
Programming in Alma-0, or Imperative and
Declarative Programming Reconciled

l\ rzysztof R. A pt
CW!

l'.U. !fo.c Y-1£179, lUYU UIJ A111sl1rd11111, '/'he .Vf!h~·rlll'nd.~

and
Dept. of .\fa.tlu:nwtir:s. Computer· Sr:ir:nr:e, Physics fY ,1 stronomy

Univcn;i,ly uf Ami;lcrdwn, The Ndlu.:rlanJi;

Andrea Schaerf
Univcrsita di Homa "/,a Sapienza''

Dipartimento di Informatic,a e Si.<1temi.1Jtica
tna Salaria 113, 00198 IWma, Italy

Abstract

In [Apl d al .. 1998] v;e i11Lru<lueeJ the i111pernLi1oe pwgrarnmiug
language Alma-0 that supports dccla.ra.tivc programming. In this pa.­
per we illustrate the h:vbrid prop;ramminp; style of Alma-0 b~· means
of variow; exarnpleti that coruplement tho::;e preseute<l iu [Apt et al.,
1998]. Tlw prPsPnt.P<l Alma-0 programs illustrat.<-' tlw vt>nmtility of tlw
lan~a.ge and show that "don't know" nondeterminism can be natu­
rally combiucd with assignment.

1 Introduction

Logic programming languages. notably Prolog. rely on two important fea.-·
tures: nondeterminism and unification. The form of nondeterminism uS<'.d
is usually called "don't know" nondetenuinism. According to it i;ume path
in the r:omput~tion trf'f> sh011M leao to a corrf>r:t 011tcome.

There ha.ve be.en some efforts to incorporate this form of nondetermin­
ism into the irnperati w proµ;rammiuµ; paradigm. Fur early rdere11ce~ ~ee

[Cohen, 1979]. More recent examples are the languages Icon of [Griswold
and Griswold, 198J]) and SETL of [Schwartz et al., 1!:>86].

In [Apt et al., 1998] we pursued this approach to pro,[!;ramming br propos­
ing another, simple, imperative language Alma-0 that supports this form
nondet<-mnini:->111.

Our rationale wa.<i that almost 25 years of experience with logic program­
ming led t.o an identification of the programming techniques that make it a

distinct programming paradigm. The imperative programming constructs
tha.t support nondeterminism should support these programming techniques
in a natural way.

And indeed, we found that a number of logic programming jewels could
be reproduced in Aima-0 even though unification in the language is limited
to bare minimum and the language offers no support for symbolic program-
mmg.

But we aLc;o found that other programs, such as the solution to the Eight
prubienL could be coded in Alma-0 in a more uatural way than the

iogic programming paradigm permits. Also, some programs, such as the
iuu tu the 'UL ::;1_•c1u to be 1·1·n· natural even

they use both non<leterrninism and assignment.
Su the · of ctppan new

programn1ing: techniques that need to be better understood and explored.
This is the aim of this paper that cau lw seen as a companion article of [A pt
r>t al , ! 991<}

• ! 1
' JIU\' .!CH• l.lt

vernatility of die language aud provide further evidence that the constructs
of t.lic ianguagc c11coun.1.gc a rn:i.tur<.d ;.;tylc uf prngramm.i.ug. ill po.rticular,
A!ma-0 proµ;rarns wit hont arf' rkdarat. iw' in tlw sPnse th!'i;
admit n. dual reading as a logic forrnub..

ft : .. Jiunld iiat iu ; t')'l'H·'S 1.A· uund~-'h~~rrniH~:-:t h:·1\,'f"'

been considered in r>rogrammi11g la11gna!o!:es. "don't kHow'' 11ondet.errninism
and ··don· r. (/\.re·· nonriP.t.nmiuisnL According 1.0 dw iri .. u.er one each path
~:i ti ~'.~. 1 ~d i~H1 t· · ~~ ild i ~ r1 c1J1T('•'1. ~ ··dulc-. Tl~i;--; ~;ri1i ~tf

nm11ld.1~rmiuisrn is pn~se11i. in the J!,ll11.nlt~(1 curnmarni Ia.11guage of [Dijkstra,
l iJ :: .. ,~ j. lt. lea.t!.b tu c.liliCrcut IBb·uc;j a.uJ differc:11t cuillS.iJcraLiulliJ ..

