
APPRAISING FAIRNESS IN LANGUAGES FOR DISTRIBUTED PROGRAMMING
by

K.rzysztof R. Apt, Nissim Francez and Shmuel Katz
Re<:eived 10/22186

Abstract: The relations among various languages and models for distributed computation and va."ious possible
definitions of fairness are considered. Natural semantic criteria are presented which an acceptable notion of fairness
should satisfy. These are then used to demonstrate differences among the basic models, the added power of the fair­
ness notion, and the sensitivity of the fairness notion to irrelevant semantic interleavings of independent vv;••«uv•

These results are used to show that from the considerable variety of commonly used possibilities, only strong pro­
cess fairness is appropriate for CSP if these criteria are adopted. We also show that under these criteria, none of
the commonly used notions of fairness are fully acceptable for a model with an n-way synchronization mechanism.
Finally, the notion of fairness most often mentioned for Ada is shown to be fully acceptable.

Authors' addresses:

Krzysztof R. Apt

LITP, Universite Paris 7, 2, Place Jussieu, 75251 Paris, France

and

Laboratoire d'Informatique, Ecole Normale Superieure, 45, Rue d'Ulm, 75230 Paris, France

Nissim Francez, Shmuel Katz
Department of Computer Science
The Technion- Israel Institute of Technology
Haifa, Israel
francez@techsel.bitnet, katz@techsel.bitnet

· ·ai · anted Permission to copy without fee all or part of this maten is gr .
provided that the copies are not made or distributed for .d:rec}
commercial advantage, the ACM copyrigh'. n~tic~ and the tlt ei~
the publication and its date appear, and notice IS_giv~ th:~ copy T~
is by permission of the Association for Computing ac mery. f
copy otherwise, or to republish, requires a fee and/or spec ic
permission.

@ 1987 0-89791-215-2/87/0100-0189 75<1
189

''"""'1"""'c in selecting among a col­
""'~ .. .,11rn~<: in a nondetenninistic or

have received considerable atten~on
The implications of ~ wide

have been investigated, U<;;ilHHUV•""

rules for showing tennina-
definition (see [Fr] for an

and further references). For non­
sorne of the versions include

fwnes:s called justice), strong fairness,
1md extreme fairness. For CSP [H] and

models for distributed computing, at ~east s0 rea­
vari:lnt~ have been defined and mvestrgat~d.

wide of oossibilities leads to a confusing
selection of 'a particular definition of fairness

model or language relies almost
on subjective, implicit criteria.

three simple semantic criteria which
which notions are appropriate

uµcnaL•v"'"" model. The criteria we pro­
equivalence robustness. and

tN'lhancement. Below we informally explain
the criteria and the resul IS linking the criteria and the

ln subsequent sections the fonnal definitions
<are and the theorems and proofs which lead
to these results are presented.

definition of fairness excludes some of the execu­
"unfair" ones) which otherwise would be

executions of a program according to the basic
sem:mtks of the computational model. A necessary

of any definition of fairness for a computa­
tional mi:.1del is to have some legal computation remain
after !his for every possible program. That
is, for every program some (finite or infinite) fair

does exist. Without this requirement, no
must produce one of the fair

could correctly treat the fairness. More­
over, since :my reasonable scheduler cannot 'predict'
the continuations at each point of the computa-

it sheuld be possible to extend a partial computa­
to a fair one. This will be the feasibility criterion,

and it subsumes the above necessary requirement

As a example of an unfeasible definition
of fairness for guarded commands (GC) [D], consider
the fairness definition:
all choices (referred to as directions) which are

often possible must eventually be chosen
often.

In l a nonterminating program P is
shown, for which there is no computation sequence

!he above definition, even though both direc­
tions are infini!e!y often possible. Thus no scheduler
c:m be and the fairness notion is not feasible
for that model. In fact, feasible definitions of such

equifairness must incorporate the set of choices which
are jointly enabled at each stage, as in [GFKl].

Equivalence Robustness: . .
The computations of asynchronous, dis_tnbuted ~ystems
are often modeled by means of mterleavmg the
(atomic) actions of their component p~ocesse_s. How­
ever it is clear that the order of execution of mdepen­
den(actions in such an interleaving is arbitrary. Thus
two linear execution sequences which are identical up
to the order of two independent actions, ~ho~ld be
equivalent This leads to the second cntenon: a
definition of fairness is equivalence robust (for a com­
putational model) if it respects ~his ~quivalence. 1:'hat
is for two infinite sequences which differ by a possibly
m'finite number of interchanges of independent actions
(i.e., equivalent sequences), either both are _fair acc?rd­
ing to the given definition, or both are u~fa1:. Agam, a
more precise definition and an exarrunauon of the
consequences of this criterion are given in the follow­
ing sections.

