
Verification of Logic Programs with Delay
Declarations

Krzysztof R. Apt1•2 a.nd Ingrid Luitjes2

1 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
2 Department of Mathematics and Computer Science
University of Amsterdam, Plantage Muidergracht 24

1018 TV Amsterdam, The Netherlands

.Abstract. Logic programs augmented with delay declarations form a
higly expressive programming language in which dynamic networks of
processes that communicate asynchronously by means of multiparty chan­
nels can be easily created. In this paper we study correctness these pro­
grams. In particular, we propose proof methods allowing us to deal with
occur check freedom, absence of deadlock, absence of errors in presence
of arithmetic relations, and termination. These methods turn out to be
simple modifications of the corresponding methods dealing with Prolog
programs. This allows us to derive correct delay declarations by analys­
ing Prolog programs. Finally, we point out difficulties concerning proofs
of termination.

Note. The research of the first author was partly supported by the ES­
PRJT Basic Research Action 6810 (Compulog 2).

1 Introduction

In Kowalski [Kow79] the slogan "Algorithm = Logic + Control" was coined. This
paper suggested logic programming as a formalism for a systematic development
of algorithms. The idea was to endow a. logic program with a control mechanism
to obtain an executable program.. Prolog is a realization of this idea where the
control consists ofthe leftmost selection rule combined with the depth-first search
in the resulting search tree.

But this idea of a control is in many cases overly restrictive. As an extreme
example consider a theorem prover written in Prolog. A proof rule

Ai, ... ,.An
B

naturally translates into a Prolog clause

prove(B) +-prove(!1) 1 ••• ,prove(!n)

according to which the premises Ai, ... , An have to be proved in the abovemen­
tioned order. In contrast, in the underlying logic the order in which the premises
are to be proved is usually arbitrary.

In general, however, some order between the actions of a logic program is
necessary. As an example consider the QUICKSORT program:

67

qs(ls, Ya) +- Ya is an ordered permutation of the list Is.
qs(0, 0).
qs([I I Is], Ys) +-

part(I, Is, Littles, Biga),
qa(Littlea, La),
qs(Biga, Ba),
app(La, [I I Ba], Ya).

part(I, Is, La, Ba) +- La is a list of elements of Is which are < I,
Bs is a list of elements of Is which are ~ I.

part(_, 0. 0. 0).
part(I, [Y I Is] , [Y I La], Ba) +- I > Y, part(I, Is, La, Ba).
part(I, [Y I Is], La, [Y I Ba]) +- I~ Y, part.(I, la, La, Ba).

augmented by the following APPEllD program:

app(Ia, Ys, Za) +- Zais the result of concatenating the lists Is and Ys.
app(O, Ya, Ya).
app([I I Is], Ya, [I I Zs]) +- app(Is, Ya, Za).

It is easy to see that starting With a query qa(a, Ya), where sis a list of
integers, QUICKSORT diverges when the rightmost atom is repeatedly selected.
Also, a run time error results if the arithmetic atoms I > Y and I ~ Y are
selected "too early". To prevent this type of undesired behaviour some coordi­
nation between the actions of the program is necessary.

For this purpose in Naish [Nai82] delay declarations were proposed. The idea
is to replace the Prolog selection rule by a more :flexible selection mechanism
according to which a.toms are delayed until they become "sufficiently" instan­
tiated. This is achieved by adding to the program so-called delay declarations.
Then at each stage of the execution of a logic program only atoms satisfying the
delay declarations can be selected. In presence of trivial delay declarations any
atom can be selected and a nondeterministic logic program without any control
declaration is then obtained.

More recently, the delay declarations were studied in Liittringhaus-Kappel
[LK93] and also incorporated in various versions of Prolog, notably Sicstus Pro­
log, and in GOdel, the programming language proposed by Hill and Lloyd [HL94].
Actually, in all these references a more restricted selection rule is employed, ac­
cording to which the leftmost non-delayed a.tom is selected. This selection rule
allows us to model within the logic programming the coroutine mechanism and
lazy evaluation. In contrast, the selection rules here studied. and originally con­
sidered in Naish [N ai88], allow us to model parallel executions.

Returning to the above QUICKSORT program we note tha.t the coordination
between the program actions has to do with the need to produce the appropriate
"inputs" before executing the llcalls" which use them. The requirement to com­
pute these inputs can be expressed by means of the following delay declarations,
where the last two declarations are meant to ensure that the arithmetic relations
are called with the right inputs:

68

DELAY qs(I, _) UJTTIL nonvar(I).
DELAY part(_, Y, -• _) UJTTIL nonvar(Y).
DELAY app(I, _, _) UNTIL nonvar(I).
DELAY l > Y UNTIL ground(!) A ground(Y).
DELAY l $ Y UNTIL ground(!) A ground(!).

The behaviour of the resulting program is highly non-trivial, since during its
executions dynamic networks of asynchronously communicating processes are
created.

Delay declarations form a powerful control mechanism. In general, we can
identify three natural uses of them:

- to enforce termination,
- to prevent absence of errors in presence of arithmetic operations,
- to impose a synchronization between various actions of the program; this

makes it possible to model parallel executions.

In this paper we illustrate each of these uses of delay declarations and prcr
vide formal means of justifying them. More specifically, we study here various
correctness aspects of logic programs in presence of delay declarations, visibly
occur check freedom, absence of deadlock, absence of errors in presence of arith­
metic operations, and ·termination. In each case we propose a simple method
which can be readily applied to several well-known programs.

These results imply that for the query q,s(s, Ys), where sis a list of integers,
QUICKSORT augmented by the above delay declarations is occur-check free and
deadlock free. Moreover, no errors due to the presence of arithmetic operations
arise and under some additional assumptions all derivations terminate.

Interestingly, the suggested proof methods turn out to be simple modifica­
tions of the corresponding methods dealing with Prolog programs. So the tran­
sition from Prolog to programs with delay declarations is quite natural, even
though the latter ones permit more execution sequences and more complex "in­
termediate situations". This observation is further substantiated by showing how
"correct" delay declarations can be derived by analyzing Prolog programs so that
the given Prolog program can be executed in a more :flexible way.

2 Preliminaries

In what follows we use the standard notation of Lloyd [Llo87] and Apt [Apt90],
though we work here with queriea, that is sequences of atoms, instead of goals,
that is constructs of the form - Q, where Q is a query. In particular, given a
syntactic construct E (so for example, a term, an atom or a set of term equations)
we denote by Var(E) the set of the variables appearing in E. Recall that an mgu
0 of a set of term equations Eis called relevant if Var(9) ~ Var(E).

The following lemma. (see e.g. Apt and Pellegrini [AP94]) will be needed in
Section 6.