mcnts of A!ma-0. ln the rcmn.indcr of the paper '.VC provide selected examples
!\lrna-0 pn:gr:1n::·: th::.i np iellt in l'.f ul..

and. illustrate its USP iu ditfonmt contexts. i\fore specifically. in Section ;)
we pretse11L Lwo ver::;iurn; uf a d~ical ~raph Lraver::;al pnii.Jieru. ua.wely the
.t~ 1Ll~·"1H. ·r:·i S.1 i 1 '.~f fr·;1tn ~A· .. f-.lu·,
lugi1 p1ugli.tlHi11iug pa1atlig111, WLludy ueyalion a.~ fuilw 1:, ca.11 he aL'"\u p1uf­

t:-~_t.JluiLt:d iu f\frnJ O~ ~\cxL, ill Sc:cLio11 ;) \~4.'t: illu~Lratc hu\V e.x.cr..:utaUle
fk·atinn~ can hP written in f\!ma-0. Tn SPf·linn I"\ Wf' prnvidt' <1 nwn·

compl~x PxnmpiP of l\~ma-0 pror,rrlmming h~y <l~,-r~hing a solution to a f'!as-
s1cal . n1 7' \Ve: drav/ ~unH_'
and describe the current status of the Alma project.

., ... '1'~' la-no··u· a· o·e f.i.lp'l'"'-0' .I. ~ .I. .l...Lh 0 I \. I j 0

Alma-0 ii- a.11 ext.ension of a. suhser. of ivlodnla-2 dm.r. irn:hHies nirn~ new f~;:.i,-

2

COH!'ider 1.h1·

lus nmnt11~r. Fmd rim; immtwr.

solnt it in Alrna··O

MODULE tendigit;
VAR i, j, k, 1, count, sum: INTEGER;

a: ARRAY [O .. 9] OF INTEGER;
BEGIN

FORALL
sum := O;
FOR i := 0 TO 9 DO

SOME j : = 0 TO 10-sum DO
a[i)=j;
sum := sum + j

END;
END;
sum = 10;
FOR k := 0 TO 9 DO

count := O;

DO

FOR 1 := 0 TO 9 DO
IF a[l] = k THEN count

END;
a[k] = count

END

count + 1; a[k] >= count END;

FOR i := 0 TO 9 DO WRITE(a[i]) END
END

END tendigit.

To better understand this program first note that any 10-digit number
that is a solution to this problem has the property that the sum of its digits
is 10.

Now, the first FOR loop nondeterministically generates 10--digit numbers,
written as au array, with I.his property. This is done by means of a SOME
srnternent. The equality a [i] = j is used here as an assignment. while the
eqnality sum = 10 is nsi'd as a test.

The sec.on<l f'OH. loop rests whether a candidate array is a possible so-
lutifm. The tt·stilig r:an he ahatHloned if for some k t.lw nmnl

value a[k]. This explains thf~ use of the wst, a[k] >= count.
Th(' above OPscrilwd code is within the FORALL statement. so all solutions

w the prnbiem are generated and each oi them is primed. The program
yie!ds !w nniq!!e solution. fi2!000i000.

The still imexplained tearnres of A1ma-O will be discussed later.

3 Graph Trave.rbal

\Ve uuw illu;;t.rate bv nie1rn;; of two Pxamples how A!ma-0 crn lH' usr•d in a
natural way for graph-relar,ed prohiems.

4

3.1 Knight's Tour

We begin with the following well-known problem.

Problem 2 Fi11d a knif;h.t''n tc.n1r en t.l1c r:. x ·n cl10ss board. in \vhich each

field is visited is exactly once.

Here is a solution in Alma-0.