Liveness Enhancement:
All distributed models assume a fundamental liveness
property that an action will eventually be executed in
some process if the system is not deadlocked. A
justification for adding an additional liveness require­
ment of some sort of fairness -- which complicates the
scheduling and may cause difficulties in defining a pre­
cise semantics or proving correctness-- is that there
exists a program which has some liveness property
which it would not have without the additional require­
ment. This criterion is termed liveness enhancement in
order to emphasize that additional liveness assumptions
will hold for some programs. As is shown in the sequel,
this also depends on the particular model being con­
sidered, and is sensitive to fine details of the model.
Some fairness assumptions cannot force a communica­
tion to occur in a model if it did not have to occur
under the basic liveness property. These assumptions
are not liveness enhancing for that model.

It is sufficient to consider the impact of fairness
assumptions on termination only, because such
assumptions are known not to affect partial correctness
or safety properties, and other liveness properties can
be reduced to termination for derived programs
[GFMdR].

P::x:=l;*[true -1 x:=x+l

[] x mod 3 = 0 ~ x :=x+ 1].

Figure 1

190

In the sequel, we appraise several fairness
definitions and computational models under the criteria
suggested above. These are only examples of the
application of our approach. Readers are invited to
apply the same, or their otherwise preferred, criteria to
their favorite fairness definitions and computational
models.

2. Formal definitions

As mentioned, an operational semantics of the
models we consider may be expressed in terms of the
possible interleaved computations of a program, i.e., as
sequences of states (recording the values of all the vari­
ables) and the atomic actions leading from state to
state. A configuration is a pair consisting of an
action and a state. Each computation can be viewed as
an initial state followed by a sequence of
configurations. An atomic action is either a local
action of one process, or a joint action when the
communicationlsynchronization mechanism is involved
(except when sending is a local action as in a nonblock­
ing send model). An action is enabled (in a
configuration) if it can serve as the next action exe­
cuted (where the exact definition is model dependent).

We shall only consider models in which every
joint action is followed by a local action (possibly a
skip, having no effect on the state), and in which a
choice between a local action and a joint action is never
possible. These restrictions guarantee that the
definitions of fairness considered here are immune to
additions of local actions, like skip, in processes. In
the terminology of [L2] we might say that these
definitions are immune to stuttering, i.e., to repeti­
tions of a configuration in a computation. The
relevance of these assumptions is further discussed
later.

Examples of the above-mentioned approach to
defining semantics may be seen in [P] for CSP, and in
[HLP] for a fragment of Ada. However, it is also rea­
sonable, and even attractive to consider a partial order
semantics (see [Ll], [R], or [DM]) expressing only the
essential causal relationships among the atomic actions
(both local and joint). Clearly, for every such partial
order, there is a uniquely defined equivalence over
interleaved computations: if 7t and p are interleaved
computations, then 1t = p is defined as: 7t can be
obtained from p by (possibly infinitely many) simul­
taneous transpositions of two independent (i.e., not
related by the partial order) atomic actions .

Our initial liveness assumption, referred to as the
minimal progress property [OL], is somewhat stronger
than the fundamental liveness property mentioned in
the introduction. According to this assumption, every
enabled local action is eventually executed. In the
sequel, all computations are always assumed to satisfy
the minimal progress pr?perty. Thus, the focus of

191

additional fairness assumptions is on interprocess com­
munication.

Given a (distributed) program P, comp{P) is the
set of interleaved computations generated by P under
the basic semantics of the model. A fairness definition
D is a mapping from programs to sets of computations
such that for each program P, D(P) is a subset of
comp(P), and includes all finite computations in
comp{P). A necessary condition for feasibility of D is
that for all programs P, D(P) is nonempty. As already
explained, in order to prevent a scheduler from "paint­
ing itself into a comer'' with no possible continuation,
we define
D is feasible iff every finite initial segment of an inter­
leaved computation of a program P can be extended to
a computation in D(P).

The other criteria are defined by:
D is equivalence robust iff for every two computations
1t and pin comp(P),
(1t E D(P) A 1t:::: p) -t p E D(P).

D is liveness enhancing if there is a program P such
that comp(P) contains an infinite computation, but all
computations in D(P) are finite.