69

Lemma 1 (Iteration). Let El, E2 be two •etl of term equation... Suppoae that
61 ia a. relevant mgu of El and 82 u a relevant mgu of E281. Then 8192 u a
relevant mgu of El U E2. Moreover, if Ei U E2 u unifiable then a relevant mgu
61 of El ezi&t11 and for any mgu 81 of El a relevant mgu 82 of E281 eziata, aa
well. o

We now define the syntax of delay declarations. We loosely follow here Hill
and Lloyd [HL94]. First, we define inductively a set of condition&:

- true is a condition,
- given a variable I, ground(I) and nonvar(I) are conditions,
- if c1 and c2 are conditions, then c1 /\ c2 and c1 V c2 are conditions.

Next, we define inductively when an instance of a condition hold.:

- true holds,
- groun.d(s) holds ifs is a ground term,
- nonva:r(s) holds ifs is a non-variable term,
- c1 A c2 holds if c1 and c2 hold,
- c1 V c2 holds if c1 or c2 holds.

Call an atom a p-atom if its relation symbol is p. A delay declaration as­
sociated for a relation symbol p has the form DEL.lY J. UJrTIL COID, where .l
is a p-atom and COID is a condition. From now on we consider logic programs
augmented by the delay declarations, one for each of its relation symbols. In the
presentation below we drop the delay declarations of the form DELJ.Y J. UITIL
true.

The following simple definition explains the use of delay declarations.

Deflnition2.

- We say that an atom B aati1fie1 a delay declaration DEL.lY J. UITIL COID if
for some substitution 8 both B = J.8 and COID8 hold.
In particular, ifI1 1 ••• , In are diiFerent variables, then p(s11 ••• , sn) satisfies a
delay declaration DELJ.Y p(I1 1 ••• , In) UITIL COIDifCOID{I1/s1 1 ••• , In/sn}
holds.

- An SLD-derivation re1pecta the delay declaration• if all atoms selected in it
satisfy their delay declarations. D

Intuitively, in presence of delay declarations only atoms which satisfy their
delay declarations can be selected. So in presence of delay declarations we al­
low only those selection rules which generate SLD-derivations respecting the
delay declarations. Note that in presence of delay declarations a query can be
generated in which no atom can be selected because none of them satisfies its
delay declaration. We view such a fragment of an SLD-derivation as a finite
SLD-derivation.

In what follows we shall study correctness of logic programs augmented with
the delay declarations. To show the usefulness of the obtained results and to

70

see their limitations, we shall analyse in this paper three example programs:
QUICKSORT from the introduction, and the following two.

The program II ...ORDER constructs the list of all nodes of a binary tree by
means of an in-order traversal:

iIL.order(Tree, List) +-- List is a list obtained by the in-order
traversal of the tree Tree.

in..order(void, 0).
iIL.order(tree(I, Left, Right), Is) +­

iIL.order(Left, Ls),
iIL.order(Right, Ra),
app(Ls, [I I Ra], Is).

augmented by the !PPEID program.

together with the following delay declarations:

DELAY in_order(I, _) UITIL nonvar(I).
DELAY app(I, -• _) UITIL nonvar(I).

Finally, the program SEQUEICE (see Coelho and Cotta [CC88, page 193])
solves the following problem: arrange three l's,·three 2's, ... , three 9's in se­
quence so that for all i E [1, 9] there are exactly i numbers between successive
occurrences of i.

aublist(Ia, Ya) +- app(_, Zs, Ys), app(Ia, -• Zs).

sequence.([_,_,-•_]) •

question(Ss) +-

aequence(Sa),
subliat([1 1 _,1,_,1]. Sa),
sublist([2,_,_,2,_,_,2], Sa).
subliat([3,_,_,_,3,_,_,_,3], Sa),
sublist([4,_,_,_,_,4,_,_,_,_,4], Sa),

sublist([5 •-•-•-•-•-• S •-•-•-•-•-•S] , Sa),
aubliat([6,_,_,_,_,_,_,6 •-•-•-•-•-•-•6], Sa)•
aublist([7 •-•-•-•-•-•-•-• 7 •-•-•-•-•-•-•-•7], Sa),
sublist([8, _,_,_,_, _, _,_,_,8 •-•-•-•-•-•-•-• _,8] , Sa),

aubliat([9 •-•-•-•-•-• -•-•-•-• 9 •-•-• -•-•-•-•-•-• _,9] , Sa).

augmented by the .lPPEID program.

together with the following the delay declaration:

DELAY app(_, -• Z) UITIL nonvar(Z).

3 Occur-check Freedom

In most Prolog implementations for the efficiency reasons so-called occur-check
is omitted from the unification algorithm. It is well-known that this omission

71

can lead to incorrect results. The resulting difficulties are usually called the
occur-checlc problem. They have motivated a study of conditions under which
the occur-check can be safely omitted. In this section we study this problem
for logic programs augmented with delay declarations. To this end we recall
the relevant definitions. We follow here Apt and Pellegrini [AP94] though we
adapt its framework to arbitrary SLD-derivations. The following notion is due
to Deransart, Ferrand and Teguia [DFT91].

Definition 3. A system of term equations E is called not aubject to occur-check
(NSTO in short) if no execution of the Martelli-Montanari unification algorithm
(see Martelli and Montanari [MM82]) started with E ends with a system that
includes an equation of the form z = t, where z is a variable and t a term
different from :c, but in which :c occurs. D

We can now introduce the crucial notion of this section.

Definition 4.

- Consider an SLD.-derlvation e. Let A be an atom selected in ! and H the
head of the input clause selected to resolve A in e. Suppose that A and
H have the same relation symbol. Then we say that the system A = H i8
considered in e.

- An SLD-derivation is called occur-check free if all the systems of equations
considered in it are NSTO. D

Recall that in presence of delay declarations selection of an atom implies that
it satisfies its delay declaration.

In what follows we identify some syntactic conditions that allow us to draw
conclusions about the occur-check freedom. To this end we use modes. Informally,
modes indicate how the arguments of a relation should be used.

Defi.nition5. Consider an n-ary relation symbol p. By a mode for p we mean a
function mp from {1, ... ,n} to the set{+,-}. Ifmp(i} ='+',we call i an input
position of p and if mp(i) = '-', we call i an output poaition of p (both w.r.t.
mp). By a moding we mean a collection of modes, each for a different relation
symbol. D

We write mp in a more suggestive form p(mp(l), ... ,mp(n)). For example,
member (- • +) denotes a binary relation member with the first position moded as
output and the second position moded as input.

The definition of moding assumes one mode per relation in a program. Mul­
tiple modes may be obtained by simply rena.miJig the relations. In this paper we
adopt the following

.Assumption Every considered relation has a fixed mode associated with it.

This assumption will allow us to talk about input positions and output po­
sitions of an atom.

72

Definition6.

- A family of terms is called linear if every variable occurs at most once in it.
- An atom is called input (resp. output) linear if the family of terms occurring

in its input (resp. output) positions is linear.
- An atom is called input-output disjoint if the family of terms occurring in its

input positions has no variable in common with the family of terms occurring
in its output positions. . D

In the sequel we shall use the following lemma of' Apt and Pellegrini [AP94].

