
Declarative Programming
in Prolog
Krzysztof R. Apt
CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
and
Faculty of Mathematics and Computer Science
University of Amsterdam, Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands

Abstract

We try to assess to what extent declarative programming can be realized
in Prolog and which aspects of correctness of Prolog programs can be dealt
with by means of declarative interpretation.

More specifically, we discuss termination of Prolog programs, partial cor
rectness, absence of errors and the safe use of negation.

1 Introduction

1.1 Motivation

Verification of Prolog programs has been an ongoing research endeavour since
the beginning of logic programming. Already Clark and Tarnlund [CT77],
and more extensively, Clark [Cla79] addressed this issue. Hogger [Hog84]
dealt with this subject in his book, Deransart [Der90] compared various
approaches to partial correctness, and Deville [Dev90] studied systematic
development of logic and Prolog programs from specifications.

In the case of other styles of programming analogous research resulted in
clearly isolated and widely recognized proof principles and design methods,
which can be readily used when dealing with specific programs or program
ming problems (see e.g. Dijkstra [Dij76] and Gries [Gri81] for sequential im
perative programming, Chandy and Misra [CM88], Apt and Olderog [A091],
and Manna and Pnueli [MP92] for concurrent imperative programming; and
Burstall and Darlington [BD77], Meertens [Mee86] and Bird and Wadler
[BW88] for functional programming).

Regrettably, such development did not take place in the case of logic
programming. Among the reasons might be two often repeated claims. Ac
cording to one of them, a well-written Prolog program is "obviously correct"
because it can be viewed as a self-evident specification of the problem under
consideration. According to another, any correctness proof of a program

13

will be so obscure that its validity will be less convincing than that of the
program itself.

We strongly disagree with these statements and find that their widespread
popularity is one of the causes why programming in logic programming is
not yet considered as a viable and attractive alternative to programming in
other styles.

Of course, from the programming point of view, the main interest in
logic programming is due to its capability to support declarative program
ming. Loosely speaking, declarative programming can be described as fol
lows. Specifications, when written in an appropriate format, can be used as a
program. Then the desired conclusions should logically follow from the pro
gram. To compute these conclusions some computation mechanism should
be used.

Clearly, logic programming comes close to this description. The sound
ness and completeness results relate the declarative and procedural interpre
tations and consequently the concepts of correct answer substitutions and
computed answer substitutions. However, these substitutions do not need
to coincide, so a mismatch may arise. Additional complications result from
adding negation.

When moving from logic programming to Prolog new difficulties arise
due to the use of depth-first search strategy combined with the ordering of
the clauses, the fixed selection rule, the omission of the occur-check in the
unification, and the use of built-in's and various "non-logical" features.

If we wish to consider declarative programming in Prolog seriously, we
should identify the programs whose correctness can be established by means
of simple methods based on declarative semantics. This is the aim of this
paper.

1.2 Terminology and Notation

Given a list t we write a E t when a is a member oft and a rf. t when a is
not a member oft. Given two syntactic expressions E and F, we say that E
is more general than F, and write E ~ F, if EB = F for some substitution
e.

We work here with queries, that is sequences of atoms, instead of goals,
that is constructs of the form .._ Q, where Q is a query. Throughout the
paper we restrict attention to one selection rule, namely Prolog's leftmost
selection rule. We refer to SLD-resolution with the leftmost selection rule
as LD-resolution. All proof-theoretic notions, such as the computed answer
substitution refer to LD-resolution.

Apart from this we use the standard notation of Lloyd [Llo87] and Apt
[Apt90]. In particular, for a program P, Bp stands for its Herband base,
Mp stands for its least Herbrand model, ground(P) for the set of all ground
instances of clauses of P, and (A] for the set of all ground instances of the
atom A.

14

2 Setting the Stage

2.1 Syntax

We shall deal here with three subsets of Prolog.

Pure Prolog

The syntax of programs written in this subset coincides with the customary
syntax of logic programs, though the ambivalent syntax and anonymous
variables a.re allowed.

Pure Prolog with Arithmetic

This subset extends the previous one by allowing in the bodies of the pro
gram clauses the arithmetic comparison operators <, ::; , = =, =f., 2::, > and the
binary "is" relation of Prolog.

Pure Prolog with Negation

This subset extends the first one by allowing negative literals in the bodies
of the program clauses. Thus it coincides with the syntax of general logic
programs.

The methods discussed in this paper can be readily used to deal with
the "union" of the last two subsets, that is pure Prolog with arithmetic and
negation.

When considering a specific logic program one has to fix a first-order
language w.r.t. which it is analyzed. Usually, one associates with the pro
gram the language determined by it - its constants, function and relation
symbols a.re the ones occurring in the program (see e.g. Lloyd [Llo87] and
Apt [Apt90]). Another choice was made by Kunen [Kun89] who assumed
a first-order language with infinitely many constants, fllllction and relation
symbols in which all programs and queries are written. In this paper we
follow Kunen's choice. In contrast to the other alternative it imposes no
syntactic restriction on the queries which may be used for a given program.
This better reflects the reality of programming. In Section 2.3 we shall in
dicate another advantage of this choice. Of course, the sets ground(P) and
[A] refer to the ground instances in this universal language.

2.2 Proof Theory

Let us explain now the proof theory for the three subsets introduced above.

Pure Prolog

We use, as expected, the LD-resolution. However, in most implementations
of Prolog, unification without the occur-check is used. So we have to deal

15

with this issue. Due to the lack of space we refer the reader to Apt and
Pellegrini [AP92] whose work builds upon Deransart, Ferrand and Teguia
[DFT91] and whose methods based on syntactic analysis can be applied to
all programs here considered.

Moreover, we assume that, as in Prolog, the clauses of the program are
ordered. This ordering will be reflected in the considered LD-trees. It should
be added, however, that in our approach to correctness the ordering of the
clauses will never play any role. In other words, our approach will not be able
to distinguish between programs which differ only by the clause ordering.