This definition means that P terminates under the
assumption of D. Because of the possible reduction of
liveness properties to termination of a derived program,
this is sufficient to express general liveness enhance­
ment.

By a projection of a computation 7t on a pro­
cess p, denoted by [7t]p, we mean the result of delet­
ing from 7t all actions m which p is not involved and
restricting the states to variables of p only.

The following simple lemma will be useful in the
sequel.

Lemma: (projection equality)
if1t = p, then for each process p, [1t]p =[p]p.
Note: the converse of this lemma was proved by L.
Bouge (private communication) for CSP programs.
We do not need this stronger version.

3. Results for CSP

In this section the results concerning the CSP
model are stated. We consider the language as defined
in [HJ except that nested parallelism and the distributed
termination convention are disallowed, and output
commands may appear in guards. Moreover, the res­
trictions mentioned in the previous section are also
imposed. The semantics we consider is that of inter­
leaved computation sequences as defined in [P]. Note
that by this semantics, the execution of a communica­
tion in a guard of a repetition statement results in a
configuration in which the control of the process is on
the right hand side of the guard, and the

communications in the guards of the repetition are not
enabled in the resulting state.

In a nondetenninistic guarded commands p:o­
&ram, it is usual to define fairness as some condiu?n
about the selection of the guards to be executed. I~ dis­
tributed models. more possibilities are open: ~airness
could be defined over the processes, over the ~o.rnt com­
munication actions, or over some group of JO~n~ com­
munication actions. In the context of CSP, 1t 1s rea­
sonable to define fairness so as to guarantee that an
action will be taken by each process which satisfies
some condition, or that each communication satisfying
a condition will occur, or that one communication will
occur from each group of communications between
two processes which also satisfy the condition.

Once it has been decided what is to be fair, the
condition for demanding an eventual choice must be
determined. Two well-known possibilities for CSP,
(originating from the nondeterministic case [LPS]) are
weak fairness in which the choice must be possible
continuously from some point on, or strong fairness in
which the choice is possible infinitely often. Thus talc­
ing all of the permutations, six notions are obtained.

StrDl'lg Process (SP) fairness: an infinite computation
is fair iff each process infinitely often capable of exe­
cuting an atomic action will infinitely often do so.
Strong Channel (SCh) fairness: an infinite computa­
tion is fair iff each pair of processes infinitely often
capable of communication with each other do infinitely
often communicate with each other (so that one of the
possible communications between them is executed,
possibly a different one every time).
Strong Co1T1111unication (SCo) fairness: an infinite
computation is fair iff each pair of input/output com­
mands (i.e., each specific possibility of communication)
which is infinitely often jointly enabled is executed
infinitely often .

The weak: versions, WP, WCh, WCo, respec­
tively, are obtained by substituting "continuously from
some point on" for the first occurrence of "infinitely
often".
Furth7nnore, it is stipulated that all finite computations
are farr w.r.t all fairness definitions.

The consequences of the following propositions
are that although all six possibilities are feasible, only
Strong Process fairness is both equivalence robust and
liveness enhancing for CSP: all types of Wealc fair­
ness are not liveness enhancing, and Strong Communi­
cation or Channel fairness are not equivalence robust.

. ~n [Fd.R] ~d [Kd.R] six related fairness
definitions are considered and compared in terms of
"~tren~th" in causing termination. Those definitions
diff~r tn t?at the .channel level is replaced by a level
dea11.ng. with a ~ture of joint and local actions, the
~tncuo~s we unpose are not applicable, and wealc
fairness is defined differently. Nevertheless, using

arguments similar to theirs, the following implications
can be shown to hold (and the proof will not be given

here):

Theorem: (CSP-hierarchy)

WP -tSP
J, J_

WCh -tSCh
J, J..

WCo -tSCo

We add the following results:
Proposition 1: the six definitions of fairness for CSP
are all feasible for the model.
Proof idea: For each definition an explicit scheduler is
exhibited and it is shown that any prefix of a legal com­
putation can be generated by the scheduler. Moreover,
if a prefix of a computation was generated by the
scheduler, then the scheduler will generate a continua­
tion which satisfies the condition for being in D. This
idea has been used implicitly in [AOJ and explicitly in
[OA].

As an illustration of this technique, consider
Strong Communication fairness. Given a CSP pro­
gram P; associate with each of the atomic actions of P
a distinct variable, called a priority variable. The
scheduler can be viewed as a program executed in
parallel to P, having access to all variables in P for
inspection. It can also determine the control locations
of all processes in P . The scheduler interacts with P
by executing the program section SELECT, which
determines the next action in the computation of P .
After the execution of the selected action by P , the
scheduler regains control, unless P has tenninated or
entered a deadlocked configuration.