Lemma 1. Consider two atoms A and H with the aame relation symbol. Suppose
that

- they have no variable in common,
one of them is input-output disjoint,

- one of them is input linear and the other is output linear.

Then A = H is NSTO. 0

The first result is an immediate consequence of Lemma 7. The idea is that
when the head of every clause of P is output linear, it suffices to delay all the
atoms until their input positions become ground. To this end we introduce the
following notion that relates the delay declarations to modes.

Definitions. We say that the delay declarations imply the moding if every
atom which satisfies its delay declaration is ground in its input positions. D

Theorem g (Occur-check Freedom 1). Suppose that

- the head of every clause of P is output linear,
- the delay declarations imply the moding.

Then all SLD-derivations of P U { Q} which reapect the delay declarations are
occur-check free.

Proof. By Lemma 7. 0

This result allows us to deal only with the delay "until ground" declarations.
So for example, we cannot draw yet at this stage any conclusions concerning the
QUICKSORT program from the introduction. To deal with other forms of delay
declarations we use the following notion introduced in Chadha and Plaisted
[CP94] and further studied in Apt and Pellegrini [AP94].

To simplify the notation, when writing an atom as p(u, v), we now assume
that u is a sequence of terms filling in the input positions of p and that v is a.
sequence of terms filling in the output positions of p.

73

Definition 10.
- A query P1(s1, ti)1 ••• ,pn(sn, tn) is called nicely moded if tl, ... , tn is a

linear family of terms and for i E [1, n]

"
Var(si) n (U Var(tj)) = 0.

i=i

- A clause
Po(so, to) - p1(s1, tl), ... ,Pn(sn, tn)

is called nicely moded if - P1(s1, tl), ... ,JJn(sn, tn) is nicely moded and

"
Var(so) n (U Var(tj)) = 0.

i=l

In particular, every unit clause is nicely-moded.
- A program is called nicely moded if every clause of it is. D

Intuitively, the concept of being nicely moded prevents a "speculative bind­
ing" of the variables which occur in output positions - these variables are
required to be "fresh". Note that a query with only one atom is nicely moded
iff it is output linear and input-output disjoint.

The following lemma is crucial. It shows persistence of the notion of nice
modedness in presence of a natural assumption.

Lemma 11 (Nice modedness). Every SLD-reaolvent of a nicely moded query
and a nicely moded clauae with an input-linear head, that ia variable-diajoint with
it, ia nicely moded.

Proof. The proof is quite long and can be found in Luitjes [Lui94]. It is similar
to the proof of an analogous lemma, 5.3, in Apt and Pellegrini [AP94, pages
719-724]. D

Corollary 12 (Nice modedneBB). Let P and Q be nicely moded. Suppose that
the head of every clause of P ia input linear. Then all queriea in all SLD­
derivations of P U { Q} are nicely moded. D

This corollary brings us to the following conclusion.

Theorem 13 (Occur-check Freedom 2). Let P and Q be nicely moded. Sup­
poae that

- the head of every clauae of P ia input linear.

Then all SLD-derivationa of P U { Q} are occur-check free.

Proof. By the Nice modedness Corollary 12 all queries in all SLD-derivations
of PU { Q} aie nicely moded. But every atom of a nicely moded query is input­
output disjoint and output linear. So the claim follows by Lemma 7. D

74

TJUs result shows that for nicely moded programs and queries occur-check
freedom caJl be ensured inpendendently of the selection rule, so without taking
into account tlt.e delay declarations. In Chad.ha and Plaisted [CP94] and Apt and
Pellegrini [AP94] it was shown that the QUICICSORT program with the moding
qs(+,-),partition(+,+ 1 -,-), app(+,+,-), +>+, +::;+satisfies the condition
of the aboTe theorem, so this result applies to any query of the form q s (s , Y s),

where • is a list of integers.
To apply the above result to the Il..ORDER program consider the following

moding: in..order(+,-), app(+,+,-). It is straightforward to check that then
Il..Dll.DD. is nicely moded and the head of every clause of I:l...DRDER is input
linear .. So ,by tlie Occur-check Freedom 2 Theorem 13 we conclude that for
any term t and a variable ls that does not occur in t, all SLD-derivations of
Il..ORDD U{in..order(t, Ya)} are occur-check free.

Finally, to deal with the SEQUEICE program take the following moding:
sublist(- 1 +), sequence(+), question(+), app(-,-,+). Thanks to the use
of anonymous variables ii is easy to check that SEQUEICE is then indeed nicely
moded and that the heads of all clauses are input linear. So by the Occur-check
Freedom 2 Theorem 13 all SLD-derivations of SEQUEICE U{question(Ss)} are
occur-check free.

4 Absence of Deadlock

In presence of delay declarations a query can be generated in which no atom
can be selected, because none of them satisfies its delay declaration. Then the
computation cannot proceed. Such a situation is obviously undesirable. We call
it a deadlock and study here means to avoid it. Let us begin with a formal
definition.

Definition 14. An SLD--derivation fiov.nder1 if it contains a query no atom of
which satisfies its delay declaration. We say that PU {Q} deadloclca if an SLD­
derivation of P U { Q} which respects the delay declarations :flounders. o

We now propose syntactic conditions which allow us to prove absence of
deadlock. The main tool is the notion of a well-moded program and query. Let
us recall the definition (see e.g. Dembinski and Maluszynski [DM85] and Drabent
[Dra87]).

4.1 Well-moded Queries and Programs

Definition 15.

- A query P1(s1, tl), ... ,p,.(sn, tn) is called well-moded if for i E [1, n]

i-1

Var(si) ~ LJ Var(tj)·
;=1

75

- A clause
Po(to, sn+t) - P1(s1, ti), ... , p,,.(sn, tn)

is called tuell-moded if for i E [1, n + 1]

i-1
Var(si) ~ LJ Var(tj)·

j:O

- A program is called well-moded if every clause of it is. D

The following lemma shows the persistence of the notion of well-modedness.
It strengthens the version given in Apt and Pellegrini [AP94] to arbitrary SLD­
resolvents.

Lemma 16 (Well-modedness). Every SLD-reaolvent of a well-moded query
and a well-moded clause, that is variable-disjoint with it, ii well-moded.

Proof. An SLD-resolvent of a query and a clause is obtained by means of the
following three operations:

- instantiation of a query,
- instantiation of a clause,
- replacement of an atom, say H, of a query by the body of a clause whose

head is H.

So we only need to prove the following two claims.

Claim 1 An inatance of a well-moded query (reap. clause) i1 well-moded.

Proof. It suffices to note that for any sequences of terms s, t1, .•. , t,,. and a
substitution 8, Var(s) ~ LJi=1 VaT(t;) implies Var(s8) ~ LJi=1 VaT(t;9). D

Claim 2 Suppoae that .A., H, C i1 a well-moded query and H - B ii a well­
moded clause. Then A, B, C is a well-moded query.