MODULE KnightTour;
CONST

N = 5;
TYPE

[l. . !IJ] = [l. . N] ;

Board= ARRAY [1 .. N], [1 .. N] OF [1 .. N*N];

PROCEDURE !li'exL (VAH row, col: INTEGER);

VAR i, j: INTEGER;
BEGIN

EITHER i = 2· j = 1
' ORELSE i 1; j "' 2

ORELSE i -1; j = 2
ORELSE l -2; j 1

ORELSE i -2; j = -1

DRELSE l -1; j ~ -2

ORELSE i 1·
' j -2

ORELSE i 2; j -i

END;
row ·= row + i. ,
col .- col + j;
(1 <= row) AND (row
(1 <= col) AND (col

END Next;

VAR i, j, k: INTEGER;
x: Board;

BEGIN
x[1,1] = 1;
i = 1; j = 1;

FOR k := 2 TO N*N DO
Next(i,j);
x[i,j] = k

END;
Print(x)

END KnightTour.

<=
<=

N);
N)

Here the Next procedure nondeterministically generates the coordinates

of the next field, given the current one. This is done now by means of an

ORELSE statement that explores all eight possibilities in turn.

5

Afh,r a l'a1l tu Wex:t th· (irnplidily) iw:n··1m•1d1•d val!H> of k is assig,111·:1
to this new field. Note that this assignment, a[i,j] = k. is performed by
meam; of an equality. This is crucial, as it. also prevents that a tield is visited
aµ;aiu. 1ndeefL if this is tht~ case theH a[i,j] has alreatly a ',,ralue ~-tnd tl1c·
equality fails. In this case the backtracking takes place and the next, if any,
candidate field is generated.

3.2 Longest Path

In the K niglLt 's tour- problem the n x n chess board mn be vic,ved as a graph
in wl1ich the stptan~:-1 an· !he uudes awJ Llie po:,;:-;ilile kuighl muvcs are tl1e
arcs. In this way t.he knight tour problem accounts to finding a simple path
of maximal 11-mgth. T!w lPngth of this path equa.is n?·, tla~ nurnlH~r of nod1~s.

arbitrary directed graph.

Problem 3 Given a directed graph G = (V, E) and two nodes v1, v2 E V
find the longest simple path that. starts in u1 au<l cuds in v2.

H..ecaU that this decision problem is NP-complete (s~ [Garey and John­
'")" 107fl 1i1···JJ.1"'"' ~TD'">fl ... ,,n, ')1'31) ,)_ il.., J v ~ ' \ ~.J,1.;._,l ,,; ~ l'......,h"·' "-' • J •

We as:mme that the graph is represented by its adjacency matrix. We
abo e1upluy au array for umrking the vi:-;iLcJ nudes and for sloriug Lhe cu.r­
rnnt longest path. In what follows we ns(~ the following typr. dedara.tions.

Graph = ARRAY [L . N], [1.. NJ OF BOOLEAN;
PathMark =ARRAY [l .. N] OF INTEGER;

The basic building block that we use for traversing the graph is the fol­
lowing; f"undiu11 Successor that upon backtracking g<·1wrates aii HU<'.C(~ssors
of a giwm node. The function fails if the node lw,s no Hnr:r:eHsor.

PROCEDURE Successor(G: Graph; X: Node): Node;
VAR i: Node;
BEGIN

SOME i := 1 TO N DO
G[X, i]

END;
RETURN i

END Successor;

The following procedure LongestPath consists of some initializations
followed by a FORALL loop that explores all possible paths. Inside the FORALL
1oop, each path is constructed by an inner loop that searches exhaustively
for unvisited successors until it gets to the requested final node.

In contrast to Problem 2, we do not know the length of the longest path
in advance. Therefore we use here a WHILE statement rather than a FOR

statement for constructing the path. In addition, for ea.eh generated path
we need to check its length against the currently longest one.

A node I is viewed as unvisited as long as Path[X] = O. When I is
visited, Path [I] gets the value k which represents the position of I in the
path.