All priority variables are initialized to arbitrary
nonnegative integer values. The program SELECT is
displayed in Figure 2.

Because of the use of random assignment and
possible nonuniqueness of the minimal priority vari­
able, the scheduler itself is nondeterministic. The fol·
lowing.Jaithfulnes~ theorems hold, whose proofs
are vanants on those m [AOJ and in [Fr, eh. 3], and of

for each atomic action do
if it is en~bled then decrement priority by I;

select for execut10n an enabled action with a minimal
value for its priority variable;

reset the priority variable of the selected action to
an arbitrary nonnegative integer value

Figure 2: SELECT

192

more abstract results in [OA].

Theorem: (Faithfulness)
1. Every computation of P generated by the scheduler
is SCP.
2. Every SCP communication of P can be generated
by the scheduler.

Proposition 2: Only Weak Communication, Weak
~h~~el, and Strong Process fairness (from the six pos­
sibilities) are equivalence robust for CSP.
Proof idea: We show that Weak Process fairness is not
equi~alence robust by exhibiting two interleaving com­
putations for a program (Figure 3), a variant of the Din­
ing Philosophers, with five cyclically arranged
processes, each able to communicate with its immedi­
ate neighbors. The two computations are equivalent but
one is Weak:: Process fair and the other is not. This
o_ccurs because in one computation the middle process
(i.e., p 2) could communicate in every state with at
least one of its neighbors, but does not, leading to an
unfair computation, while in the other, there are an
infinite number of states in which the middle process
cannot communicate or otherwise advance at all
because both partners are communicating elsewhere'.
Thus in the second computation the middle process'
noncommunication does not violate the weak fairness
condition.

The first computation consists of an indefinite
repetition of the following finite segment
1) po and p 1 communicate.

P:: [pol I··· I lp4]

where

Pi:: li :=true; ri :=false;

* [pi-1?li -7

[li /\ ri -7 eatD-,(li /\ ri) -7 skip]

DPi+l ?ri -7

[Ii /\ ri -7 eatD-,(li /\ ri) -7 skip]

[]li ;pi-I !true -7 !(=false

] .

Figure 3

193

2) po executes its local action.
3) p 1 executes its local action.
4) p 3 and p 4 communicate.
5) p 3 executes its local action.
6) p 4 executes its local action.

The second computation consists of the indefinite
repetition of the finite segment in which the same
eve~ts take place in the order 1), 4), 2), 3), 5), 6). Here,
P2 is not enabled after step 4), where all its partners
"passed the arrow" and are unavailable for communica­
tion. The whole computation is thus rendered Weak
Process fair.

Similar examples may be constructed for SCh and
SCo fairness.

It is easiest to show that SP fairness is
equivalence robust for CSP by considering the unfair
computations. If 7t is Strong Process unfair, then from
some point on there is a process p which is infinitely
often enabled for a joint action but is never executed.
Thus p is continuously available for the communica­
tion, since it does nothing else. Here the restriction to a
model where local actions are not nondeterministic
alternatives to communications is essential. Now con­
sider any equivalent computation p. By the projection
equality lemma, in this computation as well, from some
point on p is continuously available for a joint action.
Again, by the same lemma, there are infinitely many
states in which the possible partner of p could have
communicated with p . Thus in this case also, p is SP
unfair. WCo and WCh fairness may be treated simi­
larly.

Proposition 3: Only Strong Communication, Strong
Channel, and Strong Process fairness are liveness
enhancing for CSP.
Proof (fragment): We show that Weak Process fairness
does not enhance liveness for CSP. By similar (but
simpler) reasoning it may be shown that WCh and
WCo also do not. For this task we need to demon­
strate that if there is any infinite interleaved computa­
tion 1C for a program P, there is also an infinite WP
fair computation of P , so that the fairness assumption
does not allow proving termination of additional pro­
grams. Obviously, if 7t is WP fair, we are done. Other­
wise, let A be the set of processes which are activated
in 7t only finitely often. Now a new computation p will
be constructed from 7t. The computation p will be
identical to 7t up to the point where all the processes in
A have executed all of their actions. Then we insert
between every two configurations of computation 7t the
configuration resulting from an activation from each
process of A in an action not involving a process from
outside A, whenever possible. The resulting computa­
tion can still be WP unfair as some process p from A
can, from some point onwards, continuously be ready
to communicate only with processes not in A. To

handle this situation we first introduce a number of
notions.

