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Abstract. Data abstraction and query processing techniques are usu­
ally studied in the domain of administrative applications. We present a 
case-study in the non-standard domain of (multimedia) information re­
trieval, mainly intended as a feasibility study in favor of the 'database 
approach' to data management. 
Top-N queries form a natural query class when dealing with content re­
trieval. In the IR field, a lot of research has been done on processing top-N 
queries efficiently. Unfortunately, these results cannot directly be ported 
to the database environment, because their tuple-oriented nature would 
seriously limit the freedom of the query optimizer to select appropriate 
query plans. 
By horizontally fragmenting our database containing document statis­
tics, we are able to combine some of the best of the IR and database 
optimization principles, providing good retrieval quality as well as 
database 'goodies' like flexibility, scalability, efficiency, and generality. 
Key issues we address in this paper concern the effects of our fragmen­
tation approach on speed and quality of the answers, opportunities for 
scalability, supported by experimental results. 

Keywords: top-N, indexing, query optimization, content based re­
trieval, multimedia, databases 

1 Introduction 

Data abstraction is the essence of the 'database approach' to data management. 
Specifying the manipulation and definition of data at a high level of abstraction 
provides not only data independence, but also enables a database management 
system to facilitate a wide variety of additional 'goodies', including efficiency, 
scalability, and flexibility. 
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The importance of services such as transaction management and concurrency 
control in administrative applications - and their excellent support in commer­
cial relational database management systems - has resulted in the database 
approach being the norm in the domain of business applications. Unfortunately, 
the benefits of the database approach to data management are not so well es­
tablished in most other application domains. 

This paper demonstrates how two key elements of the database approach (i.e. 
data abstraction and query optimization) can play a similarly important role in 
the domain of information retrieval (IR). In general, IR systems are not very 
flexible, in the sense that e.g. changing the retrieval model (ranking algorithm) 
is far from trivial. Also, the physical access and storage structures, although 
often quite sophisticated, are 'hard-coded' into the system. As a result, it is 
not so easy to turn an existing stand-alone IR system into a parallel and/or 
distributed system. Neither is generality a common property among IR systems; 
most systems support document retrieval by content only, and not by other 
attributes such as author, category, or publication date. In any case, it will be 
very difficult to add extra attributes in a later stage. 

In contrast to the conventional approaches in the IR field, we do not tie our 
IR retrieval model onto a physical data structure like inverted files, but specify 
the model declaratively at a high level (allowing flexibility in the choice for re­
trieval model) as described in [15,11]. The particular advantage of this approach 
is that it allows us to extend our research DBMS with IR techniques, without 
breaking the set-oriented nature of query processing. Such a combination of IR 
techniques with traditional database technology is an important ingredient for 
the development of search engines for large collections of XML documents that 
allow queries on the combination of structural properties and field values ( tradi­
tional data retrieval) as well as their content (requiring the information retrieval 
techniques). Also, as motivated in [9], and demonstrated in [10] at VLDB'99, the 
same techniques provide a strong foundation for the implementation of multi­
media retrieval systems. 

The main objective of our paper is to (1) present a case-study demonstrating 
how data abstraction is equally useful in non-traditional application domains as 
in the administrative domain, and (2) motivate why a novel DBMS architecture 
is required to facilitate such broadening of core database technology for new 
domains. We start with a state-of-the-art IR retrieval model, that performs very 
well on retrieval evaluation experiments (see [16]). We then present the inte­
gration of these algorithms in our research DBMS, which resulted in a system 
sufficiently powerful to participate in TREC1 [19]. This paper discusses the de­
velopment of new query processing techniques at the logical level of the DBMS, 
improving its efficiency and scalability on IR query loads. These techniques are 
applied transparently in the mapping from abstract specification to implementa-

1 The TREC, Text Retrieval and Evaluation Conference, is a well known IR confer­
ence, organized annually by NIST in the US (http://trec.nist.gov/). A key part of 
the conference submissions involve the benchmarking results of retrieval systems. 
To support this, standardized sets of documents and queries are provided by the 
conference organization. 
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tion, thus retaining the flexibility to combine queries on content with the usual 
data retrieval, and/or experiment with novel IR models at a declarative level. 

The remainder of the paper is organized as follows. First, we outline the 
intuition underlying our optimization strategy in Section 2, and introduce the 
MirrorDBMS prototype in Section 3. Next, we describe the proposed query pro­
cessing techniques in Section 4. Section 5 outlines the experimental setup to 
evaluate these techniques, and Section 6 presents and analyzes the results of our 
experimental evaluation. Section 7 presents the conclusions and future work. 