PToof. Let
A:= P1(s1, t1), ... , pi(sr., ti),
H :=p(s,t),
B := P1+1(sr.+11tr.+1), ... 1Pr.+1(sr.+1t t1+1),
C := Pr.+1+i(s1+l+l, tA:+1+1), · · · ,p,,.(SA:+i+m1 t1:+1+m)•

Fix now i E [1, k + l + m]. We need to prove that Var(s1) ~ ~==~ Var(t;).
Case 1 i E [1, k].
Not.e that A is well-moded, since A, H, C is well-moded. Hence the claim follows.
Case 2iE[k+1, k + ~·
H -Bis well-moded, so Var(si) ~ Var(s)ULJ~~i+l Var(t;). Moreover, A, H, C

is well-moded, so Var(s) ~ LJ7=t Var(t;). This implies the claim.

76

Case 3 i E [k + l + 1, k + l + m].
A, H, C is well-moded, so Var(s1) s; U~=l Var(t;) U Var(t) U LJ}:i+i+i Var(t;)

and Var(s) ~ u;=1 Var(t;). Moreover, H +-Bis well-moded, so

Ai+I

Var(t)s; Var(s)U U Var(t;).
j:::l&+l

This implies the claim. 0
0

Corollary 17 (Well-modedness). Let P and Q be well-moded. Then all queries
in all SLD-deri'Vations of PU { Q} are well-moded. D

The following definition provides a link between the delay declarations and
moding.

Definition 18. We say that the delay declarations are implied by the moding if
every a.tom which is ground in its input positions satisfies its delay declaration.

0

We can now state and prove the desired result.

Theorem19 (Absence of Deadlock 1). Let P and Q be well-moded. Sup­
pose that the delay declarations are implied by the moding. Then P U { Q} does
not deadlock.

Proof. By the Well-modedness Corollary 17 all queries in all SLD-derivations of
PU{ Q} a.re well-moded. But the first atom of a well-moded query is ground in its
input positions. Hence, by the assumption, in every SLD-derivation of PU {Q}
the first atom of every query satisfies its delay declaration. Consequently, no
SLD-derivation of PU { Q} flounders. 0

Intuitively, the above result states that under the abovementioned conditions,
at every stage of a computation the first atom can always be selected.

The above result can be applied to the QUICKSORT program. Indeed, with
the moding considered in Section 3 QUICKSORT is easily seen to be well-moded,
the query qs(s, Ys), where sis a list of integers, is well-moded and the delay
declarations considered in the introduction are clearly implied by this moding.
In fact, the same reasoning applies when the original delay declarations are
strengthened by replacing everywhere "nonvar" by "ground".

The Absence of Deadlock 1 Theorem 19 can also be used for the UL.ORDER.
program. Indeed, in the moding considered in the previous section IlLORDER.
is clearly well-moded. So the above theorem is applicable to any query of the
form in..order(t, Ya), where t is a ground term. However, no conclusion can
be drawn if t is not ground. Be)ow we shall see how to draw such stronger
conclusions.

77

Finally, the above theorem cannot be applied to the program SEQUEBCE.
Indeed, it is easy to see that no moding exists for which both SEQUEBCE and the
query queation(Sa) are well-moded. So the above theorem cannot be applied
to the SEQUEBCE program no matter what delay declarations are used.

4.2 Well-typed Queries and Programs

To overcome these difficulties we generalize the above approach by using the
notion of a type. The presentation below of well-typed queries and programs is
taken from Apt and Etalle [AE93]. We begin by adopting the following general
definition.

Deflnition20. A type is an non-empty set of terms closed under substitution.

We now fix a specific set of types, denoted by Type1, which includes:

U - the set of all terms,
.Lilt - the set of lists,
Gae - the set of of all ground arithmetic expressions (gae's, in short),
.LiatGae - the set of lists of gae's.

D

7ree - the set of binary trees, defined inductively as follows: void is a tree
and if s , t are trees, then for any term u, tree (u, a , t) is a tree.

Of course, the use of the type Lilt assumes the existence of the empty list
D and the list constructor [. I .] in the language, etc.

We call a construct of the form 1 : S, where s is a term and S is a type,
a typed term. Given a sequence a: S = 11 : S1, ••• , '" : Sn of typed terms, we
writes ES if for i E [1,n] we have'' ES,. Further, we abbreviate the sequence
1118, • .. , 11"8 to s8. Finally, we write

I= s : S =? t : T,

if for all substitutions 8, s8 E S implies t8 E T.
Next, we define types for relations.

Deflnition21. By a type for an n-ary relation symbolp we mean a function t11

from [1, n] to the set Typea. If t11 (i) = T, we call T the type associated with the
poaition i of p. D

In the remainder of this paper we consider a combination of modes and types
and adopt the following

Assumption Every con1idered relation has a fixed mode and a fixed type asso­
ciated with it.

This assumption will allow us to talk about types of input positions and of
output positions of an atom. An n-ary relation p with a mode m,. and type t11

will be denoted by

p(mp(l) : t 11 (1), ... , m,.(n) : tp(n)).

78

For example, member(- : U, + : Lilt) denotes a binary relation member with the
:first position moded as output and typed as U 1 and the second position moded
as input and typed as Lilt.

To simplify the notation, when writing an atom as p(u: S, v: T) we now
assume that u : S is a sequence of typed terms filling in the input positions of p
and v : T is a sequence of typed terms filling in the output positions of p. We
call a construct of the form p(u : S, v : T) a typed atom and a sequence of typed
a.toms a typed query. We say that a typed atom p(s1 : S1 , ••• 1 sn: Sn) is correctly
typed in position i if Bi E Si and use an analogous terminology for typed queries.

The following notion is due to Bronsard, Lakshman and Reddy [BLR92].

Definition 22.

- A query
P1(i1 : 11, 01 : 01), ... , p,.(in : In, on: On)

is called well-typed if for j E [1, n]

I= 01: 01, ... ,oj-l: Oj-1 :::? ij: Ij.

- A clause

Po(oo: Oo,in+l: In+1) -P1(i1: 11,01: 01) •... ,,Pn(in: In, on: On)

is called well-typed if for j E [1, n + 1]

I= o 0 : o0 , ... , oj-l : oj-l :::? ij: Ij.

- A program is called well-typed if every clause of it is. 0

Note that a query with only one atom is well-typed Dr this atom is correctly
typed in its input positions. The following lemma shows persistence of the notion
of well-typedness. It strenghtens a result mentioned in Bronsard, Lakshman and
Reddy [BLR92] to arbitrary SLD-resolvents.

Lemma23 (Well-typedness). Every SLD-resolvent of a well-typed query and
a well-typed clause, that ia 11ariable-diajoint with it, ia well-typed.

Proof. The proof is analogous to that of the Well-modedness Lemma 16 and is
omitted. 0

Corollary24 (Well-typedness). Let P and Q be well-typed. Then all queries
in all SLD-derivationa of PU { Q} are well-typed. D

Finally, we link the delay declarations with types.

Definition 25. We say that the delay declarations are implied by the typing
if every atom which is correctly typed in its input positions satisfies its delay
declaration. 0

We can now state and prove the desired result.

