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''"""'1"""'c in selecting among a col­
""'~ .. .,11rn~<: in a nondetenninistic or 

have received considerable atten~on 
The implications of ~ wide 

have been investigated, U<;;ilHHUV•"" 

rules for showing tennina-
definition (see [Fr] for an 

and further references). For non­
sorne of the versions include 

fwnes:s called justice), strong fairness, 
1md extreme fairness. For CSP [H] and 

models for distributed computing, at ~east s0 rea­
vari:lnt~ have been defined and mvestrgat~d. 

wide of oossibilities leads to a confusing 
selection of 'a particular definition of fairness 

model or language relies almost 
on subjective, implicit criteria. 

three simple semantic criteria which 
which notions are appropriate 

uµcnaL•v"'"" model. The criteria we pro­
equivalence robustness. and 

tN'lhancement. Below we informally explain 
the criteria and the resul IS linking the criteria and the 

ln subsequent sections the fonnal definitions 
<are and the theorems and proofs which lead 
to these results are presented. 

definition of fairness excludes some of the execu­
"unfair" ones) which otherwise would be 

executions of a program according to the basic 
sem:mtks of the computational model. A necessary 

of any definition of fairness for a computa­
tional mi:.1del is to have some legal computation remain 
after !his for every possible program. That 
is, for every program some (finite or infinite) fair 

does exist. Without this requirement, no 
must produce one of the fair 

could correctly treat the fairness. More­
over, since :my reasonable scheduler cannot 'predict' 
the continuations at each point of the computa-

it sheuld be possible to extend a partial computa­
to a fair one. This will be the feasibility criterion, 

and it subsumes the above necessary requirement 

As a example of an unfeasible definition 
of fairness for guarded commands (GC) [D], consider 
the fairness definition: 
all choices (referred to as directions) which are 

often possible must eventually be chosen 
often. 

In l a nonterminating program P is 
shown, for which there is no computation sequence 

!he above definition, even though both direc­
tions are infini!e!y often possible. Thus no scheduler 
c:m be and the fairness notion is not feasible 
for that model. In fact, feasible definitions of such 

equifairness must incorporate the set of choices which 
are jointly enabled at each stage, as in [GFKl]. 

Equivalence Robustness: . . 
The computations of asynchronous, dis_tnbuted ~ystems 
are often modeled by means of mterleavmg the 
(atomic) actions of their component p~ocesse_s. How­
ever it is clear that the order of execution of mdepen­
den( actions in such an interleaving is arbitrary. Thus 
two linear execution sequences which are identical up 
to the order of two independent actions, ~ho~ld be 
equivalent This leads to the second cntenon: a 
definition of fairness is equivalence robust (for a com­
putational model) if it respects ~his ~quivalence. 1:'hat 
is for two infinite sequences which differ by a possibly 
m'finite number of interchanges of independent actions 
(i.e., equivalent sequences), either both are _fair acc?rd­
ing to the given definition, or both are u~fa1:. Agam, a 
more precise definition and an exarrunauon of the 
consequences of this criterion are given in the follow­
ing sections. 

Liveness Enhancement: 
All distributed models assume a fundamental liveness 
property that an action will eventually be executed in 
some process if the system is not deadlocked. A 
justification for adding an additional liveness require­
ment of some sort of fairness -- which complicates the 
scheduling and may cause difficulties in defining a pre­
cise semantics or proving correctness-- is that there 
exists a program which has some liveness property 
which it would not have without the additional require­
ment. This criterion is termed liveness enhancement in 
order to emphasize that additional liveness assumptions 
will hold for some programs. As is shown in the sequel, 
this also depends on the particular model being con­
sidered, and is sensitive to fine details of the model. 
Some fairness assumptions cannot force a communica­
tion to occur in a model if it did not have to occur 
under the basic liveness property. These assumptions 
are not liveness enhancing for that model. 