2 Problem Statement 

In IR systems, users express their information needs using a small number of 
keywords and relevance judgments on previously retrieved documents (called 
relevance feedback). Similarly, querying multimedia objects requires the user 
to specify characteristics of the content, e.g. by describing a color histogram of 
desired images. However, for sake of clarity, we limit the scope of our discussion to 
the ranked retrieval of text documents. Using the query and relevance feedback as 
an approximation of the real information need, the system then selects objects 
with characteristics 'similar' to those specified in the query. Notice that this 
comparison between objects is usually based on metadata extracted from the 
original documents, such as words occurring in the texts. 

In the straightforward implementation of this process, each interaction step 
between user and system involves ranking all objects based on their similarity to 
the query, although only the N 'most' similar objects are presented to the user 
(the top-N objects). Obviously, top-N query optimization (attempting to com­
pute only the similarity for the top-N documents to be presented) is a natural 
step to improve the efficiency of (multimedia) information retrieval. 

As mentioned briefly, content querying is interactive and iterative: after re­
viewing, a user gives an indication of the quality of the answer (relevance feed­
back) which is used to modify the original query. Processing the modified query 
generates new answers, and so on. Thus, it seems particularly interesting to cut 
off query processing at a reasonable stage, and show the results computed till 
then to the user for relevance feedback. Although the quality of the answer may 
be impeded, this may allow for great reductions in computations, possibly with­
out diminishing the effectiveness of the relevance feedback process. Our intuition 
is that incomplete answers can still provide a good basis for relevance feedback: a 
quick approximate response may still provide sufficient information to refine the 
estimate of the user's information need, and consequently improve the effective­
ness of retrieval. For each iteration, the users may decide for themselves whether 
they prefer quicker responses of (generally) lower quality, or slower responses of 
(hopefully) higher quality. 

In handling top-N queries more efficiently, implementations of IR systems 
have drawn on a combination of domain knowledge - exploiting the Zipfian [20] 
distribution of terms found in documents (see e.g. [17]) - with smart element­
at-a-time cut-off operations derived from the ranking function, like in the im­
plementation of the well-known IN QUERY retrieval system [7,6]. Exploiting the 
element-at-a-time manner of processing, highly accurate cut-off conditions can 
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be updated after evaluating each element, allowing for efficient reduction of 
obsolete intermediate results being computed. This algorithm and comparable 
ones (e.g. [8]) exploit a carefully designed ordering of the data, mathematically 
well-founded by the work of Fagin [14,12,13]. 

Obviously, the element-at-a-time nature of these native IR algorithms for 
top-N query processing reduces significantly the number of possible query plans 
under consideration in the query processor of a DBMS combining IR techniques 
with data retrieval; which is unacceptable in many cases. So, the goal in this 
paper is to devise a database approach that is able to satisfy the following goals: 

- Improving the efficiency and scalability using (a) domain knowledge and (b) 
new techniques inspired by the (element-at-a-time) cut-off operations, and, 

- Maintaining the flexibility and generality of the database approach to IR. 

Summarizing, we have identified two potential approaches to improve effi­
ciency in information retrieval query processing in a database environment: on 
the one hand, we may reduce the amount of work by ranking fewer documents, 
and on the other hand, we may take advantage of computing only partial answers 
in the first iterations of the retrieval process. In the remainder of this paper, we 
will demonstrate how the database approach allows us to exploit fragmenta­
tion of the metadata to achieve these ideas in a simple yet effective manner, 
requiring only minimal changes to the original, declarative specification of the 
IR retrieval model. 

3 IR Query Processing in the MirrorDBMS 

The architecture of the MirrorDBMS, our research prototype, consists of two 
layers: the logical layer, based on Moa object algebra [4], and a physical layer, 
realized by the binary relational main-memory DBMS Monet [2,3]. The query 
processor transforms the algebraic query expressions specified in Moa into the -
highly efficient - physical operators offered by Monet. The distinguishing feature 
of the MirrorDBMS is that it is extensible at all levels of its architecture: enabling 
the encoding of domain knowledge and advanced query processing techniques at 
the logical level as well as the physical level (please refer to [9, Chapter 2] for more 
information). Also, the prototype DBMS is well prepared for scalability, as Moa 
supports shared-nothing parallelism, and shared-memory parallel computing is 
supported by Monet at the physical level. 