79

Theorem 26 (Absence of Deadlock 2). Let P and Q be well-typed. Suppose
that the delay declarations are implied by th.e typing. Th.en p u { Q} does not
deadloclc.

Proof. By the Well-typedness Corollary 24 all queries in all SLD-derivations
of PU {Q} are well-typed. Bui the first atom of a well-typed query is correctly
typed in its input positions. Hence, by the assumption, in every SLD-derivation of
PU{ Q} the :first atom of every query satisfies its delay declaration. Consequently,
no SLD-derivation of PU {Q} flounders. o

Let us see how to apply this theorem to the IJl...ORDER program. Consider the
following typing:
in_order(+: Tree, - : List),
app(+: List,+: List,+: List).
· We leave to the reader the task of checking that Il...ORDER is then well-typed
and that the delay declarations are implied by the typing. We conclude that for
any term t which is a tree, IlLORDER U{in-<>rder(t, Ys)} does not deadlock,
which strengthens the conclusion drawn by means ofthe Absence of Deadlock 1
Theorem 19.

Finally, note that this theorem can also be applied to the SEQUENCE program.
Indeed, consider the following typing:
question(- : List),
sequence(- : List),
sublist(+ : List,+ : List),
app(- : List, - : List,+ : List).

Again, it is easy to see that SEQUElfCE and the query question(Ss) are
then well-typed and that the delay declaration is implied by the typing. It is
worthwhile to note that if we change in this declaration "nonvar" to "ground",
then SEQUElfCE U{ question(Ss)} does deadlock.

5 Absence of Errors

One of the natural uses of the delay declarations is to prevent run time errors in
presence of arithmetic relations. This is for example the idea behind the delay
declarations

DELAY I > Y UNTIL ground(I) /\ ground(Y).
DELAY I ~ Y UlfTIL ground(I) /\ ground(Y).

used in the introduction which ensure that both relations are called only with
ground arguments. Now, to prove absence of errors a stronger property is needed,
namely that the arguments of these relations are ground arithmetic expression~.
However, the syntax of the delay declarations does not allow us to express this
stronger information.

The aim of this section is to provide means to deduce this stronger property
and thus to. prove absence of errors in presence of arithmetic relations. To this

80

end we shall use the notions of a well-typed query and a well-typed program
introduced in the preVious section.

The followillg simple observation provides us with some means to prove that
if an atom is ground in its input positions, then it is correctly typed in its input
positions.

Lemma 2'1. Suppoae that .A., B, C ia a well-typed query auch that

- Bia ground in it. input poaitiona,
- for .some aub.stitution 9, .A.(} ia correctly typed in ita output poaitiona.

Then B i.s correctly typed in ita input poaitiona.

Proof. Let .A.= Pt(i1: It, 01: 01), ... ,Ptl(in: In., on: On) and
B = J>n+1(in+l : ln+l 1 On+l : On+l)· By the definition of well-typedness

F= 01: 01, ... ,on: On :::} in+l: 1n+l·

But by the assumption oi(J E Oi for i E [1,n], so in+19E1n+l which implies
the claim since by assumption in+l 9 = in+l • O

We need to apply this lemma at every stage of the SLD-derivations. To prove
the second assumption we shall use the following notion introduced in Apt and
Etalle [AE93].

Definition 28.

- A query p1(s1 1 ti), ... ,Ptl(sn, tn) is called aimply moded if ti 1 ... , tn is a
linear family of variables and for i E [1, n]

"
Var(si) n <U Var(tj)) = 0.

;:i

- A clause
Po(so, to) -P1(s1, t1), .• ·1Ptl(•n, tn)

is called aimply moded if p1(s11 t1)1 ..• ,pn.(sn, tn) is simply moded and

"
Var(so) n (LJ Var(tj)) = 0.

;:1

In particular, every unit clause is simply moded.
- A program is called .simply moded if every clause of it is. 0

So simple modedness is a special case of nice modedness. The sole difference
lies in the new assumption that each output position of a query or of a body of
a clause is filled by a variable. The following lemma clarifies our interest in the
notion of simple modedness.

81

Lemma 29. Let A be a typed query which is simply moded. Then for some
substitution 9, A8 is correctly typed in iu output positions.

Proof. By the definition the output positions of A are :filled by different vari­
ables. Choose fox each variable occurring in an output position of A a te1m from
the type associated with this position. So obtained bindings form the desidered
substitution. D

The next step is to prove persistence of the notion of simple modedness. In
Apt and Etalle (AE93) this property is established for the SLD-derivations w.r.t.
the leftmost selection rule. But the generalization to arbitrary SLD-derivations
does not work, as the following example shows. Consider the moding p(-), r(+)
a.nd let P = {p(a) +-}and Q = p(:z:), r(:z:). Then p(a) is an SLD-resolvent of Q
a.nd p(a) is not simply moded.

However, a simple additional condition does ensure persistence. Namely, we
have the following lemma.

Lemma 30 {Simple modedness). Every SLD-resolvent of a simply moded query
and a simply moded clause, that is variable-disjoint with it, is simply moded,
when the input part of selected atom is an instance of the input part of the head
of the clause.

Proof. Omitted. 0

Corollary31 {Simple modedness). Let P and Q be simply moded. Consider
an SLD-derivation e of P U { Q} such. that the input part of each selected atom
is an instance of the input part of the head of the used clause. Then all queries
in e are simply moded. 0

To use this result we now link the delay declarations with matching.

Definition32. We say that the delay declarations imply matching if for every
atom p(u, v) which satisfies its delay declaration and for every head p(u', v') of
a clause if p(u, v) and p(u', v') unify, then u is an instance of u'. D

In particular, if the delay declarations imply the moding, then they imply
matching, but not conversely. This brings us to the following conclusion.

Theorem 33 (Correct Typing). Suppose that

- P and Q are well-typed and simply moded,
- the delay declarations imply matching.

Then in all SLD-derivations of P U { Q} which respect the delay declarations
every selected atom which. is ground in its input positions is corTectly typed in its
input positions.

82

Proof. It is a direct consequence of the Lemmata 27, 29, the Well-typedness
Corollary 24 and the Simple modedness Corollary 31. 0

This result can be used to prove absence of errors in presence of arithmetic
relations by using for each arithmetic relation p a delay declaration

DELAY p(X. Y) UNTIL ground(I) A ground(Y)

and a typing p(+: Gae,+: Gae). In the case of QUICKSOR.T take the typing
qs(+: ListGae, - : ListGae),
part(+: Gae, +: ListGae,-: ListGae, - : ListGae),
app(+: ListGae, +: ListGae, - : ListGae)
> (+: Gae,+: Gae),
:::; (+: Gae, +: Gae),
Then QUICKSOR.Tis well-typed (see Apt [Apt93]). Also, it is clearly simply moded.
Moreover, the delay declarations from the introduction imply matching. Indeed,
if a non-variable term unifies with [I I Is], then it is an instance of [X I Xs].