Given a computation and a collection B of
processes, call a process p B-enabled if, from some
point onward, it can continuously communicate with a
process in B. By a chunk of a computation we mean a
fragment consisting of an execution of a sequence of
local actions belonging to a pair of processes, together
with a communication between these two processes. A
process is mute in a configuration c in a computation
if it does not participate in any communication after c .
A state is good (in some computation) if it either is an
initial state of a chunk, or it results from an action in a
mute process.

Lemma: (disabling)
Consider a computation 1t in which all processes in a
collection B are infinitely often activated. There exists
an equivalent computation p, in which no process is
B-enabled.
Proof: For each process in tum defer its local actions in
it maximally. In such a way, an equivalent computation
p is obtained, which consists of a sequence of chunks,
possibly interleaved with actions from mute processes.
This computation has infinitely many good states. Con­
sider any good state in which each process from B was
activated at least once. In such a state, the control in
each process in B is either just after the communication
belonging to its most recently executed chunk, or just
after a local action in case it is mute. In both cases (by
the restrictions imposed above and by the definition of
a mute process) none of the processes in B can com­
municate in the considered state. This establishes the
claim and thereby the proposition.

As a consequence of the proposition, the classes
of terminating programs for all three weak levels coin­
cide, in contrast to the proper inclusion shown in
[KdR]. The difference seems to be due to the fact that
their notion of "Weak" still involves an element of
"infinitely often" enabled. Ours stresses that "continu­
ously" enabled really means that nothing else is done
by the process involved.

~fo~e: (L. _Bouge) the restriction that every joint action
is immediately followed by a local action is crucial
h~re. In order_ to see its role, consider the program in
F1gu;e 4, and its c~mputation in which p 1 and p 2 com­
mumcate only with p 4. Then, p 3 is continuously
capabl~ of communication with p 1 or with p 2, because
according to the CSP semantics in [P), passing from
the e~d _of the body of a loop to the beginning of the
loop is ~nstantaneous. This computation is equivalent
only to itself, so the disabling lemma no longer holds.
I~ fact, proposition 3 itself does not hold any more
either. In order to obtain a program which terminates
unde.r the assumption of WP fairness, it suffices to
modify the above program, so that a communication
between P 3 and p I or p 2 triggers the termination of

where

p 1:: * [p 3 !0 ~skip DP 4!0 ~ p 4 !0]

p 2:: * [p 3 !0 ~skip []p 4!0--+ p 4!0]

p 3:: * [p 1?x ~skip []p 2?x ~skip]

p 4:: *[true ~ p 1 ?y ;p 1 ?y ;p2?y ;p2?Y]

Figure 4

all processes.

Finally, to show that Strong Process fairness
enhances liveness for CSP, we refer to the program in
[Fr, Figure 5.1]. In that program, two processes are
engaged in an indefinite "chattering", terminated only
by the intervention of a third process, which is neces­
sarily activated if SP fairness is assumed. The pro­
gram does not tenninate without a fairness assumption.
SCh and SCo are then also liveness enhancing for
CSP due to the hierarchy theorem.

4. Results for N-way Communication
An N-way communication (considered in [BK­

Sl], [RS] or [Fol) is a joint action executed simultane­
ously by a number of processes (possibly more than
two), each of which must be available in order for the
communication to take place. The attempt to participate
in a joi~t action delays a process until all other parties
are available. After the communication, a local action
takes place in each participating process.

Thus, we consider a language with a structure
similar to CSP. The guards constitute a reference to a
joint action, possibly preceded with a local boolean
condition. !h~ guarded statement is a multiple assign­
~ent'. specifymg the local change of state in each parti­
c1pat:ng ~rocess. A computation is an interleaving of
atonuc (either local or joint) actions.

The definitions of fairness we consider are over
the individual processes, over the communications and
additionally (as a generalization of channel f~ess
from CSP) over the collection of actions possible
among a group of processes. The definition is:
Str:o~g Group (SG) fairness: an infinite computation is
falf iff e?ch .set o~ p:oce~ses infinitely often capable of
commumcat.ion will mfimtely often communicate.
Weak Group (WG) fairness is defined analogously.

194

The following theorem has been (essentially) esta­
blished in [BK-S2].
Theore?1 2: (N-way hierarchy) the implications of the
C~P hierarchy theorem hold for the N-way synchroni­
zauon model, when SG and WG are substituted for
SCh and WCh, respectively.