3.1 The IR Retrieval Model 

A retrieval model specifies how the similarity between a document and the query 
is computed, given the query and the relevance feedback from one or more pre­
vious iterations. Most probabilistic IR models rank the documents based on two 
parameters: 

term frequency: For each pair of term and document, tf is the number of 
times the term occurs in the document. 
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TF(term, document, tf) 

IDF(term, idf) 

Q(term) 

Fig. 1. Relations 

(1) 

(2) 

(3) 

inverse document frequency: For each term, idf is the inverse number of 
documents in which the term occurs. 

In a more database like notation we can describe these two statistics as the 
relations 1 and 2, respectively, as shown in Figure l. 

Furthermore, we introduce the set of query terms, i.e. the unary relation 3 
shown in Figure 1. 

In most probabilistic retrieval models, the ranking of a document given a 
query is almost completely determined by the sum of the product between the 
tf and idf of the query terms occurring in the document, sometimes normalized 
with the document length in one way or another. See [19] for more detailed 
information about our specific ranking formula and retrieval model. 

3.2 Query Processing in an IR System 

The algorithm shown in Figure 2 in pseudo-code, consisting of three parts, 
sketches how a typical IR system computes its query results from these tables in 
a nested-loop manner, thus determining precisely the physical execution order. 
We will assume that IDF is ordered descending on idf. 

It may be clear that this algorithm allows a very efficient cut-off, but also is 
highly inflexible with respect to execution order. 

3.3 Set-Oriented IR Query Processing 

To reduce this inflexibility of the IR retrieval process, and thus enable smooth 
integration with traditional DBMS query processing, we reformulate this algo­
rithm at a higher, declarative level.2 

In the implementation, the information retrieval techniques are supported by 
extensions at both levels of the MirrorDBMS. While the exact ranking formula 
requires some minimal extensions at the physical level, the set-oriented formula­
tion of IR query processing is almost completely modeled at the logical level as 
a Moa extension. Although the real algorithm is specified using the powerful but 
relatively low-level Monet Interface Language (MIL), we prefer an SQL-fiavored 
syntax for didactic reasons. 

Again, the algorithm, as shown in Figure 3, consists of three parts. 

2 For the impatient: the usefulness of this seemingly minor step will become more 
clear when we present our optimization techniques based on data fragmentation in 
Section 4. 
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Part A Limit the TF and IDF to match the terms in query Q: 

foreach tl in TF do 
if (tl.term in Q) then 

INSERT t1 INTO TFQ 
end if 

end 

foreach tl in IDF do 
if (t1.term in Q) then 

INSERT t1 INTO IDFQ 
end if 

end 

where t1 denotes the tuple-variable associated to the relations. 
Part B Loop over the terms to compute the ranking contribution per document-term pair, and 

update the document ranking incrementally each time a new ranking contribution for that 
document becomes available. Stop as soon as a test (based on the processed IDFQ and TFQ 
values, knowing that IDFQ can only decrease, cf. [13]) shows that no document could obtain 
a ranking better than the current top-N. 
Like before, t1 and t2 are tuple-variables. Furthermore we assume the existence of a table 
RANK that has two columns: document and rank. 

foreach t1 in IDFQ do 
# Find the matching tf values 
TFQsel = findrecords(TFQ, t1.term) 

foreach t2 in TFQsel do 
tfidf - tt.idf * t2.tf; 
if (t2.document in RANK) then 

updateranking(RANK, 
t2.document, tfidf) 

else 
addranking(RANK, 

t2.document, tfidf) 
end if 
# topN test criterium 
if (!topNcanimprove) then 

exitloops 
endif 

end 
end 

Part C Return the top ranking documents: 

i = 0 
foreach t1 in RANK 
do 

if (i < N) 
then 

INSERT t1 INTO TOPRANK 
else 

exitloops 
end if 
i = i + 1 

end 

Fig. 2. IR query evaluation algorithm 
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Part A Do some initialization given query Q. 
Part B Limit the TF and IDF to match the terms in query Q: 

TFq = TF 1><1 Q 

and 

IDFq =!OF 1><1 Q. 

Next, place the IDFq values next to the corresponding entries in TFq: 

TFIDF!ineup = TFq IXI IDFQ. 

Now, compute the tf · idf value per term-document pair, aggregating the last two columns 
into one: 

TFIDF = SELECT term, document, tf * idf 

FROM TFIDF!ineup• 

Finally, compute the ranking per document by aggregating all term contributions per doc­
ument: 

RANK = SELECT document, AGGR(tfidf) 

FROM TFIDF 

GROUP BY document. 