PROCEDURE LongestPath(G: Graph; InitNode, FinalNode: Node): PathMark;
VAR k, max: INTEGER;

i: Node;
Path, LongPath: PathMark;

BEGIN
FOR i := 1 TO N DO Path[i) := 0 END;
i := InitNode;
k := O;
ma.x := O;
FORALL

WHILE (Path[i] = 0) AND (i <> FinalNode) DO
k := k+1;
Path[i] := k;
i := Successor(G,i) (* generate a successor

nondeterministically *)
END

DO
IF (i = FinalNode) AND (k > max)
THEN ma.x := k; LongPath := Path END

END;
RETURN LongPath

END LongestPath;

The longest path is delivered by means of the return value of the proce­
dure. If no path between InitNod.e and FinalNode exists, then the varia.bk
LongPath remains uninitialized, and thus the value returned is also an unini­
tia.fu.ed array, which ca.u be test.ed wiLhin !.he calli.ug proce<llli'e Ly Utii11g the
hnilt-in pro("0rlnr0 KNOWN.

4 Use of Negation

One of the important notious iu logic programmiug is negation by failure.
lt is, iu a nutshell, a met.a-rule that allows us to conclude a uegation of
a statement from the fact that it cannot be proved (using the resolution
method used in logic programming). Negation by failure is a very useful
cow·f'1.1l that allows us to writP so1Hf' rc·rnarkably co11dsf~ Pr.:1log progra1J1R.
Also, it supports non-monotonic reasoning. Actually, the negation by failure
mcc.l.taillsm µrnviJcs a comµutatioual intcrµrctatiu11 of the latter, a foatmc
otlH'r main approad1f's to non-monotonic' rf'asoning lark.

NegaLiou by failure is supported in Alma-0, as well. Iu fa.et, as i11 logic
programming, it is the mechanism used to evaluate negated statements.

7

Consequently, we can use it in A!rna-0 in the sa.mc way as in logic program­
ming and Prolog.

In [Apt et al., 1998] we alrP,.ady presented a number of programs that
used negation. Here we show an Alrna-0 solution to the proverbial Tweety
problem, one of the classical benchmarks for non-monotonic reasoning. Let
us recall it.

The problem is to reason in the presence of default assumptions. In
the natural language they are often expressed by means of the qualification
"usually". In what follows the "usual" situations are identified with those
which are not "abnormal".

We stipulate the following assumptions.

• The birds which are not abnormal fly (i.e., birds usually fly).

• The penguins are abnormal.

• Penguins and eagles are birds.

• Tweety is a penguin and Toto is an eagle.

The problem is to deduce which of these two birds flies. Here is a solution
in Alma-0, where the code for Print is omitted.

MODULE penguin;
TYPE Animal= (Tweety. Toto);

PROCEDURE penguin(MIX x: Animal);
BEGIN

x = Tweety
END penguin;

PROCEDURE eagle(MIX x: Animal);
BEGIN

x = Toto
END eagle;

PROCEDURE ab(MIX x: Animal);
BEGIN

penguin(x)
END ab;

PROCEDURE bird(MIX x: Animal);
BEGIN

EITHER penguin(x) ORELSE eagle(x) END
END bird;

PROCEDURE fly(MIX x: Animal);
BEGIN

bird(x);

8

NOT ab(x)
END fly;

VAR x: Animal;
BEGIN

FORALL fly(x)
DO Print(x)
END

END penguin.

The use of the MIX parameter mechanism allows us to use each proce­
dure both for testing and for computing, as in Prolog. In particular, the
call fly(:x) yields to a nondeterministic computing of the value of x using
bird(x) and subsequent testing of it using NOT ab(x).

It is instructive to compare this program with the more compact Prolog
program (see, e.g., [Apt, 1997, page 3031):

pengu.in(tweety).
eagle(toto).
ab(X) :- penguin(X).
bird(!) :- penguin(!).
bird(!) :- eagle(X).
fly(X) :- not ab(X), bird(X).

While logic.ally both programs amount to equivalent formulas we see that
it is difficult to compete with Prolog's conciseness.

Other natural uses of negation in Alma-0 can be found in some other
programs in this article.