Proposition 4: the six fairness definitions are feasible
for an N-way communication model.
Proof idea: analogous to the proof of proposition 1. As
an example, we consider a scheduler for WG fairness.
Given a distributed program P in this model associate
with each group of processes that (syntactically) can all
participate in some joint action (referred to as an
action group) and with each local action a distinct
priority variable. The program section SELECT is
obtained in a similar way to the CSP case. We skip
the presentation of its code.

Also, a similar faithfulness theorem is prov­
able, expressing the fact that all and only WG fair
computations are generated by this scheduler.

Proposition 5: Only WCo and WG fairness are
equivalence robust for an N-way communication
model.
Proof idea: in particular, unlike the CSP model,
Strong Process fairness is not equivalence robust To
see this, consider the following program (Figure 5).
Here joint actions are denoted by the set of participat­
ing processes and "abstract" assignments (Mi), as the
example is independent of the actual communications.
All boolean guards are identically true and omitted.
Subscripted occurrences of L denote local actions.
Again, the example is independent of the details of all
these actions.

Consider the infinite computation of P which
repeats the following cycle:
1) The joint action a 2 is executed.
2) p 3 locally executes L3 1 ·
3) p 2 locally executes L2'2·
4) The joint action a 3 is executed.
5) p 3 locally executes L3 2·
6) p 4 locally executes L 4'.2·

In this computation, P 1 is infinitely often
enabled to participate in a joint action (after steps 3)
and 6)), but never does so. Thus, this computation is
not Strong Process fair.

On the other hand, an equivalent computation in
which the above steps are executed in the order 1), and
the cycle on 2), 4), 3), 5), 1), 6)
is Strong Process fair, because p 1 is never enabled in
it Specifically, in order to execute the joint action a 1•
the processes p 1, p 2 and p 4 must all be jointly avail­
able. However, in no state in this computation are both
p 2 and p 4 available.

195

P : : [p 1 I I P 2 I I P 3 I I P 4]

where

and

a 1:: (p 4,p i.P2): M 1

a2:: (p1,P3): M1

a3:: (p3,p4): M3

P1::*[a14LiJ

P2:: * [a2 4 L2,1

[]az 4Lz,il

p3:: * [a2 4 L3,1

[]a 3 4 L 3,iJ

p4:: * [a1 4 L4,1

[]a3 4 L4,V

Figure 5

The desired effect is obtained by delaying local
actions, preventing process availability and thereby
disabling joint actions.

Using arguments similar to those in the proof of
Proposition 2 we now show that WG is equivalence
robust. The proof for WCo is analogous. Consider a
computation 1t which is WG unfair. Then, from some
point on an action group can continuously execute a
joint action. Thus, from some point on all processes in
that group are never activated. If p is an equivalent
computation, then by the projection equality lemma the
same holds for p. By the same lemma, all processes in
the above-mentioned action group can continuously
participate in that same joint action. So, p is WG
unfair as well.

Proposition 6: Only SCo, SG, and SP are liveness
enhancing for an N-way communication model.
Proof : Since CSP programs are special cases of pro­
grams with N-way communications, by Proposition 3,
the three methods above are liveness enhancing. The
argument for the negative results is also similar to the
one in Proposition 3. In fact, it is enough to redefine the
notions of chunk and B-enabled for the N-way
model, and the proof goes through. We omit the details.

From the above results, it follows that none ~f
the si~ of fairness satisfy all three of the cn-

teria fnr this model.

5, Resull" for generalized Ada
in this section we consider the ~~neralizati?n of

queues from the Ada defimoon to a fam;ess
defined in [PdR]. They show that the generaliza-

tion has power to the queuei~g _strategy, but
is less We demonstrate that 1t 1s an ac:cept-
ahle notion of fairness for the Ada model, accordmg to

th!-ee criteria. 'The propositions an~ proofs_ have a
structure analogous to the previous secuons.

The sublanguage considered, ACF (~da com­
munication fragment), contains the esse~tials of the

with a minimal sequential structure
An A. CF program contains a fixed

number of processes without any sharing of
variables. Each process has a number of declared

. A process may execute assignrrient and use
usual and repetition. In addition, it may call
an entry in another process, accept an entry-call from
ali\)ther or select one of several alternative

acceptances.

According to the operational semantics of ACF
in [PdR], the joint actions are the engage-

ment in a rendezvous and the termination of a rendez­
vous, both involving parameter copying. A computa­
tion is once again an interleaving of atomic actions.
The local actions are assumed to satisfy the minimal
progress property mentioned before.