Please note that in the actual code, the AGGR()-operator does not exist as one operator, 
but denotes a combination of several functions that together compute the ranking. We 
abbreviated it here for reasons of simplicity. 

Part C Normalize RANK and select the top-N documents: 

TOPRANK = TOP(RANK, N). 

Fig. 3. Set-oriented IR query processing 

3.4 Discussion 

The main performance bottle-neck lies in handling the TF table3 : TF contains 
over 26 million entries in the experiments performed for this paper - which 
is only about a quarter of the complete TREC data set. Only Part B 4 in the 
algorithm described above handles a very large amount of data. At a first glance, 
the pre-selection on query terms, TFq = TF rx Q, at the beginning of Part B, 
may potentially reduce the remaining dataset to a manageable size. But, it is 
a well-known fact in IR experiments that for the average query, roughly about 
half of the database remains after that pre-selection: still a very large dataset as 
input for the subsequent computations. 

Since, N = 1000 or (often) less, pushing the top-N operator into the query 
could be very profitable. However, pushing it down the query plan implies push­
ing it through the AGGR()-operator, and therefore through the tj · idf product. 

3 Since we work on a binary model, several tables represent together the columns of 
TF. However, for didactic reasons we will stick to the normal table approach since 
this has no significant consequences for the core of our idea. 

4 From now on, when we refer to Part A, Part B, or Part C, we mean the ones 
described in the database approach and not in the IR approach as described in 
Subsection 3.3. 
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A generic (set-oriented) mathematical solution for this top-N query optimiza­
tion problem is not a trivial one, despite its innocent look. In the next Section, 
we therefore propose data fragmentation as another means to prune the search, 
while keeping (the declarative specification of) the algorithm practically un­
touched. 

4 Data Fragmentation and the Top-N Query 
Optimization Problem 

Since Monet is a main-memory DBMS, the data used in the hot set should 
always fit in main-memory (to avoid performance degradation due to swapping, 
or even worse, a crash caused by running out of memory). The natural way 
to meet this requirement is to horizontally fragment the TF table into a small 
(yet to be determined) number of suitably sized parts. Such a fragmentation 
strategy is orthogonal to the actual retrieval algorithm, and can be managed in 
the mapping from Moa to MIL. 

In this paper, we elaborate on the use of additional knowledge for choosing the 
fragmentation scheme, specific for query processing in the IR domain. We show 
how this enables us to achieve both proposed strategies to improve the efficiency 
of IR query processing: (1) computing partial answers, and (2) top-N query 
optimization. Furthermore, the implementation of the fragmentation strategy 
remains almost entirely orthogonal to the IR retrieval algorithm outlined before. 
Remark that we will focus on optimization techniques at the logical level of the 
MirrorDBMS. 
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Fig. 4. Relative document frequency (zoomed on y-axis to show lower values) 
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Restricting query processing to a smaller portion of the rnetadata is a well­
known approach to increase the efficiency of IR system implementations by com­
puting approximate answers. Obviously, this implies that the effectiveness of the 
answer (measured using precision/recall) will degrade: we trade quality for speed. 
To minimize the loss on quality, we exploit the properties of the afore-mentioned 
Zipfian term distribution. The hyperbolic curvature of the document frequency 
plot, shown in Figure 4, confirms that the data in our test database (see also 
Section 5.1) indeed behaves as predicted by Zipf, validating the underlying rea­
soning behind our approach. 

4.1 The Fragmentation Algorithm 

Now, Figure 5 shows the simplified basics of our fragmentation algorithm for 
splitting the data up in two fragments using the additional information about 
the term distribution. To keep the example simple, we take the first fragment 
such that it contains s1 · IIDFI of the terms and the second one the other s2 · IIDFI 
terms, where s2 = (1 - s1) and 0 <Si< 1, i E {l, 2}. 

Step 1 Sort the IDF descending on the idf values, i.e., terms that occur in many documents 
get lower in the list compared to terms that occur in less documents. 

IDFsorted = SELECT * 

FROM IDF 

ORDER BY idf DESC 

Step 2 Create two fragments IDF1 and IDF2 such that 

for i E {1, 2}. 

SELECT COUNT(*) 

FROM IDF; 

SELECT s; ·COUNT(*) 

FROM IDFsorted 

Step 3 Create two fragments TF1 and TF2 such that 

foriE{l,2}. 
Notice that, for s1 = 0.95, TF1 would now contain approximately 5% (not 95%!) of the 
tuples of TF, and TF2 the rest, due to the high skewedness of the data. 