We conclude that for s a list of integers, all SLD-derivations of QUICKSORT
U{qs(s, I)} which respect the delay declarations from the introduction do not
end in an error.

6 Termination

Finally, we study termination oflogic programs with delay declarations. The key
idea in our approach is the restriction t.o a specific class of SLD-derivations.

6.1 Termination via Determinacy

Definition34. We say that an SLD-derivation is determinate if every selected
atom unifies with a variant of at most one clause head, that is, every selected
atom can be resolved using at most one clause. 0

The following simple observation, which is of independent interest, forms the
basis of our approach.

Lemma 35. Suppose that

- an SLD-derivation of PU {Q} is successful.

Then all determinate SLD-derivations of PU {Q} are successful, hence finite.

Proof. Consider a determinate SLD-derivation ! of PU {Q}. ! is a branch in
an SLD-tree T for PU {Q}. By the strong completeness of the SLD-resolution
T is successful and since e is determinate, T has just one branch, namely ! . So
e is successful, and a fortiori finite. 0

To use this result, we link the delay declarations with the notion of determi­
nacy.

83

Definition36. We say that the delay declarations imply determinacy if every
atom which satisfies its delay declaration unifies with a variant of at most one
clause head. D

This brings us to the following result.

Theorem37 (Termination 1). Suppose that

an SLD-derivation of PU { Q} is successful,
the delay declarations imply determinacy.

Then all SLD-derivations of PU {Q} which respect the delay declarations are
successful, hence finite.

Proof. It is an immediate consequence of Lemma. 35, because if the delay decla­
rations imply determinacy, then every SLD-derivation which respects these delay
declarations is determinate. D

Let us see now how to apply this result to the IIL.ORDER program. Using
the approach of Apt (Apt93] it is straightforward to prove that for a tree t,
IlLDRDER U{in_order(t, Ys)} satisfies the first condition of the a.hove theorem.
Also, the assumed delay declarations clearly imply determinacy. We conclude
that all SLD-derivations of IIUJRDER U{ in...order(t, Ys)} which respect the
delay declarations are finite.

However, the above theorem cannot be directly applied to the QUICKSORT
program because the delay declarations from the introduction do not imply
determinacy in the case of the part relation. On the other hand, it is possible to
adjust these delay declarations a.nd slightly modify the execution of the program
so that for the query qs(s, Ys), where sis a. list of integers, termination can
be established.

Namely, consider the following alternative set of delay declarations for the
part relation, given in Naish (Na.i88]:

DELAY part(_, [], _, _) UNTIL true.
DELAY part(I, [Y I j, _, _) UNTIL ground(I) /\ ground(Y).

We now say that an a.tom satisfies a set of delay declarations if it satisfies
at least one of them. The idea. behind these new delay declarations is to enforce
that the arguments of the arithmetic atoms I > Y and I ~ Y a.re ground once
they are introduced through the selection of a part-atom. Note that now the
delay declarations for the arithmetic relations become superfluous in the sense
that they are always satisfied.

Also, observe that for this new set of delay declarations absence of deadlock
is now ensured by the Absence of Deadlock. 2 Theorem 26 and not anymore by
the Absence of Deadlock 1 Theorem 19. Indeed, these new delay declarations a.re
clearly implied by the typing given in Section 5 but are not any longer implied by
the moding given in Section 3, as not all ground terms are of the form [y I ys].

84

Further, note that this new set of delay declarations still implies match­
ing. So the proof of the absence of enors in all SLO-derivations of QUICKSORT
U{qs(s, I)} respecting the delay declarations and given in the previous section
remains wlid.

However, the determinacy is still not ensured. To deal with this problem we
now modify the execution of the programs by viewing the arithmetic atoms as
guards in the sense of e.g. Shapiro (Sha89].

6.2 Termination for Guarded Programs

By treating atoms as guards we mean the following generalization of the SLO­
resolution, which we call the SLDG-re1olution. By a guarded clau1e we refer
to a construct of the form H - G I B, where H is an atom and G and B are
sequences of atoms. A guarded program is a set of guarded clauses. If G is empty,
then we drop the vertical bar "I". The atoms in G are called guarda. Note that
we do not insist that a guarded program is a finite set of clauses. The reason is
that we wish to have the possibility of defining the relations used in the guards
by a possibly infinite set of ground facts. It is clear how to extend the notions
of well-modedness etc. to guarded programs.

We now view QUICKSDRT as a guarded program by rewriting the last two
clauses defining the part relation as follows:

part(I, [Y I Is], [Y I Ls], Bs) - I > Y I part(I, Is, Ls, Bs).
part(I, [Y I Is], Ls, [Y I Bs]) - I $ Y I part(I, Is, Ls, Bs).

We call the resulting program QUICKSDRT-G. We assume that both in QUICKSDRT
and in QUICKSDRT-G the arithmetic relations are defined by the infinite set of
ground facts.

Consider now a query .A., B, C and a variable disjoint with it guarded clause
H - G I B. We say that B guardedly unifiei with H if for some mgu 9 of B
and H the query G9 is ground and succeeds. We call then (A, B, C)9 an SLDG­
re1ofoent of A, B, C and H - G I B. So, intuitively, the test that the guards are
ground and succeed forms now a part of the unification process. If G is empty,
then the SLDG-resolvents coincide with the SLD-resolvents. So SLOG-resolution
is indeed a generalization of the SLO-resolution. It. is now clear how to define
the SLOG-derivations and the SOLG-trees.

Given a guarded program, we now say that the delay declarations imply
determinacy if every atom which satisfies its set of delay declarations guardedly
unifies with a variant of at most one guarded clause head.

Note that the new set of delay declarations implies determinacy for the
guarded program QUICKSDRT-G because in the case of the part relation for any
two ground terms s, t at most one of the queries s > t and s < t succeeds.
The remaining delay declarations imply determinacy because if ;; non-variable
term unifies with [I I Is] , then it is does not unify with [] .

Definition 38. We say that a guarded program is regular if

85

- every relation used in the guards is defined by a set of ground facts,
- for every other relation symbol p either .

• in all clauses defining p all guards are empty, or
• for some sequence of terms s and a set of variables V ~ Var(s), every

guarded clause defining p is of the form

p(s, t) +-- G I B

for some t, G, B, such that Var(G) = V. 0

Note that QUICKSORT-G is regular. In fa.et, we observed that most of the
programs that use arithmetic comparison relations are regular when viewed as
guarded programs.

The following theorem explains our approach to the proofs of termination for
guarded programs. It is a modification of the Termination 1 Theorem 37.

Theorem 39 (Termination 2). Suppose that

- P is a regular guarded program,
- P and Q are simply moded,
- the delay declarations imply determinacy and matching,
- an SLDG-derivation of PU { Q} is succeuful.

Then all BLDG-derivations of PU {Q} which respect the delay declarations are
successful, hence finite.