It is sufficient to consider the impact of fairness 
assumptions on termination only, because such 
assumptions are known not to affect partial correctness 
or safety properties, and other liveness properties can 
be reduced to termination for derived programs 
[GFMdR]. 

P::x:=l;*[true -1 x:=x+l 

[] x mod 3 = 0 ~ x :=x+ 1 ]. 

Figure 1 
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In the sequel, we appraise several fairness 
definitions and computational models under the criteria 
suggested above. These are only examples of the 
application of our approach. Readers are invited to 
apply the same, or their otherwise preferred, criteria to 
their favorite fairness definitions and computational 
models. 

2. Formal definitions 

As mentioned, an operational semantics of the 
models we consider may be expressed in terms of the 
possible interleaved computations of a program, i.e., as 
sequences of states (recording the values of all the vari­
ables) and the atomic actions leading from state to 
state. A configuration is a pair consisting of an 
action and a state. Each computation can be viewed as 
an initial state followed by a sequence of 
configurations. An atomic action is either a local 
action of one process, or a joint action when the 
communicationlsynchronization mechanism is involved 
(except when sending is a local action as in a nonblock­
ing send model). An action is enabled (in a 
configuration) if it can serve as the next action exe­
cuted (where the exact definition is model dependent). 

We shall only consider models in which every 
joint action is followed by a local action (possibly a 
skip, having no effect on the state), and in which a 
choice between a local action and a joint action is never 
possible. These restrictions guarantee that the 
definitions of fairness considered here are immune to 
additions of local actions, like skip, in processes. In 
the terminology of [L2] we might say that these 
definitions are immune to stuttering, i.e., to repeti­
tions of a configuration in a computation. The 
relevance of these assumptions is further discussed 
later. 

Examples of the above-mentioned approach to 
defining semantics may be seen in [P] for CSP, and in 
[HLP] for a fragment of Ada. However, it is also rea­
sonable, and even attractive to consider a partial order 
semantics (see [Ll], [R], or [DM]) expressing only the 
essential causal relationships among the atomic actions 
(both local and joint). Clearly, for every such partial 
order, there is a uniquely defined equivalence over 
interleaved computations: if 7t and p are interleaved 
computations, then 1t = p is defined as: 7t can be 
obtained from p by (possibly infinitely many) simul­
taneous transpositions of two independent (i.e., not 
related by the partial order) atomic actions . 

Our initial liveness assumption, referred to as the 
minimal progress property [OL], is somewhat stronger 
than the fundamental liveness property mentioned in 
the introduction. According to this assumption, every 
enabled local action is eventually executed. In the 
sequel, all computations are always assumed to satisfy 
the minimal progress pr?perty. Thus, the focus of 
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additional fairness assumptions is on interprocess com­
munication. 

Given a (distributed) program P, comp{P) is the 
set of interleaved computations generated by P under 
the basic semantics of the model. A fairness definition 
D is a mapping from programs to sets of computations 
such that for each program P, D(P) is a subset of 
comp(P), and includes all finite computations in 
comp{P). A necessary condition for feasibility of D is 
that for all programs P, D(P) is nonempty. As already 
explained, in order to prevent a scheduler from "paint­
ing itself into a comer'' with no possible continuation, 
we define 
D is feasible iff every finite initial segment of an inter­
leaved computation of a program P can be extended to 
a computation in D(P). 

The other criteria are defined by: 
D is equivalence robust iff for every two computations 
1t and pin comp(P), 
( 1t E D(P) A 1t:::: p) -t p E D(P). 

D is liveness enhancing if there is a program P such 
that comp(P) contains an infinite computation, but all 
computations in D(P) are finite. 

This definition means that P terminates under the 
assumption of D. Because of the possible reduction of 
liveness properties to termination of a derived program, 
this is sufficient to express general liveness enhance­
ment. 

By a projection of a computation 7t on a pro­
cess p, denoted by [7t]p, we mean the result of delet­
ing from 7t all actions m which p is not involved and 
restricting the states to variables of p only. 