5 Executable Specifications

The next example shows that in some circumstances Alma-0 yields program..c;;
that are more intuitive than those written in Prolog.

In general, specifications can and do serve many different purposes. The
issue whether specifications should be executable or not has been for a long
time a suuject of a heated <liscussiou, see, e.g. [Fuchs, 1992]. We <lo not wish
to enter this discm;siou here but we show how Alma-0 support8 cxccuta.Llc
specificatioll8 in a very natural way.

As an example, consider the problem of finding the lexicographically
ucxt pcrmutatio11, <listu8sc<l iu [Dijk8tra, l!l76).

To specify this problem recall t.hat by definit.iou a sequence 0·1J,f,1, ... , o·utN

h; a permutation of itq, ... , i:nN if for some function 'IT from [l..N] untu itself
~ ha.Vf~

cnd1, ... , mltN = in11'(1)' ... , in11'(NJ·

This definition directly trawslatcs into the following Alma-0 program:

9

TYPE Sequence= ARRAY [1 .. N] OF INTEGER;

PROCEDURE Permutation(VAR in, out: Sequence);
VAR pi: Sequence;

i, j: INTEGER;
BEGIN

FOR i := 1 TO N DO
SOME j := 1 TO N DO

pi[j) = i

E...'ID
END; (*pi is a function from 1 .. N onto itself and .. . *)
FOR i := 1 TO N DO

out(i] = in[pi[i])
END (* out is obtained by applying pi to the indices of in *)

END Permutation;

The procedure Permutation provides, upon backtracking, all permuta­
tions of the given input sequence.

Next, we need to define the lexicographic ordering. Let us recall the
definition: the sequence a 1 , ••• , a N precedes lexicographically the sequence
f,1,. .. : h_\' if some 'i in t.l1P range [L N} exiRts such that. frir all :i in the range

[Li - l] we have aj = hj, anrl ai <hi.

Iu A!ma-0 we write these specifications as follows:

PROCEDURE Lex(a,b: Sequence);
VAR i, j: lNTEGER;
BEGIN

SOME i := 1 TO N DO
FOR j := 1 TO i-1 DO

a[j] = b[j]

END;
a[i] < b[i]

END
END Lex;

Now b is the lexkographically uext permutation of a if

e b is a permutation of a,

o a precedes b lexicographically,

• no permutation exists that is lexicog;raphically between a and b.

This leads us to the following procedure Next that uses an auxiliary
procedure Between, \Vhich checks \Vhether a permutation exists between a
and b:

PROCEDURE Between(a,b: Sequence);
VAR c: Sequence;

10

BEGIN
Permutation(a,c);
Lex(a,c);
Lex(c,b)

END Between;

PROCEDURE Next(VAR a, b: Sequence);
BEGIN

Permutation(a,b);
Lex(a,b);
NOT Between(a,b)

END Next;

This concludes the presentation of the program. Note that it is fully
declarative and it does not use any assignment. It is obviously hopelessly
inefficient, but still it could be used on the example given in Dijkstra's
book, to compute that 1 4 6 2 9 7 3 5 8 is the lexicographically next
permutation of 1 4 6 2 9 5 8 7 3.

It is interesting to see that the above program is invertible in the sense
that it can be also irncd to specify and compute the lexicographically previous
permutation. ln fact, we c:an use for this purpose the same procedure Next
ir. just suffices to pass now t!w given permutation as the second paramet('f
of the procedun: Next. For this purpose both parameters arc passed by
variable in rhe prun·dures Next:: and Permut::ation.

In this way we can compute for instance that 1 4 6 2 9 5 8 3 7 is tlw
lexicographicaliv previous permutation of 1 4 6 2 9 5 8 'l 3.

6 A Scheduling Application

\'Ve no\-~l sl1tn;\J ho'\v Aima-0 ca11 be t~Inployc(l to solve scl1e(iuli11g JJroblcuis.
In p;u-ticular. we introduce a. specific scheduling problem known a .. <> the un;.­

verszty W'ILT'se tnnctahfrny problem and discuss Its solution in Aima-0.