Pure Prolog with Arithmetic

Consider the program QUICKSORT:

qs([I I ls], Ys) +-

part(X, Is, Littles, Bigs),
qs(Littles, Ls),
qs(Bigs, Bs),
app(Ls, [I I Bs], Ys).

qs([], []).

part(X, [YIIs], [YI Ls], Bs)
part(X, [YI Is], Ls, [YIBs])
part(I, []. [], []) .

+-

+-

I > Y, part(I,
x < Y, part(X,

augmented by the APPEND program defined by:

Is,
Xs,

app([X I Xs]. Ys, [X I Zs]) +- app(Is, Ys, Zs).
app([], Ys, Ys).

Ls, Bs).
Ls, Bs).

When studying it formally as a Prolog program we have to decide the
status of the built-in's > and ~. Are they some further unspecified rela
tion symbols whose definitions we can ignore? Well, with this choice we
face the following problem. In Prolog the relations > and ::; are built-in's
whose evaluation results in an error when its arguments are not ground arith
metic expressions (in short, gae's). Consequently, the query qs ([3, 4, X, 7] ,
[3, 4, 7, 8]) results in an error at the moment the variable X becomes an
argument of >.

Now, logic programming does not have any facilities to deal with run
time errors, but at least one could consider trading them for failure. Un
fortunately, this is not possible. Otherwise for some terms s and t the
query s>t would succeed and then by the Lifting Lemma the query X>Y
would succeed, as well. So what is the conclusion? The standard theory of
logic programming cannot be used to capture properly the behaviour of the
built-in's > and ::; and it is not possible to model the fact that the query
qs ([3 ,4 ,X, 7], [3 ,4, 7 ,8]) results in an error.

Consequently, when interpreting the arithmetic relations we follow Pro
log's interpretation, according to which, as just stated, when at the moment

16

of evaluation the arguments of the comparison relations are not gae's, the
computation ends in an error. Also, the assignments is tends in an error
when at the moment of evaluation t is not a gae.

To model this interpretation of arithmetic relations we follow Kunen
[Kun88]. First we extend the LD-resolution by stipulating that an LD
derivation ends in an error precisely in the cases stated above. Next, we add
to each program infinitely many clauses which define the ground instances of
the used arithmetic relations. Given a gae n we denote by val (n) its value.

For < we add the following set of unit clauses:

M< = {m < n Im, n are gae's and val(m)<val(n)},

for "is" we add the set

Mis= {val(n) is n Jn is a gae},

etc. Note that thanks to the "ending in an error" provision the resulting LD
trees remain finitely branching. In fact, every query with a selected atom
the relation of which is an arithmetic one has at most one descendant in
every LD-tree.

Pure Prolog with Negation

As expected, to interpret these programs we use the SLDNF-resolution with
the leftmost selection rule, further referred to as LDNF-resolution. Less
expected is the fact that the usual definition of the SLDNF-resolution given
in Lloyd [Llo87] needs to be modified.

We leave to the reader the task of checking that according to the defi
nition of SLDNF-resolution given in Clark (Cla79] and reproduced in Lloyd
(Llo84] it is not clear what is the SLDNF-derivation for the program P =
{p p}, and the query -,p, whereas according to the definition given in
Lloyd (Llo87] no SLDNF-derivations exist for the program P = {p -,p}
and query p. The problem with the first definition is that it is circular and
not all cases for forming a resolvent are defined, whereas the latter definition
is mathematically correct, but more restrictive than the first one.

It should be pointed out here that the latter definition is sufficient for
proving soundness and various forms of completeness of SLDNF-resolution.
However, when reasoning about termination of Prolog programs we need
to have at our disposal. a definition of SLDNF-resolution (with the leftmost
selection rule) which properly formalizes the computation process and not
only correctly predicts the computed results.

Such a definition was proposed by Martelli and Tricomi [MT92]. In
their revision the subsidiary trees used to resolve negative literals are built
"inside" the main tree. Another solution was suggested later in Apt and
Doets [AD92], where, as in the original definition the subsidiary trees are
kept "aside" of the "main" tree but their construction is no longer viewed
as an atomic step in the resolution process.

17

Additionally, when studying the LDNF-resolution we need to modify the
definition of floundering. It occurs when a negative non-ground literal is
selected. We say that PU { Q} does not flounder if no LDNF-derivation of
PU {Q} flounders.

2.3 Semantics

There is no universal agreement what is the declarative semantics of a logic
program. In this paper we advocate for a program without negation the use
of its least Herband model as its declarative semantics. However, we have
to be careful when making this seemingly unique choice.

Consider the proverbial APPEND program. With the first choice of Sub
section 2.1 the underlying first-order language has only one constant, viz.
[] , and one, binary, function symbol [. I .] . Thus the Herbrand universe
consists of ground lists whose all elements are equal to []. Call such lists
trivial. It is easy to see that then

MAPPEND = {app(s, t, u) Is, t, u are trivial lists and s * t = u},

where "* " denotes the operation of concatenating two lists. This is the se
mantics of the APPEND program given in Sterling and Shapiro [SS86]. Clearly
it cannot be used to render the meaning of queries in which other constants
and functions than [] and [.I.] are used.

As soon as the underlying first-order language has another constant than
[], so in particular in oux case, the Herbrand universe contains elements
which are not lists. Consequently, on the account of the second clause of
APPEND, MAPPEND contains elements of the form app (s, t, u) where neither
t nor u is a list. (On the other hand, it is still the case that whenever
app(s, t, u) E MAPPEND, then s is a list.) So the choice of the first-order
language affects the structure of the least Her brand models of the considered
programs.

The fact that APPEND and various other well-known programs do admit
"ill-typed" atoms in their least Herbrand models complicates matters some
what. To simplify oux presentation we therefore continue our discussion with
the "correctly typed" version of APPEND, which we denote by APPEND-T:

app([X I Xs], Ys, [X I Zs]) +- app(Xs, Ys, Zs).
app([], Ys, Ys) +- list(Ys).

augmented by the LIST program defined by:

list (Xs) +- Xs is a list.

list ([H I Ts]) +- list (Ts).
list ([]).