The following simple lemma will be useful in the 
sequel. 

Lemma: (projection equality) 
if1t = p, then for each process p, [1t]p =[p]p. 
Note: the converse of this lemma was proved by L. 
Bouge (private communication) for CSP programs. 
We do not need this stronger version. 

3. Results for CSP 

In this section the results concerning the CSP 
model are stated. We consider the language as defined 
in [HJ except that nested parallelism and the distributed 
termination convention are disallowed, and output 
commands may appear in guards. Moreover, the res­
trictions mentioned in the previous section are also 
imposed. The semantics we consider is that of inter­
leaved computation sequences as defined in [P]. Note 
that by this semantics, the execution of a communica­
tion in a guard of a repetition statement results in a 
configuration in which the control of the process is on 
the right hand side of the guard, and the 



communications in the guards of the repetition are not 
enabled in the resulting state. 

In a nondetenninistic guarded commands p:o­
&ram, it is usual to define fairness as some condiu?n 
about the selection of the guards to be executed. I~ dis­
tributed models. more possibilities are open: ~airness 
could be defined over the processes, over the ~o.rnt com­
munication actions, or over some group of JO~n~ com­
munication actions. In the context of CSP, 1t 1s rea­
sonable to define fairness so as to guarantee that an 
action will be taken by each process which satisfies 
some condition, or that each communication satisfying 
a condition will occur, or that one communication will 
occur from each group of communications between 
two processes which also satisfy the condition. 

Once it has been decided what is to be fair, the 
condition for demanding an eventual choice must be 
determined. Two well-known possibilities for CSP, 
(originating from the nondeterministic case [LPS]) are 
weak fairness in which the choice must be possible 
continuously from some point on, or strong fairness in 
which the choice is possible infinitely often. Thus talc­
ing all of the permutations, six notions are obtained. 

StrDl'lg Process (SP) fairness: an infinite computation 
is fair iff each process infinitely often capable of exe­
cuting an atomic action will infinitely often do so. 
Strong Channel (SCh) fairness: an infinite computa­
tion is fair iff each pair of processes infinitely often 
capable of communication with each other do infinitely 
often communicate with each other (so that one of the 
possible communications between them is executed, 
possibly a different one every time). 
Strong Co1T1111unication (SCo) fairness: an infinite 
computation is fair iff each pair of input/output com­
mands (i.e., each specific possibility of communication) 
which is infinitely often jointly enabled is executed 
infinitely often . 

The weak: versions, WP, WCh, WCo, respec­
tively, are obtained by substituting "continuously from 
some point on" for the first occurrence of "infinitely 
often". 
Furth7nnore, it is stipulated that all finite computations 
are farr w.r.t all fairness definitions. 

The consequences of the following propositions 
are that although all six possibilities are feasible, only 
Strong Process fairness is both equivalence robust and 
liveness enhancing for CSP: all types of Wealc fair­
ness are not liveness enhancing, and Strong Communi­
cation or Channel fairness are not equivalence robust. 

. ~n [Fd.R] ~d [Kd.R] six related fairness 
definitions are considered and compared in terms of 
"~tren~th" in causing termination. Those definitions 
diff~r tn t?at the .channel level is replaced by a level 
dea11.ng. with a ~ture of joint and local actions, the 
~tncuo~s we unpose are not applicable, and wealc 
fairness is defined differently. Nevertheless, using 

arguments similar to theirs, the following implications 
can be shown to hold (and the proof will not be given 

here): 

Theorem: (CSP-hierarchy) 

WP -tSP 
J, J_ 

WCh -tSCh 
J, J.. 