The fairness notion suggested in [PdR] for ACF
is the a computation 1t is fair if no process

wait forever on an entry-call to an entry e while
many entry-calls for e are accepted in 1t.

This notion does not exactly fall into any of the
"1"""'.,"~ of fairness previously mentioned. We refer

fairness.
The main theorem in [PdR] states, that for pro­

grams which do not refer to attributes of the explicit
entry queues (present in the original Ada), the class of
fair computations coincides with the class of admissible
computations by the original queueing requirements.

As the usage of the entry queues can serve as a
scheduler for the entry-calls, we immediately obtain

7: Entry fairness is feasible for the
model.

In order to show the equivalence robustness, note
tJm the above definition of fairness relates only to
processes which are waiting continuously on an entry­
call. That is, the continuous availability of the calling
process p for a rendezvous is built into the definition.
Thus the restriction that local actions cannot be alterna­
tives to ~ommunication actions (used in Proposition 2
to establish the continuous availability of one side of a

CSP communication) is not imposed here. In the c~se
of conditional entry-calls, the fairness assumpt.10_n
applies only after a commitment to the entry-call is
made and the local action is not taken. (In te~s of LJ:e
operational semantics of [Pd.R], this conurutment is
made when a rendezvous transition occurs.)

Proposition 8: Entry fairness is equivalence robust
for the ACF model. .
The proof uses the same argument as that for SP fru.r­
ness in Proposition 2, since the persistence of entry­
calls is now given.

Proposition 9: Entry fairness is liveness enhancing
for the ACF model.
Proof: Consider the program seen in Figure 6. Without
fairness, the rendezvous between p 1 and P 2 need
never occur, and the program will not terminate. With
Entry fairness, tennination is guaranteed (b will
become false, and the second accept will only be pos­
sible withp 3, causing c to also become false) .

In passing, we note that ACF already has
unbounded nondeterminism without additional
fairness assumptions. Thus, merely exhibiting a pro­
gram that implements random assignments using fair­
ness does not suffice to prove Proposition 9.

6. Conclusions

Specific instances of results similar to the ones
here have been pointed out elsewhere, as disturbing
anomalies. The fact that Weak Process fairness is not
equivalence robust for the CCS model was indicated
to us by Gerardo Costa. In [BK-S2] the lack of
equivalence robustness for fairness in the N-way com­
munication model is noted (of course using different
terminology). As a solution, they suggest semantic
assertions about the computations which are sufficient
to guarantee equivalence robustness for the subclass of
programs which satisfy the assertions. A similar
approach concerning Strong Communication fairness
for CSP is undertaken in [GFK.2]. Unfortunately, it is
difficult both to prove whether a program satisfies the
assertions, and to understand the implications of a pro­
gram with such a semantic definition.

We have shown that for the CSP and Ada
models, an alternative approach is viable: to evaluate
the fairness notions more carefully to find one which is
feasible, inherently equivalence robust, and yet liveness
enhancing. We also found that for a model with a
non-blocking send a fairness notion exists, satisfying
all three criteria. As the details are very similar to the
Ada case, we did not present them here. It is not clear
whether such a fairness definition can be devised for
the N-way communication model. In general, the idea
of defining criteria, and then systematically evaluating
the potential definitions of fairness for the

196

P : : [p i I I P 2 I I P 3]

where

P 1::P2·e (false ,y).

p 2:: x :=true;

while x do

accept e (z ,.x) --? x :=z ;

if -.x then accept e (z ,.x) --? x :=false.

p3:: w :=true;

while w do p 2.e(true,w).

Figure 6

computational model according to those criteria,
clarifies the advantages and drawbacks of the alterna­
tives, and should be useful in language design.

While working on these results, we have noted
that yet another natural equivalence relation among
CSP -like programs, underlying the transfonnation to
normal form of such programs [AC], is also not
respected by fairness. The original program and its nor­
mal form differ, for example, w.r.t the restriction of a
local action immediately following every communica­
tion. One can not play some of the tricks we did here, if
communication need not be confined to (top level)
guard positions. A more extended version of this paper
will elaborate on this issue.

It would be interesting to obtain characterization
theorems, that for each notion of fairness characterize
the equivalences respecting that fairness, and vice
versa, for each equivalence relation, characterize the
fairness notions respecting it.

Acknowledgements

We thank Luc Bouge for helpful comments and
discussions on the subject of this paper. The work
reported was carried out during a visit of the first
author in the CS dept, Technion. The part of the
second author was partially supported by the fund for
the promotion of research, the Technion.