Note that

-

MAPPEND-T =

where

18

{app(s, t, u) Is, t, u are ground lists and s * t = u}

u MtIST,

MLisT = {list(s) Is is a ground list}.

We shall return to the original program APPEND in Subsection 6.1. Dis
cussion of the semantics of the other two fragments of Prolog is postponed
till Subsections 4.2 and 5.3.

3 Pure Prolog

We now discuss correctness of programs written in the three defined subsets
of Prolog. We start with pure Prolog.

3.1 Termination

First we deal with termination. We present here the approach of Apt and
Pedreschi [AP93] which makes use of the declarative semantics. For sim
plicity we restrict out attention to queries which consist of single atom. We
recall the relevant concepts.

Definition 3.1 A program is called left terminating if all its LD-derivations
starting with a ground query are finite. D

To prove that a program is left terminating, and to characterize the
queries that terminate w.r.t. such a program, the following notions are
introduced.

Definition 3.2

• A level mapping for a program P is a function I I : Bp -+ N from
ground atoms to natural numbers. For A E Bp, IAI is the level of A.

• An atom A is called bounded with respect to a level mapping I j, if I I
is bounded on the set [A]. For A bounded w.r.t. j j, we define jAj, the
level of A w.r.t. 11, as the maximum 11 takes on [A].

• A clause is called acceptable with respect to 11 and I, if I is its model
and for every ground instance A<- A, B, B of it such that I I= A

IAl>IB[.

• A program P is called acceptable with respect to [[and I, if every clause
of it is. o

19

The foll.owing results link the introduced notions.

Theorem 3.3 Let P be acceptable w.r.t. 11 and I. Then for every atom A
bounded w. r. t. I I all LD-derivations of P U {A} are finite. In particular, P
is left terminating. 0

Theorem 3.4 Let P be a left terminating program. Then for some level
mapping I I and an interpretation I of P

(i} P is acceptable w. r. t. 11 and I,

(ii} for every atom A, all LD-derivations of P U {A} are finite iff A is
bounded w. r. t. 11 · 0

The model I represents the limited declarative knowledge needed to prove
termination. Note that we can only handle termination of a query w.r.t. a
left terminating program and we use here the notion of so-called "universal"
termination, according to which the query terminates irrelevant of the clause
ordering. We found that this strong form of termination is satisfied by most
pure Prolog programs and queries considered in standard books on Prolog.

Example

To see how this method can be applied considered the following problem
from Coelho and Cotta [CC88, page 193] and its formalization in Prolog:
arrange three l's, three 2's, .. ., three 9's in sequence so that for all i E: [1, 9]
there are exactly i numbers between successive occurrences of i.

sublist(Ys, XsYsZs) f- app(Xs,YsZs,XsYsZs), app(Ys,Zs,YsZs).

sequence([_,_]).

question(Ss) <-

sequence(Ss),
sublist([1,_,1,_,1], Ss),
sublist([2,_,_,2,_,_,2], Ss),
sublist([3,_,_,_,3,_,_,_,3], Ss),
sublist([4,_,_,_,_,4,_,_,_,_,4], Ss),
sublist([5,_,_,_,_,_,5,_,_,_,_,_,5], Ss),
sublist([6,_,_,_,_,_,_,6,_,_,_,_,_,_,6], Ss),
sublist([7,_,_,_,_,_,_,_, 7,_,_,_ 1 _,_ 1 _,_,7], Ss),
sublist([8,_,_,_,_,_,_,_,_,8,_,_,_,_,_,_,_,_,8], Ss),
sublist([9,_,_,_,_,_,_,_,_,_,9,_,_,_,_,_,_,_,_,_,9], Ss).

augmented by the APPEND-T program.

Call the above program SEQUENCE-!. Consider the following function 11 from
ground terms to natural numbers:

l[xlxs]I = lxsl + 1,
lf(x1,. . ., Xn)I == 0 if f ::J [.1. J.

Then for a list zs, j:vsj equals its length.
It is straightforward to verify that SEQUENCE-T is acceptable w .r. t. the

level mapping 11 defined by:

I question(xs) I = 57,

I sequence(xs) I = 0,

jsublist(xs, ys)I \xs\ + \ys\ + 2,

iapp(xs,ys,zs)I = min(lxsj, \zsl) + 1,

\list(xs)I = 0,

and any model I of SEQUENCE-T such that for a ground s

I \= sequence(s) iff s is a list of 27 elements.

Also, the query question(Ss) is bounded w.r.t. I I and consequently all
LD-derivations of SEQUENCE-T U { question(Ss)} are finite.

3.2 Partial Correctness

Our approach to partial correctness is based on the use of the least Her brand
model Mp. We restrict our attention to left terminating programs. This
explains why we treated termination. fust. The following observation of Apt
and Pedreschi [AP93] explains why for a left terminating program it is easier
to verify that a Herbrand interpretation is its least Herbrand model.

Definition 3.5 An interpretation I for a program P is called supported if
for every ground atom A such that I I= A there exist B1, ... , Bn such that
A<- B1, .. . , Bn E ground(P) and I\= B1 /\ ... /\ Bn· 0

Lemma 3.6 For a left terminating program P, Mp is the unique supported
Herbrand model of P. 0

For all programs considered here, and for plenty of other "correctly
typed" programs, checking that a given Herbrand interpretation is a sup
ported model is straightforward. Consequently, we omit the proofs that a
given Herbrand interpretation is the least Herbrand model of a given left
terminating program. Of course, it is legimitate to ask how one finds a
candidate for the least Herbrand model. According to our experience it is
usually the "specification" of the program limited to ground queries. We
do not consider here the problem in what language it is most convenient to
write this specification.

In the sequel it will be more convenient to work with the instances of
the queries in.stead with the substitutions. More precisely, we introduce the
following definition.

Definition 3. 7 Consider a program P.

21

(i) We say that Q' is a correct instance of the query Q, if for some correct
answer substitution 8 for Q, Q' = QO, that is if Q' is an instance of
Q and P F= Q'.