WCo -tSCo 

We add the following results: 
Proposition 1: the six definitions of fairness for CSP 
are all feasible for the model. 
Proof idea: For each definition an explicit scheduler is 
exhibited and it is shown that any prefix of a legal com­
putation can be generated by the scheduler. Moreover, 
if a prefix of a computation was generated by the 
scheduler, then the scheduler will generate a continua­
tion which satisfies the condition for being in D. This 
idea has been used implicitly in [AOJ and explicitly in 
[OA]. 

As an illustration of this technique, consider 
Strong Communication fairness. Given a CSP pro­
gram P; associate with each of the atomic actions of P 
a distinct variable, called a priority variable. The 
scheduler can be viewed as a program executed in 
parallel to P, having access to all variables in P for 
inspection. It can also determine the control locations 
of all processes in P . The scheduler interacts with P 
by executing the program section SELECT, which 
determines the next action in the computation of P . 
After the execution of the selected action by P , the 
scheduler regains control, unless P has tenninated or 
entered a deadlocked configuration. 

All priority variables are initialized to arbitrary 
nonnegative integer values. The program SELECT is 
displayed in Figure 2. 

Because of the use of random assignment and 
possible nonuniqueness of the minimal priority vari­
able, the scheduler itself is nondeterministic. The fol· 
lowing.Jaithfulnes~ theorems hold, whose proofs 
are vanants on those m [AOJ and in [Fr, eh. 3], and of 

for each atomic action do 
if it is en~bled then decrement priority by I; 

select for execut10n an enabled action with a minimal 
value for its priority variable; 

reset the priority variable of the selected action to 
an arbitrary nonnegative integer value 

Figure 2: SELECT 
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more abstract results in [OA]. 

Theorem: (Faithfulness) 
1. Every computation of P generated by the scheduler 
is SCP. 
2. Every SCP communication of P can be generated 
by the scheduler. 

Proposition 2: Only Weak Communication, Weak 
~h~~el, and Strong Process fairness (from the six pos­
sibilities) are equivalence robust for CSP. 
Proof idea: We show that Weak Process fairness is not 
equi~alence robust by exhibiting two interleaving com­
putations for a program (Figure 3), a variant of the Din­
ing Philosophers, with five cyclically arranged 
processes, each able to communicate with its immedi­
ate neighbors. The two computations are equivalent but 
one is Weak:: Process fair and the other is not. This 
o_ccurs because in one computation the middle process 
(i.e., p 2 ) could communicate in every state with at 
least one of its neighbors, but does not, leading to an 
unfair computation, while in the other, there are an 
infinite number of states in which the middle process 
cannot communicate or otherwise advance at all 
because both partners are communicating elsewhere'. 
Thus in the second computation the middle process' 
noncommunication does not violate the weak fairness 
condition. 

The first computation consists of an indefinite 
repetition of the following finite segment 
1) po and p 1 communicate. 

P:: [pol I··· I lp4] 

where 

Pi:: li :=true; ri :=false; 

* [pi-1?li -7 

[li /\ ri -7 eatD-,(li /\ ri) -7 skip] 

DPi+l ?ri -7 

[Ii /\ ri -7 eatD-,(li /\ ri) -7 skip] 

[]li ;pi-I !true -7 !(=false 

] . 

Figure 3 
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2) po executes its local action. 
3) p 1 executes its local action. 
4) p 3 and p 4 communicate. 
5) p 3 executes its local action. 
6) p 4 executes its local action. 

The second computation consists of the indefinite 
repetition of the finite segment in which the same 
eve~ts take place in the order 1), 4), 2), 3), 5), 6). Here, 
P2 is not enabled after step 4), where all its partners 
"passed the arrow" and are unavailable for communica­
tion. The whole computation is thus rendered Weak 
Process fair. 

Similar examples may be constructed for SCh and 
SCo fairness. 