6.1 Problem Definition

Th' course ; irnetabli11g problem cunsists itt the vveekly sdH~duli11g fur all the
lectures of a set of univen;itv courses in a given set. of classrooms. avoiding
tlH' overlaps of le<-t1m-'s havin~; cornmnn stndents, 'vVe consider the hasir­
prohlPm (which is still NP-romplPtP). Many vari~nts of thii:; proh]Pm haw
bt''-'H prupu::;cd i11 l.lw li I crai urc. Tlwy iuvul vc wurc 1·urn 11Iex 1:u11::;t,raiuts and
usually consider au objective function to ue rniuimized (see [Schaerf, 1995]).

Problem 4 There an! q courses K 1 •••• , Kq, and each conrsn c:onsists of
k.; required lectures, and p periods l..p. For all i E l..q. all le<.:tures l E LA:;
nmst be :u:sig11cd to a period 7,: in such a ·way that thr: following constraints
aJ·f: satisfied:

11

Conflicts: There are c curricula Si, ... , Sc, which are groups of courses that
have common students. Lectures of courses in f:it must be ali scheduled
at dilferent times, for each t E l..c.

Availabilities: There is an availability binary matrix A of size q x p. If
aij = 1 then lectures of course i cannot be scheduled at period j.

Rooms: There are r rooms available. At moi:;t r lecturffi can he RChe<lnle<l
at pt>riod k, for ea<'h k E 1..p.

6.2 A solution in Alma-0

We now provide a solution of this problem in Alma-0. We start with the
constant and type definitions necessary for the program.

CONST
Courses = 10;
Periods = 20;
Rooms = 3;

TYPE

(* p *)

(* q *)
(* r *)

AvailabilityMatrix =ARRAY [1 .• Courses],(1 .. Periods] OF BOOLEAN;
ConflictMatrix = AR.RAY (1 •• Courses], (1 .. Courses] OF BOOLEAN;
RequirementVector =ARRAY (l .. Courses] OF INTEGER;
TimetableMatrix =ARRAY [1 .. Courses],[1 .. Periods] OF BOOLEAN;

Conflicts are represented by a q x q matrix of the type ConflictMatrix
such that the clement (i,j) of the matrix is true if courses Ki and Kj belong
simultaneously to at least one curriculum.

The solution is returned by means of a q x p boolean matrix of the type
TimetableMatrix. Each clement (i. j) of the matrix is true if a. lecture for
the course Ki is giveu at period j au<l fal;;e otherwit>e.

The µrut:e<lui:e Timetabling µruv i<le::; Lhe wluLiuu of Lhi::; µruulern i11
Alma-0. It follows faithfully the specification of the problem and it performs
an exhaustive backtracking seardi for a feasible solution.

For each course K; the procedure looks for a number of periods equal
to the number of lectures ki of the course. The array BusyRooms counts
the number of rooms already used for each period, and is used to check the
room occupation constraints.

In order to avoid exploring symmetric solutions for the lectures of a
cuurse, each lecl,we ii:; always tK1w<luletl later tl1a11 Uie prc~viuusly sd1etluh~<l
lecture::; of the same course. This lli dune by lliiing the variable PeriodOf Pre­
viousLecture which k~pA track of t.hP. pP.rio<i oft h'' most rP.cP.ntly sd1P.<i11]P.<l
)Pdllff'.

PROCEDURE Timetabling(Available: AvailabilityMatrix;
Conflict: ConflictMatrix;
Requirements: RequirementVector;

12

VAR Timetable: TimetableMatrix);
VAR

BusyRooms : ARRAY [1. .Periods] OF INTEGER;
C, Cl, L, P : INTEGER;
PeriodOfPreviousLecture : INTEGER;

BEGIN
FOR P := 1 TO Periods DO

BusyRooms[P) := O;
END;
FOR C := 1 TO Courses DO

PeriodOfPreviousLecture := O;
FOR L := 1 TO Requirements[C] DO

SOME P := Period0fPreviousLecture+1 TO Periods DO
Available[C,P);
BusyRooms[P] < Rooms;
FOR Cl := 1 TO C-1 DO

NOT (Conflict[Cl,C] AND Timetable[C1,P])
END;
Timetable[C,P] := TRUE;
BusyRooms[P] := BusyRooms[P] + 1;
PeriodOfPreviousLecture .- P;

END
END

END
END Timetabling;

The proposed procedure can solve only relatively small instances of the
problem. For larger ones more complex algorithms and heuristic procedures
are needed (see [Schaerf, 1995]}.