(ii) We say that Q' is a computed instance of the query Q if for some
computed answer substitution(} for Q, Q' = QO. D

Clearly a unique correct (resp. computed) answer substitution can be
computed from a query and its correct (resp. computed) instance in a
straightforward way. So considering instances instead of substitutions is
just a matter of convenience. Using this terminology the usual soundness
and strong completeness properties of logic programs, now restricted to the
leftmost selection rule, can be formulated as follows.

Theorem 3.8 (Soundness of LD-resolution) Consider a program P
and a query Q. Every computed instance of Q is a correct instance of Q. D

Theorem 3.9 (Strong Completeness of LD-resolution) Consider a
program P and a query Q. For every correct instance Q' of Q there exists a
computed instance Q" of Q such that Q" ~ Q'. D

Let us introduce now the following notation. For a program P, a query
Q and a set of queries Q, we write

{Q} p Q

to denote the fact that Q is the set of computed instances of Q. { Q} P Q
should be read as: "the program P transforms Q into the set of its computed
instances Q". In particular, when Q is a singleton, say Q = {Q'}, we have
{ Q} P { Q'} which not accidentally coincides with the syntax of correct
ness formulas in Hoare style approach to verification of imperative programs
(see e.g. Apt and Olderog [A091]). We now present an easy method of
establishing constructs of the form {Q} P Q.

Theorem 3.10 Consider a program P and a query Q. Suppose that the set
Q of ground correct instances of Q is finite. Then

{Q} p Q.

Proof. First note that

every correct instance Q' of Q is ground. (1)

Indeed, otherwise, by the fact that the Herbrand universe is infinite, the set
Q would be infinite.

Consider now Q1 E Q. By the Strong Completeness Theorem 3.9 there
exists a computed instance Q2 of Q such that Q2 :5 Q1. By the Sound
ness Theorem 3.8 Q2 is a correct instance of Q, so by (1) Q2 is ground.
Consequently Q2 =Qi, that is Q1 is a computed instance of Q.

Conversely, take a computed instance Q2 of Q. By the Soundness The
orem 3.8 Q2 is a correct instance of Q. By (1) Q2 is ground, so Q2 E Q. D

22

Examples

Note that for a query consisting of just one atom A the assumption of the
theorem can be rephrased as "the set [A] n Mp is finite". This simplifies
checking its validity and explains the relevenace of Mp in our approach. As
the examples below indicate, the above theorem is quite useful.

First consider the APPEND-! program and three of its uses.

(i) Given ground lists s,t,u we have app(s, t, u) E MAPPEND-T iff s * t = u.
Consequently

• whens*t = u, {app(s,t,u)}APPEND-T{app(s,t,u)},

•when s*t ::f u, {app(s,t,u)} APPEND-! 0.

(ii) Given ground lists s,t, the set [app(s,t,Zs)] n MAPPEND-T consists of
just one element: app(s,t,s*t). Thus

{app(s, t, Zs)} APPEND - T {app(s, t, s H)}.

(iii) Finally, given a ground list u, we have

[app(Xs, Ys, u)]nMAPPEND-T = {app{s, t, u) Is, t are ground lists, s * t = u}.

But each list can be split only in finitely many ways, so the set [app(Xs, Ys, u)]
nMAPPEND-T is finite. Thus

{app(Xs, Ys, u)} APPEND - T {app{s, t, u) I s, t are ground lists, s * t = u}.

A more interesting example is the SEQUENCE-! program. Call a list of 27
numbers satisfying the description of the sequence a desired list. We leave
to the reader checking that

MsEQUENCE-T = MAPPEND-T

U { sublist(s, t) J s, t are ground lists, s is a sublist of t}

U {sequence(s) Is is a ground list oflength 27}

U {question(s) Is is a desired list}.

Thus [question{Ss)] n MsEQUENCE-T = {question(s) Is is a desired list}.
But the number of desired lists is obviously finite (in fact, there are 6 of
them). Consequently,

{question(Ss)} SEQUENCE -T {question(s) Is is a desired list}.

Exercise 1 Consider the following REVERSE-! program:

reverse(Xs, Ys) ._. reverse...dl(Xs, Ys-0).
reverse...dl([X I Xs], Ys-Zs) ._. reverse...dl(Xs, Ys-[X I Zs]).
reverse...dl(O, Xs-Xs) ._. list(Xs).

augmented by the LIST program.

Given a list s let rev (s) denote its reverse. Prove that for a grGmld list s

{reverse(s, Ys)} REVERSE - T {reverse(s, rev(s))}

by checking that reverse..dl (s, t-u) E MP.EVERSE-T iff s, t, u are ground
lists.and rev(s)*u = t. D

Clearly, the above approach to partial correctness cannot be used to
reason about queries with "non-ground inputs", like app(s,t,Zs) where
s,t are non-ground lists, since [app(s,t,Zs)] n MAPPEND-T is then infinite.
The treatment of such queries needs to await another paper.

4 Pure Prolog with Arithmetic

We now move on to the study of the second subset of Prolog, namely pure
Prolog with arithmetic. The previous approach to termination can be readily
applied to this subset - it suffices to use level mappings which assign to
ground atoms with arithmetic relations the value 0. We refer to Apt and
Pedreschi [AP93] for a proof that QUICKSORT is left terminating and that for
a list tall LD-derivations of QUICKSORT U {qs(t, Ys)} are finite.

4.1 Absence of Errors

To deal with errors we provide some proof theoretic means to prove absence
of runtime errors for desired queries. We found it convenient to use the no
tion of a well-typed program recently proposed by Bronsard, Lakshman and
Reddy [BLR92] (where, unfortunately, it is called a well-moded program).
It allows us to ensure that the input positions of the selected atoms remain
correctly typed during the program execution. We recall here the definitions.
We follow here the presentation of Apt and Etalle [AE93].

We start with the notion of a mode used to define input and output
positions of a relation.

Definition 4.1 A mode for an n-ary relation symbol p is a function mp from
[1, n] to the set { +, -}. If mp(i) ='+',we call i an input position of p and
if mp(i) = '-',we call i an output position of p (both w.r.t. mp). A moding
is a collection of modes, each for a different relation symbol. D

The definition of moding assumes one mode per relation in a program.
Multiple modes may be obtained by simply renaming the relations. When
every considered relation has a mode associated with it, we can talk about
input positions and output positions of an atom.