It is easiest to show that SP fairness is 
equivalence robust for CSP by considering the unfair 
computations. If 7t is Strong Process unfair, then from 
some point on there is a process p which is infinitely 
often enabled for a joint action but is never executed. 
Thus p is continuously available for the communica­
tion, since it does nothing else. Here the restriction to a 
model where local actions are not nondeterministic 
alternatives to communications is essential. Now con­
sider any equivalent computation p. By the projection 
equality lemma, in this computation as well, from some 
point on p is continuously available for a joint action. 
Again, by the same lemma, there are infinitely many 
states in which the possible partner of p could have 
communicated with p . Thus in this case also, p is SP 
unfair. WCo and WCh fairness may be treated simi­
larly. 

Proposition 3: Only Strong Communication, Strong 
Channel, and Strong Process fairness are liveness 
enhancing for CSP. 
Proof (fragment): We show that Weak Process fairness 
does not enhance liveness for CSP. By similar (but 
simpler) reasoning it may be shown that WCh and 
WCo also do not. For this task we need to demon­
strate that if there is any infinite interleaved computa­
tion 1C for a program P, there is also an infinite WP 
fair computation of P , so that the fairness assumption 
does not allow proving termination of additional pro­
grams. Obviously, if 7t is WP fair, we are done. Other­
wise, let A be the set of processes which are activated 
in 7t only finitely often. Now a new computation p will 
be constructed from 7t. The computation p will be 
identical to 7t up to the point where all the processes in 
A have executed all of their actions. Then we insert 
between every two configurations of computation 7t the 
configuration resulting from an activation from each 
process of A in an action not involving a process from 
outside A, whenever possible. The resulting computa­
tion can still be WP unfair as some process p from A 
can, from some point onwards, continuously be ready 
to communicate only with processes not in A. To 



handle this situation we first introduce a number of 
notions. 

Given a computation and a collection B of 
processes, call a process p B-enabled if, from some 
point onward, it can continuously communicate with a 
process in B. By a chunk of a computation we mean a 
fragment consisting of an execution of a sequence of 
local actions belonging to a pair of processes, together 
with a communication between these two processes. A 
process is mute in a configuration c in a computation 
if it does not participate in any communication after c . 
A state is good (in some computation) if it either is an 
initial state of a chunk, or it results from an action in a 
mute process. 

Lemma: (disabling) 
Consider a computation 1t in which all processes in a 
collection B are infinitely often activated. There exists 
an equivalent computation p, in which no process is 
B-enabled. 
Proof: For each process in tum defer its local actions in 
it maximally. In such a way, an equivalent computation 
p is obtained, which consists of a sequence of chunks, 
possibly interleaved with actions from mute processes. 
This computation has infinitely many good states. Con­
sider any good state in which each process from B was 
activated at least once. In such a state, the control in 
each process in B is either just after the communication 
belonging to its most recently executed chunk, or just 
after a local action in case it is mute. In both cases (by 
the restrictions imposed above and by the definition of 
a mute process) none of the processes in B can com­
municate in the considered state. This establishes the 
claim and thereby the proposition. 

As a consequence of the proposition, the classes 
of terminating programs for all three weak levels coin­
cide, in contrast to the proper inclusion shown in 
[KdR]. The difference seems to be due to the fact that 
their notion of "Weak" still involves an element of 
"infinitely often" enabled. Ours stresses that "continu­
ously" enabled really means that nothing else is done 
by the process involved. 

~fo~e: (L. _Bouge) the restriction that every joint action 
is immediately followed by a local action is crucial 
h~re. In order_ to see its role, consider the program in 
F1gu;e 4, and its c~mputation in which p 1 and p 2 com­
mumcate only with p 4. Then, p 3 is continuously 
capabl~ of communication with p 1 or with p 2, because 
according to the CSP semantics in [P), passing from 
the e~d _of the body of a loop to the beginning of the 
loop is ~nstantaneous. This computation is equivalent 
only to itself, so the disabling lemma no longer holds. 
I~ fact, proposition 3 itself does not hold any more 
either. In order to obtain a program which terminates 
unde.r the assumption of WP fairness, it suffices to 
modify the above program, so that a communication 
between P 3 and p I or p 2 triggers the termination of 

where 

p 1:: * [p 3 !0 ~skip DP 4!0 ~ p 4 !0] 

p 2:: * [p 3 !0 ~skip []p 4!0--+ p 4!0] 

p 3:: * [p 1?x ~skip []p 2?x ~skip] 

p 4:: *[true ~ p 1 ?y ;p 1 ?y ;p2?y ;p2?Y] 

Figure 4 

all processes. 