197

References

(1)
[AO] K.R. Apt, E.-R. Olderog, Proof rules and

transfonnations dealing with fairness, SCP 3, pp.
65-100, 1983.

(2)
[AC] K.R. Apt, Ph. Clennont, Two normal fonn

theorems for CSP programs. IBM T J Watson
research Center RC 10975, July 1985

(3)
[BK-Sl) R.J. Back and K. Kurki-Suonio, Decentraliza­

tion of process nets with centralized control,
Proceedings of 2nd ACM PODC, Montreal,
August 1983.

(4)
[BK-S2) RJ. Back and K. Kurki-Suonio, Serializability

in distributed systems with handshaking, CMU
TR 85-109, 1985.

(5)
[DM) P. Degano and U. Montanari, Concurrent his­

tories, a basis for observing distributed systems,
to appear in JCSS.

(6)
[Fo] I. Forman, On the design of large distributed sys­

tems, Proceedings of International Conference on
Computer Languages, Miami Beach, Florida,
October, 1986.

N. Francez, , Texts and monographs in
computer science series (D. Gries, ed.),
Springer-Ved;:ig, New York, 1986.

[FdR] N. France:i: and W. P. de Roever, Fairness in
communicating processes, unpublished memo,

Science Dept., Utrecht University,

[GFKl] 0. Gramberg, N. Fra.1cez, and S. Katz, Acom-

(

proof rule for strong equifaimess, in
Proceedings of 2nd Workshop on Logics of Pro­
grams. C:MU, in LNCS 164 (E. Clarke and D.
Kozen, eds.), 1983; also to appear in JCSS, 1986.

(GFK.2] 0. Grumberg, N. Francez, and S. Katz, Fair
termination of communicating processes,
Proceedings of 3rd ACM PODC, Vancouver,
•\ugust 1984.

(11)
[GTh1dR] 0. Grumberg, N. Francez, J. Makowsky, and

W.P. de Roever, A proof rule for fair termination
of guarded commands, Information and Control
66, 112: 83-102, July/ August, 1985.

(12)
[H] C.A.R. Hoare, Communicating sequential

processes, CAOYI 21, 8, August 1978.

(13)
[HLP] W. Hennessey, Wei-Li, G. Plotkin, Semantics

for Ada tasks, proceedings of TC.2 Working
conference on the formal description of program­
ming concepts, Gannisch Partenkirchen (D.
Bierner, ed.), North Holland, 1983.

(14)
[KdRJ R. Kuiper and W.P. de Roever, Fairness

assumptions for CSP in a temporal logic frame­
work, proceedings of TC.2 Working conference
on the formal description of programming con­
cepts, Gannisch Partenkirchen (D. Biorner, ed.),
North Holland, 1983.

(15)
[LI) L. Lamport, Time, clocks, and the ordering of

events, CACI\1 21, 1978, pp. 558-566.
(16)

[L2] L. La~port, What good is temporal logic?,
proceedmgs of IFIP 9th world congress, Paris,
France, September 1983.

(17)
[LPS] p. ~eh~ann, A. Pnueli, and J. Stavi, Impartial­

ity, Justtce, and fairness: the ethics of concurrent
termination, Proceedings of 8th ICALP, Acco,
Israel, July 1981, in LNCS 115 (0. Kariv and S.
Even, eds.), Springer-Verlag, 1981.

(18)
[OA] E.-R. Olderog, K.R. Apt, Fairness in parallel pro­

grams, the transformational approach, TR 86-11,
Univ. of Kiel, 1986 (submitted for publication).

(19)
[OL] S.S. Owicki, L. Lamport, Proving liveness pro-

perties of concurrent programs, ACM-TOPLAS
4, 3, July 1982: 455-495.

(20)
[P] G.D. Plotkin, An operational semantics for CSP,

proceedings of TC.2 Working conference on the
formal description of programming concepts,
Garrnisch Partenkirchen (D. Biomer, ed.), Nonh
Holland, 1983.

(21)
[PdR] A. Pnueli and W.P. de Roever, Rendezvous with

Ada: a proof-theoretic view, RUU-CS-82-12,
University of Utrecht, July 1982. Also in:
proceedings of the AdaTec conference, Crystal
City, 1982.

(22)
[R] W. Reisig, Partial order semantics versus interleav­

ing semantics and its impact on fairness,
Proceedings of l lth ICALP, Antwerp, 1984.

(23)
[RS] J. Reif, P. Spirakis, Probabilistic bidding gives

optimal distributed resource allocation, TR,
Aiken Computation Lab, July 1983.

198