Next, we introduce types. The following very general definition is suffi
cient for our purposes.

Definition 4.2 A type is a decidable set of terms closed under substitution.
0

-

By a typed term we mean a construct of the form s : S where s is a term
and S is a type. Given a sequence s : S = s1 : S1, ... , sn : Sn of typed terms
we writes ES if for i E [1, n] we have Si E Si.

Certain types will be of special interest below:
U - the set of all terms,
List - the set of lists,
Gae - the set of of gae's,
ListGae - the set of lists of gae's.
From now on we fix a specific set of types, denoted by Types, which

includes the above ones. We also associate types with relation symbols.

Definition 4.3 A type for an n-ary relation symbol p is a function tp from
(1, n] to the set Types. If tp(i) = T, we call T the type associated with the
position i of p. Assuming a type tp for the relation p, we say that an atom
p(s1 , • •• ,sn) is coTTectly typed in position i if Si E tp(i). D

We now assume that every considered relation has a mode and a type
associated with it, so we can talk about types of input positions and of
output positions of an atom. An n-ary relation p with a mode mp and type
tp will be denoted by

p(mp(l): tp(l), ... ,mp(n): tp(n)).

For example, part(+ : Gae, + : ListGae, - : ListGae, - : ListGae) denotes
a relation part with four arguments: the first position is moded as input
and typed Gae, the second position is moded as input and typed ListGae,
and the third and fourth positions are moded as output and typed ListGae.

Well-Typed Programs

The notion of well-typed queries and programs relies on the concept of a
type judgement.

Definition 4.4

• A type judgement is a statement of the form s : S ::} t : T.

• A type judgement s: S ::} t : T is true, notation: I= s : S ::} t : T,
if for all substitutions 6, s9 ES implies t9 ET. O

For example, the type judgement z : Gae, l : ListGae => [z I l] : ListGae is
true.

To simplify the notation, when writing an atom as p(u: S, v: T) we now
assume that u : ~ is a sequence of typed terms filling in the input positions
of p and v : T is a sequence of typed terms filling in the output positions of
p.

The following notion is due to Bronsard, Lakshman and Reddy [BLR92].

Definition 4.5

• A query P1(i1 : Ii, 01 : 01), ... ,pn(in: In, On: On) is called well-typed
iffor j E [1,n]

• A clause

is called well-typed if for j E [1, n + 1]

• A program is called well-typed if every clause of it is. 0

In general it is undecidable whether a program is well-typed. However,
recently Aileen and Lakshman [AL93] showed that this problem is decidable
for a large class of types which includes the ones studied here.

Bronsard, Lakshman and Reddy [BLR92] noticed the following persis
tence property of the notion of being well-typed.

Lemma 4.6 An LD-resolvent of a well-typed query and a well-typed clause
that is variable disjoint with it, is well-typed. D

This allows us to draw the following important conclusion.

Corollary 4. 7 Let P and Q be well-typed, and let ~ be an LD-derivation of
P U { Q}. All atoms selected in~ are correctly typed in their input positions.

Proof. A variant of a well-typed clause is well-typed and the first atom of
a well-typed query is correctly typed in its input positions. D

To see the usefulness of this corollary let us return to the QUICKSORT
program. To prove absence of errors we start by typing the relation qs in
the way reflecting its use, so qs(+ : ListGae, - : ListGae), and the built
in's > and :::; in such a way that the above corollary can be applied so
> (+: Gae,+: Gae), :::; (+: Gae,+: Gae).

We now complete the typing in such a way that QUICKSORT is well-typed:
part(+ : Gae, + : ListGae, - : ListGae, - : ListGae),
app(+ : ListGae, + : ListGae, - : ListGae).

Assume now that sis a list of gae's. By Corollary 4. 7 we conclude that all
atoms selected in the LD-derivations ofQUICKSORT U {qs(s, t)} are correctly
typed in their input positions. In particular, when these atoms are of the
form u > v or u :::; v, both u and v are gae's. Thus the LD-derivations of
QUICKSORT U {qs{s,t)} do not end in an error.

Exercise 2 Consider the LENGTH program:

length([H I Ts] , N) <- length(Ts, M), N is M+1.
length([], 0).

Prove that for a ground list t

{length(t, N)} LENGTH {length(t, It!)}.

4.2 Partial Correctness

0

When dealing with partial correctness of programs that use arithmetic rela
tions we have to remember that to each program we added infinitely many
clauses which define the used arithmetic relations. Both the Soundess Theo
rem 3.8 and the Strong Completeness Theorem 3.9 remain valid for programs
with infinitely many clauses, however completeness does not hold anymore
in presence of arithmetic relations. Indeed, we have P I= X < Y{X/1, Y/2}
for any program P that uses <, whereas the LD-derivations of P U {X < Y}
end in an error. Also Theorem 3.10 does not hold then, as the query X < 2
shows. Still, the following version of this theorem can be used for proofs of
partial correctness.

Theorem 4.8 Consider a program P and a query Q. Assume that the LD
deri11ations of PU { Q} do not end in error. Suppose that the set Q of ground
correct instances of Q is finite. Then

{Q} p Q.

Proof. Under the assumptions of the theorem both the Soundess Theorem
3.8 and the Strong Completeness Theorem 3.9 remain valid. For the com
pleteness theorem this is not obvious, since it usually relies on the Lifting
Le=a which not does not hold now. However, the admirably short and
elegant proof of Stark [Stii.90] does not use the Lifting Lemma and carries
through. Consequently, the proof of Theorem 3.10 carries through, as well.

0

To apply this theorem let us return to the QUICKSORT program. We
deal here with its "correctly typed" version QUICKSORT-T obtained by using
APPEND-! instead of APPEND and in which the last clause defining the part
relation is replaced by

part (X, 0 , [] , []) <- X ~ X.

This forces the first argument of part to be a gae. (Without this change the
query qs ([s], Ys) would succeed for any s.)