Finally, to show that Strong Process fairness 
enhances liveness for CSP, we refer to the program in 
[Fr, Figure 5.1]. In that program, two processes are 
engaged in an indefinite "chattering", terminated only 
by the intervention of a third process, which is neces­
sarily activated if SP fairness is assumed. The pro­
gram does not tenninate without a fairness assumption. 
SCh and SCo are then also liveness enhancing for 
CSP due to the hierarchy theorem. 

4. Results for N-way Communication 
An N-way communication (considered in [BK­

Sl], [RS] or [Fol) is a joint action executed simultane­
ously by a number of processes (possibly more than 
two), each of which must be available in order for the 
communication to take place. The attempt to participate 
in a joi~t action delays a process until all other parties 
are available. After the communication, a local action 
takes place in each participating process. 

Thus, we consider a language with a structure 
similar to CSP. The guards constitute a reference to a 
joint action, possibly preceded with a local boolean 
condition. !h~ guarded statement is a multiple assign­
~ent'. specifymg the local change of state in each parti­
c1pat:ng ~rocess. A computation is an interleaving of 
atonuc (either local or joint) actions. 

The definitions of fairness we consider are over 
the individual processes, over the communications and 
additionally (as a generalization of channel f~ess 
from CSP) over the collection of actions possible 
among a group of processes. The definition is: 
Str:o~g Group (SG) fairness: an infinite computation is 
falf iff e?ch .set o~ p:oce~ses infinitely often capable of 
commumcat.ion will mfimtely often communicate. 
Weak Group (WG) fairness is defined analogously. 
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The following theorem has been (essentially) esta­
blished in [BK-S2]. 
Theore?1 2: (N-way hierarchy) the implications of the 
C~P hierarchy theorem hold for the N-way synchroni­
zauon model, when SG and WG are substituted for 
SCh and WCh, respectively. 

Proposition 4: the six fairness definitions are feasible 
for an N-way communication model. 
Proof idea: analogous to the proof of proposition 1. As 
an example, we consider a scheduler for WG fairness. 
Given a distributed program P in this model associate 
with each group of processes that (syntactically) can all 
participate in some joint action (referred to as an 
action group) and with each local action a distinct 
priority variable. The program section SELECT is 
obtained in a similar way to the CSP case. We skip 
the presentation of its code. 

Also, a similar faithfulness theorem is prov­
able, expressing the fact that all and only WG fair 
computations are generated by this scheduler. 

Proposition 5: Only WCo and WG fairness are 
equivalence robust for an N-way communication 
model. 
Proof idea: in particular, unlike the CSP model, 
Strong Process fairness is not equivalence robust To 
see this, consider the following program (Figure 5). 
Here joint actions are denoted by the set of participat­
ing processes and "abstract" assignments (Mi), as the 
example is independent of the actual communications. 
All boolean guards are identically true and omitted. 
Subscripted occurrences of L denote local actions. 
Again, the example is independent of the details of all 
these actions. 

Consider the infinite computation of P which 
repeats the following cycle: 
1) The joint action a 2 is executed. 
2) p 3 locally executes L3 1 · 
3) p 2 locally executes L2'2· 
4) The joint action a 3 is executed. 
5) p 3 locally executes L3 2· 
6) p 4 locally executes L 4'.2· 

In this computation, P 1 is infinitely often 
enabled to participate in a joint action ( after steps 3) 
and 6) ), but never does so. Thus, this computation is 
not Strong Process fair. 