Proof. Omitted. 0

Let us return now to QUICKSORT-G. In the previous sections we already
checked before that QUICKSORT-G with the query qs(s. Ys), where sis a list
of integers, satisfies the first three condtions of the above theorem. Now, using
the approach of Apt [Apt93] it is easy to show that QUICKSORT-G U{qs(s, Ts)}
satisfies the last condition. We conclude by the Termination 2 Theorem 39 that
all SLDG-derivations of QUICKSORT U{qs(s, Ts)} which respect the modified
delay declarations are :finite.

It is worthwhile to point out that the SLDG-resolution is very meaningful
from the operational point of view. In the case of QUICKSOB.T-G it prevents a.
choice of a "wrong" alternative in the definition of the part relation and conse­
quently, obviates a. backtracking.

Finally, note that we cannot apply either the Termination 1 Theorem 37
or the Termination 2 Theorem 39 to the SEQUENCE program, because the delay
declaration

DELAY app(_, _, Z) UNTIL nonvar(Z)

does not imply determinacy. Currently we are working on techniques allowing
us to deal with termination in absence of determinacy.

The above two theorems are applicable only to the queries which have suc­
cessful SLD-derivations. At this moment we know how to deal with termination

86

f'or arbitrary queries at the cost of restricting attention to fair SLD-derivations.
Recall that an SLD-derivation is fair if it is finite or if every atom occurring in
it is eventually selected (after some possible instantiations).

Below, by an LD-derivation we mean an SLD-derivation via the leftmost
selection rule. So LD-derivations are SLD-derivations generated by the Prolog
selection rule. In the literature a lot of attention has been devoted to the study of
termination with respect to the P:rolog selection rule (see for example the survey
article of De Schreye and Decorte [SD94]). This work can be use to deal with
termination in presence of delay declarations. Namely, we have the following
result.

Theorem40 (Termination 3). Suppoae that

- all LD-derivaticma of PU {Q} are finite.

Then all fair SLD-derivationa of P U { Q} are finite.

Proof. The proof uses a generalization ofthe Switching Lemma (see Lloyd[Llo87,
pages 50-51] to infinite SLD-derivations. Using it one can prove that if an infinite
fair SLD-derivation exists, then an infinite LO-derivation exists. We omit the
details. 0

6.3 Termination of J.PPEID

It is important to realize that in general termination in presence of delay dec­
larations is very subtle. As an example of the difficulties consider the J.PPEID
program augmented with the delay declaration

DELAY app(I, -• _) UllTIL nonvar(I).

It seems that APPEND then terminates for all queries, that is, for all queries
Q, all SLD-derivations of APPEND U{Q} which respect this delay declaration are
finite. The informal argument goes as follows. When the second clause of J.PPEID
can be used to resolve a query of the form app (a, t, u), then a is of the form
[x I xs], so in the next resolvent the first argument of app is xa, thus shorter.
So eventually, the first argument is either a constant, in which case the second
clause cannot be used, or else a variable and in this case the SLD-derivation
terminates due to the delay declaration.

However, this reasoning is incorrect. Namely, consider the query app([I I
U], Ys. U). Using the second clause it :resolves to itself and consequently an
infinite SLD-derivation for app([I I U], Ts, U) can be generated with the
first argument of app always being non-variable. (This fact was noticed in Naish
[Nai92] and Liittringhaus-Kappel [LK93]).

Thus the query app ([I I U] , Ta, U) does not terminate in presence of the
delay declaration DELAY app (I, -• _) UllTIL nonvar (I). Similarly, the query
app(U, Ys. [I I U]) does not terminate in presence of the delay declaration
DELAY app(_, -• Z) UNTIL nonvar(Z).

87

It seems that the problem has to do with the fact that the first and the
third arguments of app share a variable. However, limiting one's attention to the
queries of the form app(a, t, u) where a,t,u are pairwise variable disjoint
does not help, as the query app([(U,11,11) IU], Ya, [([I2IV1] ,W,V1) IW])
resolves to the above query app([I I U], Ya, U).

What does hold is the following limited property.

Theorem41. Suppose that a,t,u are terms such that s and u are variable
disjoint.

(i) If u is linear, then all SLD-derivations of .l.PPEID U { app(s, t, u)} that
respect the delay declaration DEL.l.Y app(I, _, _) UITIL nonvar(I) termi­
nate.

{ii} If t is linear, then all SLD-derivations of lPPEID U {app(s, t, u)} that
respect the delay declaration DELAY app(_, _, Z) UITIL nonvar(Z) termi­
nate.

{iii) Ifs and t are linear, then all SLD-derivations of .lPPUD U { app(s, t, u)}
that respect the delay declaration

DELAY app(I, _, Z) UITIL nonvar(I) V nonvar(Z)
terminate.

Proof. (i) Let 1 (v) denote the number of symbols of the term v. Suppose that
app (s , t , u) satisfies the delay declaration and resolves to app (s • , t ' , u')
using the second clause of lPPElID. We prove that then s • and u • are variable
disjoint, u' is linear and the pair (l(u'), l(s')) is smaller than (l(u), l(s>)
in the lexicographic ordering.

s is not a variable, so it is of the form [x I xs] , and u is not a constant. Two
cases arise where we assume that app(s, t, u) and app([I I Is], Ys, [I I
Za]) are variable disjoint.

Case 1 u is a variable.
Then {I/x, Is/xs, Ys/t, u/[x!Zs]} is an mgu of app(s, t, u) and app([I I
Is], Ys, [I I Zs]), so app(s, t, u) resolves to app(xs, t, Zs). Now xs
and Zs are variable disjoint, Zs is linear and the pair (l(Zs), l(xs)) is smaller
than (l(u), 1([xl xs])) in the lexicographic ordering.

Case 2 u is a compound term.
Then u is of the form [z I zs] . By the Iteration Lemma 1 the substitution
{I/x, Is/xs, Ys/t, Zs/zs}8, where 8 is a relevant mgu of x and z, is an mgu of
app(s, t, u) and app([I I Is], Ys, [I I Za]). By assumption x is vari­
able disjoint with za. Moreover, [z I zs] is linear, so z is variable disjoint with
zs, as well. Thus by the relevance of 8, za6 = za, so app(a, t, u) resolves
to app(xa9, t9, za). Now, za is linear, so xs9 and za are variable disjoint,
because Var(xs8) ~ Var(s) U Var(z). Moreover, the pair (l(zs), l(xs9)) is
smaller than (l ([z I zs]) , l (s >) in the lexicographic ordering.

This proves the claim.

(ii) By symmetry with (i).

88

(iii) Suppose that an infinite SLD-derivation e of APPEID U{ app(s, t, u)} exists
that respects the delay declaration

DELAY app(I, -• Z) UJTIL nonvar(I) V nonvar(Z).
Then either s or u is not a variable. Assume without loss of generality that a is
not a variable. By (i) a descendant of app(a, t, u) in e exists which is of the
form app(Is, t', u') for a variable Xs and some terms t' and u'. Since e is
infinite, u, is not a variable.