Below we use the following terminology. An element a partitions a list
of gae 's s into ls and bs if a is a gae, ls is a list of elements of s which are
< a and bs is a list of elements of s which are ;?: a.

By extending the previously considered typing by list (+: ListGae) we
can conclude that for a list of gae's s the LD-derivations of QUICKSORT-T U
{qs(s, Ys)} do not end in error. Moreover, the previously given argument
about the termination of QUICKSORT is also valid for QUICKSORT-T .

It is easy to check that

MqurcKsoRT-T = MAPPENo-r u M> u Ms

U {part(a, s, ls, bs) I s, ls, bs are lists of gae's and
a partitions s into ls and bs}

U {qs(s, t) Is, tare lists of gae's and
t is a sorted permutation of s}.

For a list of gae 's s the set [qs (s, Y s)] n M QUICKSDRT-T consists of just one
element: qs (s, t), where t is a sorted permutation of s. Consequently, by
Theorem 4.8

{qs(s,Ys)} QUICKSORT-T {qs(s,t)}.

5 Pure Pro log with Negation

Finally, we deal with the third subset of Prolog, namely pure Prolog with
negation. We call programs written in this subset general programs.

5.1 Absence of Floundering

To prove absence of floundering w .r. t. leftmost selection rule we use the no
tion of a well-moded program, is essentially due to Dembinski and Maluszyn
ski [DM85]. We generalize it here to general programs. Assume that every
considered relation has a mode associated with it. To simplify the notation,
when writing an atom as p(u, v), we now assume that u is a sequence of
terms filling in the input positions of p and that v is a sequence of terms
filling in the output positions of p. Below O stands for ..., or for the empty
string.

Definition 5.1

• A general query Op1 (s1, ti), ... , 0Pn(sn, tn) is called well-moded if for
i E [1, n]

i-1

Var(si) ~ LJ Var(tj)·
j=l

28

• A general clause

po(to, sn+l) +-- 0 P1(si, ti), · · ., 8Pn(sn, tn)

is called well-moded if for i E [1, n + l]

i-1

Var(si) ~ LJ Var(tj)·
j=O

• A general program is called well-moded if every clause of it is.

This definition will be useful later.

0

Definition 5.2 A general program is called non-floundering if no LDNF
derivation starting in a ground general query flounders. D

The following result is due to Apt and Pellegrini [AP92] and, indepen
dently, Streetman [Str93].

Theorem 5.3 Consider a well-moded general program P and a well-moded
general query Q. Suppose that all relations used in negative literals of P
and Q are moded completely input. Then P U { Q} does not flounder. In
particular, P is non-floundering. 0

Example

To see the use of this theorem consider the general program TRANS-T which
computes the transitive closure of a binary relation. Such a relation is rep
resented below as a ground list of edges. In turn, an edge from a to b is
represented by a. list [a, b J.

trans(X, Y, E, Avoids) +-- list(Avoids), roember([X, Y], E).
trans(X, Z, E, Avoids) +--

roember([X, Y], E),
-, member(Y, Avoids),
trans(Y, Z, E, [Y I Avoids]).

roember(X, [YI Xs]) +-- member(X, Xs).
member(X, [X I Xs]) +-- list(Xs).

augmented by the LIST program.

In a typical use of this program in order to check that [x, y] is in the
transitive closure of the binary relation e, one evaluates the query trans (x,
y, e, [x]).

With the moding trans (- , - , +, +) , member (+, +) for the occurrence of
member in the negative literal -, member (Y, A voids), and member (- , +) for
the other occurrences of member, TRANS-T is well-moded. Thus for e, s
ground, TRANS-TU {trans(a,b,e,s)} does not :flounder. Jn particular
TRANS-T is non-floundering. '

5.2 Termination

To deal with termination we use the approach Apt and Pedreschi [AP93]
which generalizes the method of Subsection 3.1 to general programs.

Definition 5.4 A general program is called left terminating if all its LDNF
derivations starting with a ground query are finite. O

Given a general program P, we now define its "negative part" p

Definition 5.5 Let P be a general program and p, q relations.

• p refers to q iff a general clause in P uses p in its head and q in its
body.

• p depends on q is the reflexive, transitive closure of refers to.

• N egp is the set of relations which are used in a negative literal in P,

• N egj., is the set of relations on which the relations in N egp depend.

• p- is the set of general clauses in P in whose head a relation from
N egj., is used. D

Definition 5.6

• Given a level mapping I I, we extend it to ground negative literals by
putting l•AI = IAI. •A is bounded with respect to 11 if A is.

• A general clause is called acceptable with respect to I I and I, if I is
its model and for every ground instance A +- K, L, M of it such that
I I= K

IAI > ILi.
• A general program P is called acceptable with respect to I I and I, if

every general clause of it is and if I is a model of comp(P-). D

The following results relate these notions.

Theorem 5.7 Let P be a general program acceptable w.r.t. 11 and I. Then
for every literal L bounded w.r.t. I I all LDNF-derivations of PU {L} are
finite. In particular, P is left terminating. D

Theorem 5.8 Let P be a left terminating, non-floundering general program.
Then for some level mapping I I and an interpretation I of P

(i) P is acceptable w.r.t. 11 and I,

{ii} for every literal L all LDNF-derivations of PU {L} are finite iff L is
bounded w. r. t. I I· D

Apt and Pedreschi [AP93] showed that TRANS-T is acceptable w.r.t. a
level mapping I I such that ltrans(a, b, e, s)I is a function of e and s, and
an interpretation I. Thus for e, s ground all LDNF-derivations of TRANS-T

U {trans(a,b,e,s)} are finite. In particular, TRANS-T is left terminating.

5 .3 Partial Correctness

When reasoning about partial correctness of general programs we face the
obvious problem of determining their declarative semantics. We solve this
problem by restricting our attention to a specific class of general programs.
The notion of a supported interpretation extends to general programs in an
obvious way. The following result of Apt and Pedreschi [AP93] is crucial.