On the other hand, an equivalent computation in 
which the above steps are executed in the order 1), and 
the cycle on 2), 4), 3), 5), 1), 6) 
is Strong Process fair, because p 1 is never enabled in 
it Specifically, in order to execute the joint action a 1• 
the processes p 1, p 2 and p 4 must all be jointly avail­
able. However, in no state in this computation are both 
p 2 and p 4 available. 
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P : : [p 1 I I P 2 I I P 3 I I P 4] 

where 

and 

a 1:: (p 4,p i.P2): M 1 

a2:: (p1,P3): M1 

a3:: (p3,p4): M3 

P1::*[a14LiJ 

P2:: * [a2 4 L2,1 

[]az 4Lz,il 

p3:: * [a2 4 L3,1 

[]a 3 4 L 3,iJ 

p4:: * [a1 4 L4,1 

[]a3 4 L4,V 

Figure 5 

The desired effect is obtained by delaying local 
actions, preventing process availability and thereby 
disabling joint actions. 

Using arguments similar to those in the proof of 
Proposition 2 we now show that WG is equivalence 
robust. The proof for WCo is analogous. Consider a 
computation 1t which is WG unfair. Then, from some 
point on an action group can continuously execute a 
joint action. Thus, from some point on all processes in 
that group are never activated. If p is an equivalent 
computation, then by the projection equality lemma the 
same holds for p. By the same lemma, all processes in 
the above-mentioned action group can continuously 
participate in that same joint action. So, p is WG 
unfair as well. 

Proposition 6: Only SCo, SG, and SP are liveness 
enhancing for an N-way communication model. 
Proof : Since CSP programs are special cases of pro­
grams with N-way communications, by Proposition 3, 
the three methods above are liveness enhancing. The 
argument for the negative results is also similar to the 
one in Proposition 3. In fact, it is enough to redefine the 
notions of chunk and B-enabled for the N-way 
model, and the proof goes through. We omit the details. 



From the above results, it follows that none ~f 
the si~ of fairness satisfy all three of the cn-

teria fnr this model. 

5, Resull" for generalized Ada 
in this section we consider the ~~neralizati?n of 

queues from the Ada defimoon to a fam;ess 
defined in [PdR]. They show that the generaliza-

tion has power to the queuei~g _strategy, but 
is less We demonstrate that 1t 1s an ac:cept-
ahle notion of fairness for the Ada model, accordmg to 

th!-ee criteria. 'The propositions an~ proofs_ have a 
structure analogous to the previous secuons. 

The sublanguage considered, ACF (~da com­
munication fragment), contains the esse~tials of the 

with a minimal sequential structure 
An A. CF program contains a fixed 

number of processes without any sharing of 
variables. Each process has a number of declared 

. A process may execute assignrrient and use 
usual and repetition. In addition, it may call 
an entry in another process, accept an entry-call from 
ali\)ther or select one of several alternative 

acceptances. 

According to the operational semantics of ACF 
in [PdR], the joint actions are the engage-

ment in a rendezvous and the termination of a rendez­
vous, both involving parameter copying. A computa­
tion is once again an interleaving of atomic actions. 
The local actions are assumed to satisfy the minimal 
progress property mentioned before. 

The fairness notion suggested in [PdR] for ACF 
is the a computation 1t is fair if no process 

wait forever on an entry-call to an entry e while 
many entry-calls for e are accepted in 1t. 

This notion does not exactly fall into any of the 
"1"""'.,"~ of fairness previously mentioned. We refer 

fairness. 
The main theorem in [PdR] states, that for pro­

grams which do not refer to attributes of the explicit 
entry queues (present in the original Ada), the class of 
fair computations coincides with the class of admissible 
computations by the original queueing requirements. 

As the usage of the entry queues can serve as a 
scheduler for the entry-calls, we immediately obtain 

7: Entry fairness is feasible for the 
model. 