Fig. 5. Fragmentation algorithm 

Since the terms in IDF1 have a high idf their contribution to the ranking 
of a document is likely to be higher than for terms in IDF 2 (having lower idf 
values). In other words, the terms in IDF 1 are a priori more promising than 
the terms in IDF2 . Fortunately, these interesting terms only use about 5% of 
the data (in case s1 = 0.95). So, in case all query terms are stored in the first 
fragment, we only need to compute the results using IDF1 and TF1 . This would 
mean that the following semijoin TF Q = TF l><1 Q in Part B of the algorithm 
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would become TF Q = TF 1 IXI Q, which will be significantly faster due to the 
much smaller first operand. 

In case not all query terms are contained in the first fragment, one might 
decide to still compute the results on the first fragment only. This could of 
course result in a different top when too much significant information is ignored 
that way. Some experiments described later in this paper try to determine the 
effects of ignoring the second fragment on the quality of the answer. 

Finally, notice that the fragmentation algorithm described above can easily 
be used to handle different fragmentations, for instance for different relative 
sizes (just choose a different si) and/or more than two fragments (have i E S, 
with S C {1, 2, 3, ... , M}, ISI > 2, M = IIDFI). For reasons of simplicity, it 
is sometimes more practical to join TF and IDF before fragmenting the data, 
and propagate the fragmentation into TF and IDF fragments subsequently. This 
other method is particularly handy to obtain fragments of (almost) equal data 
size.5 

4.2 Fragment-Based IR Query Processing with Top-N Cut-off 

The algorithm in Figure 6 shows the top-N cut-off idea in a similar manner like 
the set-based description of the retrieval algorithm as described in Subsection 
3.3 exploiting the fragmentation idea described above. 

This algorithm in fact is a sub-set-at-time version of the element-at-a-time 
version described in Subsection 3.2. 

Unsafe Top-N Optimization. Note that this algorithm is a so called unsafe 
top-N cut-off algorithm [6]. Top-N query optimization relies on the cut-off of 
the query evaluation at a certain stage when certain characteristics concerning 
the still remaining work6 provide sufficient evidence that the top-N cannot be 
improved anymore. However, this also means that at the cut-off moment cer­
tain information, e.g. ranking contributions, have not been taken into account. 
This usually results in a top-N containing the correct documents but with an 
incomplete ranking. In turn, this can result in a different ordering of the top-N. 
Unsafe top-N query optimization stops at this 'incorrectly' ordered top-N. 

Safe Top-N Optimization. The safe alternative to the unsafe method does 
indeed return the top-N with the correct ranking values and inherently can 
deliver them in the correct order. To obtain these final ranking values the ranking 
contribution for the documents in the unsafe top-N needs to be computed for 
all fragments that have not been taken into account, yet. This of course will 
(slightly) reduce the profit of top-N cut-off due to the extra work that has to be 
done. 

5 The fragmentation process itself is part of the physical design of the database, and 
therefore its performance is not really an issue, at least for mostly static collections. 

6 In the algorithm described here the topNcanimprove variable represents the infor­
mation needed to make the cut-off decision. 
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Part A Similar to Part A in Subsection 3.3. Set i to the first fragment that contains a query 
term. 

Part B Similar to Part B in Subsection 3.3, but this time using fragment i instead of the 
unfragmented TF and IDF. Let's call the resulting ranking RANKi. 

Part B' Merge RANKi into any existing RANK or otherwise set RANK= RANKi. 
Part C Normalize RANK and select the top-N documents: 

TOPRANK = TOP(RANK, N). 

Part C' Compute the lowest ranking in the current intermediate top-N: 

topLB = MIN(TOPRANK) 

and the highest ranking in the remaining intermediate results: 

restUB = MAX(RANK - TOPRANK). 

Furthermore, compute the highest possible ranking contributions over all fragments j > i: 

contribUB = MAXRCONTRIB(TFIDFi, ... , TFIDF2s) 

and the lowest possible ranking contribution 

contribLB = MINRCONTRIB(TFIDFi, ... , TFIDF2s). 

Part C" Test whether the top-N still can be improved: 

topNcanimprove = (restUB + contribUB 2: topLB + contribLB) 

and limit RANK to those documents that still can move up into the top-N: 

RANK= SELECT * FROM RANK 

WHERE rank 2: topLB + contribLB - contribUB 

as soon as: 

MIN(RANK) ::; topLB + contribLB - contribUB 

and COUNT(TOPRANK) > N and limit all fragments j > i to match this new intermediate 
ranking. 