Theorem 5.9 Consider a left terminating, non-floundering general pro
gram P. Then

(i) P has a unique supported Herbrand model, Mp,

(ii) Mp is a model of comp(P),

(iii) for a ground general query Q such that P U { Q} does not flounder,
Mp f= Q ifj there exists a successful LDNF-derivation of PU {Q}. O

As in the case of pure Prolog programs, it is usually straightforward
to check that a Herbrand interpretation is a supported model of a general
program.

We now need to revise Definition 3. 7.

Definition 5.10 Consider a general program P and a general query Q.
We say that Q' is a correct instance of Q, if Q' is an instance of Q and
comp(P) f= Q'. D

The definition of a computed instance remains the same. The following
soundness and completeness theorems are of help.

Theorem 5.11 (Soundness of LDNF-resolution) Consider a general
program P and a general query Q. Every computed instance of Q is a correct
instance. of Q. D

Theorem 5.12 (Limited Completeness of LDNF-resolution) Con
sider a left terminating, non-floundering general program P and a general
query Q such that PU {Q} does not flounder. For every ground correct
instance Q' of Q there e:dsts a computed instance Q" of Q such that Q":::; Q'.

Proof. By Theorem 5.9 there exists a successful LDNF-derivation of PU
{Q'}. PU{Q} does not flounder, so we can lift this derivation to a successful
LDNF-derivation of PU { Q} which yields a computed instance Q" of Q such
that Q":::; Q'. o

These theorems are needed to establish the following result.

Theorem 5.13 Consider a left terminating, non-floundering general pro
gram P and a general query Q such that P U { Q} does not flounder. Suppose
that the set Q. of ground correct instances of Q is finite. Then

{Q} p Q.

31

Proof. Analogous to the proof of Theorem 3.10. 0

As in the case of pure Prolog programs, for a query consisting of just one
atom A the assumption of the theorem can be rephrased (thanks to Theorem
5.9) as "the set [A] n Mp is finite".

We now show how to apply this theorem to the program TRANS-T. In
the previous two subsections we proved that TRANS-T is left terminating and
non-floundering. Adopt the following terminology. Given a list e, a path in
e from a to b is a sequence a1 , ... , an (n > 1) such that

- [a;, ai+il E e for i E [1, n - 1],
- ai =a,
- an= b.

An interior of a path a1, ... , an (n > 1) is the set {a2, .. ., an-1}. A path
a 1 , ... , an (n > 1) is called acyclic if the elements of its interior are pairwise
different. A path a1 , ... , an (n > 1) avoids a list s if no element of its
interior is a member of s.

In particular, a path consisting of two elements has an empty interior
and consequently is acyclic and avoids every s.

It is routine to check that

MTRANS-T = MLisT

U { trans(a, b, e, s) I e, s are ground lists, an acyclic path
in e from a to b exists which avoids s}

U {member(a, t) It is a ground list and a E t}.

Given a binary relation e denote its transitive closure bye•. Then [a, b]
E e• iff there exists in e an acyclic path from a to b which avoids [a]. By
Theorem 5.13 we conclude that

• when [a, b] E e*, { trans(a, b, e, [a])} TRANS - T { trans(a, b, e, [a])},

• when [a,b] 'f. e•, {trans(a,b,e,[a])} TRANS-T 0.
Note that [a] can be replaced here by [] or by [a, b] .

Exercise 3 Prove that for a binary relation e

{ trans(X, Y, e, [])} TRANS - T { trans(a, b, e, []) I [a, b] E e*}.

0

6 Conclusions

6.1 Dealing with "Ill-typed" Programs

In our analysis we only dealt with the "correctly typed" programs, i.e. pro
grams named XXX-T. These programs are easier to handle than their corre
sponding "ill-typed" XXX versions, but they are much more inefficient due to
the added "type checks".

82

. "bl t deal directly with the "ill-typed" programs, but the
It 1s possi e 0 • • k d

study of their partial correctness is quite a nuisance, .bec.ause it is ~w ~~
to describe their unique supported Herbrand models m simple and mtwttve

t~herefore we propose the following alternative, which we illustrate on
the program QUICKSORT. Consider the typing of QUICKSORT defined at the
end of Subsection 4.2. Let qs (s, t) be a well-typed query ~d let € be an
LD-derivation of QUICKSORT u { qs(s, t)}. By Corollary 4.7, if the selected
atom is of the form part(s1, s2, s3, s4) then s1 E Gae, and if the selected

atom is oftheformapp(s1,s2,s3) then s2 E List.
Thus in both cases in the corresponding LD-derivation of QUICKSORT-T U

{ qs(s, t)} the inserted "type checks", namely X ;::: X a.nd list (Y), succeed
with the empty computed answer substitution. Consequently, the computed
instances of the query qs(s,t) a.re the same w.r.t. both programs. In
particular, for a list of gae's s we have

{qs(s,Ys)} QUICKSORT {qs(s,t)}.

The same approach can be applied to other programs, including TRANS-T
for which Corollary 4.7 needs to be extended to general programs in the

obvious way.

6.2 Final Remarks

The a.im of this paper was to show that it is possible to reason about cor
rectness of various Prolog programs by means of simple arguments based
on declarative semantics. We hope that this work can form a basis for a
similar study of other languages based on the logic programming paradigm.
It is quite possible that the proposed methods a.re in some instances special
cases of approaches proposed earlier. Our point is that unless the verifica
tion method is easy and amenable to informal use, it will be ignored. So
searching for simplicity is worth the effort.

We conclude by stating a number of, perhaps controversial, opinions.

1. A Prolog program written in one of the considered subsets is declarative
if its correctness for the class of queries "of interest" can be established by
means of static analysis and using first-order semantics. In this pa.per we
showed how to reduce the latter to a simple study of supported Herbrand
models.

2. From this viewpoint some pure Prolog programs are not declarative.

3. The following view of (general) left terminating programs ca.n be helpful.
The supported Herbra.nd model uniquely determines ground queries which
succe~d .and terminate w.r.t. the leftmost selection rule. In pure Prolog by
the Liftmg Lemma a.11 generalizations of these ground queries also succeed
: · · ~ut only ~ case of logic programming. In pure Prolog such a genera.1-
1zat1on can fail to terminate, and for the other two subsets it can end in an

33

error or flounder. So first we should think in terms of ground queries and
then "lift" each of them, but "carefully".