In the moding app (+ , + , -) .lPPEID and the query app (s , t , u) a.re nicely
moded and the head of every clause of .APPEID is input linear. Thus by the Nice
modedness Corollary 12 u' is linear and la and u' a.re variable disjoint.

By (ii) a descendant of app (Is, t' , u >) in e exists which is of the form
app(s' 1 , t'', Zs) for some terms a'' and t'' and a variable Za. Moreover,
in every descendant of app (Is • t I • u,) in e the first argument of app remains a
variable and consequently app (s' > , t' ' , Zs) does not satisfy the delay decla­
ration DELAY app(X, -• Z) UNTIL nonvar(I) V nonvar(Z). A contra.diction.

D

This isolated result shows how elaborate arguments are sometimes needed
to prove simple termination results in presence of delay declarations. In this
connection let us mention a related work of Naish [Nai86] and Liittringhaus­
Kappel [LK93] who automatically generate delay declarations which ensure that
a given program terminates with respect to a selection rule according to which
the leftmost non-delayed atom is selected.

7 Conclusions

In this paper we dealt with the correctness of logic programs augmented by the
delay declarations. To this end we strengthened and adapted methods that were
originally developed for the study of Prolog programs.

Interestingly, we can reverse the situation and derive the appropriate de­
lay declarations by ana.lyzing the Prolog programs. Consider for example the
QUICKSORT program with the query qs (s, Ya), where s is a list of integers.
Once we have shown in Section 4 that it is well-moded with the moding q s (+. -) ,
partition(+,+,-,-), app(+,+,-), +>+, +~+we can augment it by arbitrary
delay declarations which are implied by this moding and conclude by virtue of
the Absence of Deadlock 1 Theorem 19 that for the query in question no deadlock
arises.

Once we have shown in Section 4 that it is well-typed and simply moded
with the typing
qs(+: ListGae, - : ListGae),
part(+: Gae,+: ListGae, - : ListGae, - : ListGae),
app(+ : ListGae, + : ListGae, - : ListGae)
> (+: Gae, +: Gae),
~ (+: Gae,+: Gae),
we can augment it by arbitrary delay declarations which imply matching and

89

conclude by :virtue of the Correct Typing Theorem 33 that for the query in
question no run time errors due to the use of arithmetic relations arise.

Finally, once we have shown in Section 6 that some SLDG-derivation of
QUICKSORT-G U{qs(s, Ys)} is successful, we can augment QUICKSORT-G by ar­
bitrary delay declarations which imply determinacy and matching, and conclude
by virtue of the Termination 2 Theorem 39 that all SLDG-derivations of qs (s.
Ys) which respect these delay declarations are :finite. This shows that it is pos­
sible to derive correct parallel logic programs by analyzing Prolog programs.

We conclude by noticing that the "stronger" the delay declarations are the
bigger the chance that a deadlock arises, but the smaller the chance that di­
vergence can result. So deadlock freedom and termination seem to form two
boundaries within which lie the "correct" delay declarations.

Acknowledgements

The fust author would like to thank Elena Marchiori and Frank Teusink for
helpful discussions on the subject of the delay declarations.

References

[AE93] K. R. Apt and S. Eta.lle. On the unification free Prolog programs. In
A. Borzyszkowski and S. Sokolowski, editors, Proceeding• of the Conference
on Mathematical Foundation• of Computer Science (MFCS 93), Lecture Notes
in Computer Science, pages 1-19, Berlin, 1993. Springer-Verlag.

(AP94] K. R. Apt and A. Pellegrini. On the occur-check free Prolog programs. A CM
Topla1, 16(3):687-726, 1994.

(Apt90] K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, pages 493-574. Elsevier, 1990. Vol. B.

[Apt93] K. R. Apt. Declarative programming in Prolog. In D. Miller, editor, Proc.
International Sympo1ium on Logic Programming, pages 11-35. MIT Press,
1993.

[BLR92] F. Bronsa.rd, T.K. La.kshman, and U.S. Reddy. A framework of directionality
for proving termination of logic programs. In K. R. Apt, editor, Proceedings
of the Joint International Conference and Symposium on Logic Programming,
pages 321-335. MIT Press, 1992.

(CC88] H. Coelho and J. C. Cotta. Prolog by Ezample. Springer-Verla.g, Berlin, 1988.
(CP94] R. Cha.dha and D. A. Plaisted. Correctness of unification without occur check

in Prolog. Journal of Logic Programming, 18(2):99-122, 1994.
[DFT91] P. Deransart, G. Ferrand, and M. Teguia. NSTO programs (not subject to

occur-check). In V. Sa.raswat and K. Ueda, editors, Proceeding• of the Inter­
national Logic Symposium, pages 533-547. The MIT Press, 1991.

[DM85] P. Dembinski and J. Maluszynski. AND-parallelism with intelligent back­
tracking for annotated logic programs. In Proceeding• of the International
Sympo1ium on Logic Programming, pages 29-38, Boston, 1985.

[Dra.87] W. Dra.bent. Do Logic Programs Resemble Programs in Conventional Lan­
guages? In International Sympoaium on Logic Programming, pages 389-396.
San Francisco, IEEE Computer Society, August 1987.

90

[HL94] P. M. Hill a.nd J. W. Lloyd. The Godel Programming Language. The MIT
Press, 1994.

[Kow79] R. Kowalski. Algorithm = Logic + Control. Communication• of A CM,
22:424-431, 1979.

[LK93] S. Liittringha.us-Kappel. Control generation for logic programs. In D. S.
Warren, editor, Proceeding• of the 10th Int. Con/. on Logic Programming,
Budape1t, pages 478-495. MIT, July 1993.

[Llo87] J. W. Lloyd. Foundationa of Logic Programming. Springer-Verla.g, Berlin,
second edition, 1987.

[Lui94] I. Luitjes. Logic programming a.nd dynamic selection rules. Scriptie (Master's
Thesis), University of Amsterdam, 1994.

[MM82] A. Martelli and U. Monta.na.ri. An efficient unification algorithm. ACM
Tramactiona on Programming Language• and Syltem.s, 4:258-282, 1982.

[Nai82] L. Naish. An Introduction to MU-PROLOG. Technical Report TR 82/2,
Dept. of Computer Science, Univ. of Melbourne, 1982.

[Nai86J L. Naish. Negation and Control in Prolog. Number 238 in Lecture Notes in
Computer Science. Sprlnger-Verlag, 1986.

[Na.i.88] L. Naish. Para.llelizing NU-Prolog. In Proceeding1 of the Fifth Annual Sympo­
sium on Logic in Computer Science, pages 1546-1564. The MIT Press, 1988.

[Na.i.92] L. Naish. Coroutining a.nd the construction of terminating logic programs.
Technical. Report 92/5, Department of Computer Science, University of Mel­
bourne, 1992.

[SD94] D. De Schreye and S. Decorte. Termination of logic programs: the never­
ending story. Journal of Logic Programming, 19-20:199-260, 1994.

{Sha89J E. Shapiro. The family of concunent logic programming languages. ACM
Computing Surueys, 21(3):412-510, 1989.