6.3 Additional Functionalities

If no solution to the given problem instance exists, it is in general necessary
to relax some of the constraints. The following procedure checks whether a
solution exisrs when one single conflict constraint is relaxed. If the solution
ot the rela.-xed instance of the problem is found, its solution is returned along
with the constrniut which has been relaxed. Tb.is constraint i& returned by
means of two courses cl and c2 which are no more considered in conflict.

PROCEDURE R.elaxed.Timetabling(Available: AvailabilityMatrix.;
VAR Conflict: ConflictMatrix;
Requirements: RequirementVector;
VAR Timetable: TimetableMatrix;
MIX. cl, c2: INTEGER);

VAR
i, J: INTEGEH.;

BEGIN
EITHER

1:3

Timetabling(Available, Conflict, Requirements, Timetable)
ORELSE

SOME i := 1 TO Courses-1 DO
SOME j : = i + 1 TO Courses DO

Conflict[i,j];
cl = i; c2 = j;
Conflict[i,j] :=FALSE;
Timetabling(Available, Conflict, Requirements, Timetable)

END
END

END
END RelaxedTimetabling;

Finally, the following procedure produces all relaxed and non-relaxed
solutions of the problem. The simple code for the procedures Initialize
and PrintSolution is omitted.

PROCEDURE CreateTimetable;
VAR

Available: AvailabilityKatrix;
Conflict: ConflictMatrix;
Requirements: RequirementVector;
Timetable: TimetableMatrix;
NbrSolutions: INTEGER;
cl, c2: INTEGER;

BEGIN
Initialize(Available,Conflict,Requirements,Timetable);
NbrSolutions := O;
FORALL

RelaxedTimetabling(Available,Conflict,Requirements,Timetable,c1,c2)
DO

NbrSolutions := NbrSolutions + 1;
WRITELN('Solution number ',NbrSolutions);
PrintSolution(Available,Timetable);
IF KNOWN(c1)
THEN WRITELN ('Conflict between course ' cl, ' and ' , c2, ' relaxed')
ELSE WRITELN('No constraint relaxed for this solution');
END

END;
IF NbrSolutions > 0
THEN WRITELN('Number of solutions: ',NbrSolutions)
ELSE WRITELN('No solution found.');
END;
WRITELN

END CreateTimetable;

Note the use of the built-in procedure KNOWN that checks whether the
variable cl is initialized or not. This test allows us to check whether a
constraint has been relaxed.

14

Finally, note that c 1 and c2 are passed by MIX. This way, not only a
variable but also a constant can be supplied as an actual parameter. For
example, the following call searches for a solution in which the possible
relaxation involves course K 1:

RelaxedTimetabling(Available,Conflict,Requirements,Timetable,1,c);

Here c is an uninitialized variable.

7 Conclusions

In this paper we presented a number of programs written in Alma-0. They
were chosen with the purpose of illustrating the versatility of the resulting
programming style. The solution to some other classical problems, such
as a-{3 search, STRIPS planning, knapsack, and Eight Queens, have been
already provided in [Apt et al., 1998].

These programs show that imperative and logic programming can be
combined in a natural and effective way. The resulting programs are in
most cases shorter and more readable than their counterparts written in
imperative or logic programming style.

Let us review now the work carried out on Alma-0. The implementa­
tion of the language Alma-0 is based on an abstract machine, called AAA,
that combines the features of a RlSC architecture and the WAM abstract
machine. In the current version the AAA instructions are translated into C
code. The implementation is described in [Apt et al., 1998] and explained
in full detail in [Partington, 1997]. The Alma-0 compiler is available via the
Web at http: I /WilYI. cwi. nl/ alma.