In order to show the equivalence robustness, note 
tJm the above definition of fairness relates only to 
processes which are waiting continuously on an entry­
call. That is, the continuous availability of the calling 
process p for a rendezvous is built into the definition. 
Thus the restriction that local actions cannot be alterna­
tives to ~ommunication actions (used in Proposition 2 
to establish the continuous availability of one side of a 

CSP communication) is not imposed here. In the c~se 
of conditional entry-calls, the fairness assumpt.10_n 
applies only after a commitment to the entry-call is 
made and the local action is not taken. (In te~s of LJ:e 
operational semantics of [Pd.R], this conurutment is 
made when a rendezvous transition occurs.) 

Proposition 8: Entry fairness is equivalence robust 
for the ACF model. . 
The proof uses the same argument as that for SP fru.r­
ness in Proposition 2, since the persistence of entry­
calls is now given. 

Proposition 9: Entry fairness is liveness enhancing 
for the ACF model. 
Proof: Consider the program seen in Figure 6. Without 
fairness, the rendezvous between p 1 and P 2 need 
never occur, and the program will not terminate. With 
Entry fairness, tennination is guaranteed (b will 
become false, and the second accept will only be pos­
sible withp 3, causing c to also become false) . 

In passing, we note that ACF already has 
unbounded nondeterminism without additional 
fairness assumptions. Thus, merely exhibiting a pro­
gram that implements random assignments using fair­
ness does not suffice to prove Proposition 9. 

6. Conclusions 

Specific instances of results similar to the ones 
here have been pointed out elsewhere, as disturbing 
anomalies. The fact that Weak Process fairness is not 
equivalence robust for the CCS model was indicated 
to us by Gerardo Costa. In [BK-S2] the lack of 
equivalence robustness for fairness in the N-way com­
munication model is noted (of course using different 
terminology). As a solution, they suggest semantic 
assertions about the computations which are sufficient 
to guarantee equivalence robustness for the subclass of 
programs which satisfy the assertions. A similar 
approach concerning Strong Communication fairness 
for CSP is undertaken in [GFK.2]. Unfortunately, it is 
difficult both to prove whether a program satisfies the 
assertions, and to understand the implications of a pro­
gram with such a semantic definition. 

We have shown that for the CSP and Ada 
models, an alternative approach is viable: to evaluate 
the fairness notions more carefully to find one which is 
feasible, inherently equivalence robust, and yet liveness 
enhancing. We also found that for a model with a 
non-blocking send a fairness notion exists, satisfying 
all three criteria. As the details are very similar to the 
Ada case, we did not present them here. It is not clear 
whether such a fairness definition can be devised for 
the N-way communication model. In general, the idea 
of defining criteria, and then systematically evaluating 
the potential definitions of fairness for the 
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P : : [p i I I P 2 I I P 3] 

where 

P 1::P2·e (false ,y ). 

p 2:: x :=true; 

while x do 

accept e (z ,.x) --? x :=z ; 

if -.x then accept e (z ,.x) --? x :=false. 

p3:: w :=true; 

while w do p 2.e(true,w). 

Figure 6 

computational model according to those criteria, 
clarifies the advantages and drawbacks of the alterna­
tives, and should be useful in language design. 

While working on these results, we have noted 
that yet another natural equivalence relation among 
CSP -like programs, underlying the transfonnation to 
normal form of such programs [AC], is also not 
respected by fairness. The original program and its nor­
mal form differ, for example, w.r.t the restriction of a 
local action immediately following every communica­
tion. One can not play some of the tricks we did here, if 
communication need not be confined to (top level) 
guard positions. A more extended version of this paper 
will elaborate on this issue. 

It would be interesting to obtain characterization 
theorems, that for each notion of fairness characterize 
the equivalences respecting that fairness, and vice 
versa, for each equivalence relation, characterize the 
fairness notions respecting it. 
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