint can be reduced to an equality constraint. These four CSP's are used in 
the following definition. 

Definition 3. We call a Boolean CSP limited if none of the following four CSP'sforms 
a subpart of it: 

- (x /\ y = z ; x = 1, y E {O, 1 }, z E {O, 1} ), 
- (x /\ y = z ; x E {O, 1 }, y = 1, z E {0, 1} ), 
- (x Vy = z ; x = 0, y E {O, 1 }, z E {O, 1} ), 
- (xVy=z; xE{O,l},y=O,zE{O,l}). D 

The idea is that if we exclude these "problematic" CSP, then hopefully we prevent 
the situation that a CSP is hyper-arc consistent but is not closed under the applications of 
theAND I '(respectively AND 2', OR 2'or OR 3} rule. This is exactlywhatthe following 
theorem states. 

Theorem 6. If a non-failed Boolean CSP is limited and hyper-arc consistent, then it is 
closed under the applications of the rules of the proof system BOOL'. 

Proof. In view of the hyper-arc consistency Theorem 4 we only have to consider the rules 
of BOOL' that are absent in BOOL. We present here an argument for one representative 
rule. 

AND l'rule. 
Suppose that Dx = {l }. If 0 E Dy, then by the hyper-arc consistency for some 

d E Dz we have (1, 0, d) E C, which means that 0 E Dz. Conversely, if 0 E Dz, then 
by the hyper-arc consistency for some d E Dy we have ( 1, d, 0) E C, so 0 E Dy. By a 
similar argument we get that 1 E Dy iff 1 E Dz. This shows that Dy = Dz. 

By assumption cf> is limited, so either Dy # {O, 1} or Dz # {O, l}. Hence either 
Dy = Dz = {1} or Dy = Dz = {O}. In both cases the CSP under consideration is 
closed under the applications of the AND 1 'rule. D 

To summarize: for Boolean CSP's that are limited the respective closures under the 
rules of the proof systems BOOL and BOOL' coincide. 

7 Relation to the CHR Language 

The rules such as the ones given in the proof system BOOL can be straightforwardly 
represented as so-called simplification rules of the CHR language of Frilhwirth (1995). 



106 K.R. Apt 

The CHR language is part of the ECLipse system (see A Aggoun et al. (1995)). For a 
more recent and more complete overview of CHR see Friihwirth (1998). For example 
AND 6 rule, so 

x /\ y = z, z = 1-+ x = 1, y = 1, 

is written in the syntax of CHR as 

and(X, Y, Z) <=> Z = 1 I X = 1, Y = 1. 

In fact, such CHR rules for the AND constraint can be already found in Frilhwirth, 
Herold, Kiichenhoff, Provost, Lim, Monfroy & Wallace (1992). They amount to the cor
responding AND rules of the BOOL' system. Boolean constraints form a prime example 
for an effective use of CH Rs. A CHR program that corresponds to the proof system BOOL 
or BOOL'when combined with a labeling procedure constitutes a natural decision pro
cedure for Boolean CSP's. The Characterization Theorem 4 shows that the CHR rules 
corresponding to the BOOL system implement hyper-arc consistency. 

8 Conclusions 

In this paper we collected a number of simple but hopefully useful observations on 
Boolean constraint propagation rules. First of all, we clarified in what sense one set of 
such rules is complete. Then we showed that Boolean constraint propagation is in fact 
equivalent to unit propagation, a form of resolution for propositional logic. The reduction 
in each direction can be achieved in constant time. 

This shows that given a combinatorial problem that can be naturally formalized 
using Boolean constraints (for example, a problem concerning combinatorial circuits) 
it is useless to translate it to a clausal form and subsequently employ unit propagation: 
in such case Boolean constraint propagation achieves the same effect. Conversely, it is 
useless to translate a clausal form representation to a representation that uses Boolean 
constraints with the aim of employing Boolean constraint propagation: in this case unit 
propagation achieves the same effect. 

The subsequent characterization of the introduced set of Boolean constraint propa
gation rules by means of the hyper-arc consistency notion shows that this set of rules is in 
some sense optimal. The notion of hyper-arc consistency also allowed us to differentiate 
between two sets of such rules proposed in the literature. 

Acknowledgement. We thank Rina Dechter, Thom Frtihwirth and the referees for hel
pful comments. 

References 

A. Aggoun et al. (1995), ECL;PS' 3.5 User Manual, Munich, Germany. 
Apt, K. R. ( 1998), 'A proof theoretic view of constraint programming', Fundamenta /nformaticae 

33(3), 263-293. Available via http: I /xxx. lanl. gov/archive/ cs/. 



Some Remarks on Boolean Constraint Propagation 107 

Apt, K. R. & Monfroy, E. (1999), Automatic generation of constraint propagation algorithms for 
small finite domains, in J. J affar, ed., 'Fifth International Conference on Principles and Practice 
of Constraint Programming (CP'99)', Lecture Notes in Computer Science, Springer-Verlag, 
Alexandra, Virginia, USA. Available via http: I /xxx. lanl. gov I archive/cs/. 

Codognet, P. & Diaz, D. (1996), 'A simple and efficient Boolean constraint solver for constraint 
logic programming', Journal of Automated Reasoning 17( 1 ), 97-128. 

Davis, M. & Putnam, H. (1960), 'A computing procedure for quantification theory', Journal of 
theACM7(3), 201-215. 

Frtihwirth, T. ( 1995), Constraint Handling Rules, in A. Podelski, ed., 'Constraint Programming: 
Basics and Trends', LNCS 910, Springer-Verlag, pp. 90--107. (Chlitillon-sur-Seine Spring 
School, France, May 1994). 

Frtihwirth, T. (1998), 'Theory and practice of constraint handling rules', Journal of Logic Pro
gramming 37(1-3), 95-138. Special Issue on Constraint Logic Programming (P. Stuckey and 
K. Marriot, Eds.). 

Frtihwirth, T., Herold, A., Ktichenhoff, V., Provost, T. L., Lim, P., Monfroy, E. & Wallace, M. 
(1992), Constraint logic programming: An informal introduction, in G. Comyn, N. E. Fuchs 
& M. J. Ratcliffe, eds, 'Logic Programming in Action', LNCS 636, Springer-Verlag, pp. 3-35. 

Mackworth, A. (1977), 'Consistency in networks of relations', Artificial Intelligence 8(1),99-118. 
Marriott, K. & Stuckey, P. (1998), Programming with Constraints, The MIT Press, Cambridge, 

Massachusetts. 
McAllester, D. ( 1980), 'An outlook on truth maintenance'. MIT, Artificial Intelligence Laboratory, 

Al Memo No. 551. 
McAllester, D. (1990), Truth maintenance, in 'AAAI-90: Proceedings 8th National Conference 

on Artificial Intelligence', pp. 1109-1116. 
Mohr, R. & Masini, G. (1988), Good old discrete relaxation, in Y. Kodratoff, ed., 'Proceedings of 

the 8th European Conference on Artificial Intelligence (ECAI)', Pitman Publishers, pp. 651-
656. 

Simonis, H. (1989), Test generation using the Constraint Logic Programming language CHIP, in 
G. Levi & M. Martelli, eds, 'ICLP'89: Proceedings 6th International Conference on Logic 
Programming', MIT Press, Lisbon, Portugal, pp. 101-112. 

Zhang, H. & Stickel, M. (1996), An efficient algorithm for unit propagation, in 'Proc. of the 
Fourth International Symposium on Artificial Intelligence and Mathematics', Ft. Lauderdale, 
Florida. 