4. Assertional proof methods, while helpful, do not reflect the essence of
declarative programming.

5. Correctness of programs that use accumulators and difference lists should
be preferably dealt with by means of program transformations.

6. The treatment of "ill-typed" programs is quite roundabout and justifies a
systematic introduction of types (or sorts) into the basic framework of logic
programming.

7. It would be interesting to develop a theory of correctness of non-termina
ting Prolog programs based on their declarative semantics (like the one de
veloped in Chapter 6 of Lloyd [Llo87]).

Acknowledgements

Joint research and discussions with Dino Pedreschi on the subject of verifi
cation of logic programs helped us to clarify the opinions expressed in this
paper. This research was partly supported by the ESPRIT Basic Research
Action 6810 (Compulog 2).

References

[AD92] K.R. Apt and K. Doets. A new definition of SLDNF-resolution.
ILLC Prepublication Series CT-92-03, Department of Mathemat
ics and Computer Science, University of Amsterdam, The Nether
lands, 1992. Accepted for publication in Journal of Logic Program
ming.

[AE93] K. R. Apt and S. Etalle. On the unification free Prolog programs.
In S. Sokolowski, editor, Proceedings of the Conference on Math
ematical Foundations of Computer Science (MFCS 93}, Lecture
Notes in Computer Science, Berlin, 1993. Springer-Verlag. To ap
pear.

[AL93] A. Aiken and T.K. Lakshman. Automatic mode checking for logic
programs. Technical report, Department of Computer Science,
University of Illinois at Urbana Champaign, 1993.

[A091] K.R. Apt and E.-R. Olderog. Verification of Sequential and Con
current Programs. Texts and Monographs in Computer Science,
Springer-Verlag, New York, 1991.

[AP92] K. R. Apt and A. Pellegrini. On the occur-check free Prolog pro
grams. Technical Report CS-R9238, CWI, Amsterdam, 1992. Ac
cepted for publication in ACM Toplas.

[AP93]

[Apt90]

[BD77]

[BLR92]

[BW88]

[CC88]

34

K. R. Apt and D. Pedreschi. Reasoning about. termination of pure

Prolog programs. Information and Computation, 1993. to appear.

K. R. Apt. Logic programming. In J. van Leeuwen, editor, Ha~d

book of Theoretical Computer Science, pages 493-5 7 4. Elsevier,

1990. Vol. B.

R.M. Burstall and J. Darlington. A transformation system for

developing recursive programs. Journal of the ACM, 24(1):44-67,

1977.

F. Bronsard, T.K. Lakslunan, and U.S. Reddy. A framework of

directionality for proving termination of logic programs. In K.R.
Apt, editor, Proc. of the Joint International Conference and Sym

posium on Logic Programming, pages 321-335. MIT Press, 1992.

R. Bird and Ph. Wadler. Introduction to Functional Programming.

International Series in Computer Science, Prentice Hall, Engle-
wood Cliffs, NJ, 1988.

H. Coelho and J.C. Cotta. Prolog by Example. Springer-Verlag,
Berlin, 1988.

[Cla79] K. L. Clark. Predicate logic as a computational formalism. Res.

Report DOC 79/59, Imperial College, Dept. of Computing, Lon
don, 1979.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design: A Founda
tion. Addison-Wesley, New York, 1988.

[CT77] K. Clark and S-A. Tii.rnlund. A First Order Theory of Data and

Programs. In Information Processing '77, pages 939-944. North
Holland, 1977.

[Der90] P. Deransart. Proof methods of declarative properties of definite

programs. Technical Report 1248, INRIA - Rocquencourt, 1990.

[Dev90] Y. Deville. Logic Programming. Systematic Program Development.

International Series in Logic Programming. Addison-Wesley, 1990.

[DFT91] P. ~eransart, G. Ferrand, and M. Teguia. NSTO programs (not

subject .to occur-check). In V. Saraswat and K. Ueda, editors,

Proceedings of the International Logic Symposium, pages 53:~-54 7.
The MIT Press, 1991.

[Dij76] E W
· · Dijkstra. A Discipline of Programming. Prentice-Hall, En-

glewood Cliffs, N.J., 1976.

[DM85]

[Gri81]

35

P. Dembinski and J. Maluszynski. AND-parallelism with intelli
gent backtracking for annotated logic programs. In Proceedings of
the International Symposium on Logic Programming, pages 29-38,
Boston, 1985.

D. Gries. The Science of Programming. Springer-Verlag, New York,
1981.

:Hog84] C.J. Hogger. Introduction to Logic Programming. Academic Press,
London, 1984.

::Kun88] K. Kunen. Some remarks on the completed database. In R.A.
Kowalski and K.A. Bowen, editors, Proceedings of the Fifth Inter
national Conference on Logic Programming, pages 978-992. The
MIT Press, 1988.

::Kun89] K. Kunen. Signed data depedencies in logic programs. Journal of
Logic Programming, 7:231-246, 1989.

Llo84] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag,
Berlin, 1984.

Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag,
Berlin, second edition, 1987.

J\,1ee86] L. Meertens. Algorithmics - towards programming as a math
ematical activity. In J. W. de Bakker, M. Hazewinkel, and J.K.
Lenstra, editors, Proceedings of the CW! Symposium on Mathemat
ics and Computer Science, volume 1 of CWI Monographs, pages
289-334. North-Holland, 1986.

MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag, New York, 1992.

MT92] M. Martelli and C. Tricomi. A new SLDNF-tree. Information
Processing Letters, 43(2):57-62, 1992.

SS86] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

Stii90] R. Stiirk. A direct proof for the completeness of SLD-resolution.
In E. Borger, H. Kleine Biining, and M.M. Richter, editors, Com
putation Theory and Logic 89, Lecture Notes in Computer Science
440, pages 382-383. Springer-Verlag, 1990.

3tr93] K. Stroetman. A completeness result for SLDNF resolution. The
Journal of Logic Programming, 15:337-357, 1993.