An executable operational specification of a large fragment of Alma-0 is
provided using the ASF+SDF Meta-Environment of [Klint, 1993]. This is
described in [Apt et al., 1998] and comprehensively explained in [Brunekreef,
1998].

An exten.."iion of Al ma-0 that integrates constraints into the language is
the subject of an ongoing research. Various issues related to such integration
are highlighted in [Apt and Schaerf, 1998]. In particular, the role of logi­
cal and customary variables, the interaction between the program and the
constraint store, the local and global unknowns, and the parameter passing
mechanisms are considered there.

Finally, in [Apt and Bezem, 1998] a computational interpretation of first­
order logic based on a constructive interpretation of satisfiability w.r.t. a
fixed but arbitrary interpretation is studied. This work provides logical
underpinnings for a fragment of Alma-0 that does not include assignment
and allows us to reason about Alma-0 programs written in this fragment.

15

References

[Apt and Bezem, 1998] K. R. Apt and M.A. Bezem. Formulas as programs,
1998. Submitted. Available via http://www.cwi.nl;-apt.

[Apt and Schaerf, 1998] K. R. Apt and A. Schaerf. Integrating constraints
into an imperative programming language, 1998. Submitted. Available
via http: I /www. cwi .nlrapt.

[Apt et al., 1998] K. R. Apt, J. Brunekreef, V. Partington, and A. Schaerf.
Alma-0: An imperative language that supports declarative programming.
ACM Toplas, 1998. In press. Available via http://www.cwi.nl;-apt.

[Apt, 1997] K. R. Apt. From Logic Programming to Prolog. Prentice-Hall,
London, U.K., 1997.

[Brunekreef, 1998] J. Brunekreef. Annotated algebraic specification of the
syntax and semantics of the programming language Alma-0. Technical
Report P9803, Programming Research Group, University of Amsterdam,
The Netherlands, 1998. Available online at
http://www.wins.uva.nl/research/prog/reports/reports.html.

[Cohen, 1979] J. Cohen. Non-Deterministic algorithms. ACM Computing
Surveys, 11(2):79·-94, 1979.

[Dijkstra, 1975] E. W. Dijkstra. Guarded commands, nondeterminacy and
formal derivation of programs. Communications of the ACM, 18:453-457,
1975.

[Dijkstra, 1976] E. W. Dijkstra. A Discipline of Programming. Prentice­
Hall, Englewood Cliffs, N.J., 1976.

[Fuchs, 1992] N. Fuchs. Specifications are (preferably) executable. IEE Soft­
ware Engineering Journal, 7(5):323-334, 1992.

[Gardner, 1979] M. Gardner.
mondsworth, 1979.

Mathematical Circus. Penguin, Har-

[Garey and Johnson, 1979} M. R. Garey and D.S. Johnson. Computers and
Intractability-A guide to NP-completeness. W.H. Freeman and Com­
pany, San Francisco, 1979.

[Griswold and Griswold, 1983] R. E. Griswold and M. T. Griswold. The
Icon Programming Language. Prentice-Hall, Englewood Cliffs, New Jer­
sey, USA, 1983.

[Klint, 1993] P. Klint. A meta~nvironment for generating programming
environments. ACM Transactions on Software Engineering and Method­
ology, 2(2):176-201, 1993.

16

[Partington, 1997) V. Partington. Implementation of an imperative pro­
gramming language with backtracking. Technical Report P9712, Depart­
ment of Mathematics, Computer Science, Physics & Astronomy, U niver­
sity of Amsterdam, The Netherlands, 1997. Available online at
http://www.wins.uva.nl/research/prog/reports/reports.html.

[Schaerf, 1995) A. Schaerf. A survey of automated timetabling. Technical
Report CS-R9567, CWI, Amsterdam, The Netherlands, 1995. To appear
in Artificial Intelligence Review.

[Schwartz et al., 1986] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and
E. Schonberg. Programming with Sets - An Introduction to SETL.
Springer-Verlag, New York, 1986.

17