Part C'" If topNcanimprove is true, then find the next fragment i containing a query term 
and return to Part B (in this algorithm) . Otherwise, return TOPRANK and quit. 

Fig. 6. Fragment-based IR query processing with top-N cut-off 

Heuristic Unsafe Top-N Optimization. Going even further on the unsafe 
principle, we can drop the requirement in Part C" that the intermediate rank 
only can be restricted when 

MIN(RANK) < topLB + contribLB - contribUB. 

The algorithm then becomes even 'more' unsafe: as soon as COUNT 
(TOPRANK) > N, documents that have no ranking yet are ignored, even when 
they would have received a high ranking otherwise. In turn, this heuristic unsafe 
method is very likely to achieve a much better performance due to the earlier 
and more restrictive limitation imposed on RANK and all fragments j > i. The 
'level of unsafe-ness' can be controlled by adding some documents (with initial 
ranking 0.0) to RANK already during Part A using an a priori notion of rank­
ing between the documents. These documents cannot be forgotten anymore, but 
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will keep their 0.0 ranking when they do not contain any query terms, thus not 
disrupting the ranking process in case they were wrongly added in advance. 

In our case we control the level of unsafe-ness using a factor l (where 0.0 < l < 
1.0) to select the l x no. of documents with the highest document length to be 
added in advance. The document length appeared to be an interesting, natural 
measure of a priori document relevance for the IR model we used. However, 
one can think of many other other means to 'pre-select' documents that should 
not be ignored (i.e. the documents that are most referenced in a digital library 
case, or most linked to in the web case). Also note that a too high l will cause 
the performance to drop rapidly because of the then extremely high number of 
documents that are forced to be ranked. 

5 Experimental Setup 

In the experimental evaluation of the ideas put forward in the previous section, 
we focus on the following three concrete research questions: 

1. How can fragmentation improve efficiency for top-N query execution? 
a) What are the consequences for the speed? 
b) What are the consequences for the quality of the query results, also 

taking into account the impact of safe/unsafe top-N optimization? 
2. How can fragmentation improve scalability, to either manage the same 

database on smaller hardware (like a notebook), or a larger database on 
the same hardware (such as a search engine for the WWW). 

5.1 Data Set and Evaluation Measures 

The experiments are performed on the Financial Times (FT), a major subset of 
the TREC data set, using the 50 topics (i.e. queries) and relevance judgments 
used in TREC-6. Since we want to investigate the trade-off between quality and 
speed we need a good benchmark for the precision and recall. The used TREC 
relevance judgments are the most widely accepted retrieval quality benchmarks. 
Also, the FT document collection is sufficiently large to show the important 
effects. 

We defined four series of experiments, which we evaluate using the measures 
, described in Figure 7. 

5.2 Overview and Motivation of Experiments 

Here, we discuss the four series of experiments that we performed: 

Series I: Baseline. The first series of experiments are meant to show the quality 
and performance of our system without any special tricks: the Monet DBMS 
determines whether to build any access structures (usually hash tables) to speed 
up certain operations (for instance: joins). In this version the main focus was on 
the quality of the retrieval results and flexibility of the retrieval model. The effort 
to optimize this system for performance did not exceed the typical exploitation 
of certain typical alignment issues important in main memory computing. 
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Average Precision We define the average precision (AP) as: 

AP =: avg(pi) 

where Pi is the average 11-point-precision for each query i, i E {l, 2, 3, ... , 50}. So, the AP 
measure is actually the average average 11-point-precision. 

Average Retrieved Relevant We define the average retrieved relevant (ARR) as: 

ARR= avg(ri) 

where Ti is the number of relevant documents retrieved for each query i, i E { l, 2, 3, ... , 50}. 
Notice that the well-known recall measure is defined as r.i divided by the total number of 
relevant documents for query i. 

Average Execution Time The average execution time (AET) is defined as: 

AET := avg(ti) 

where ti is the (wall clock) execution time measured for each query i, and i E 
{l, 2, 3,. . ., 50}. 

Fig. 7. Fragmentation algorithm 

Series II: Speed/Quality Trade-off. In the second series of experiments, we 
concentrate on the effects of ignoring data on the trade-off between quality and 
efficiency. We defined two variants of these series of experiments: 

(a) Always use the first fragment (and forget about the second fragment). 
(b) Take the first fragment, unless 

NIDF1 IX Q = 0. 

We used a term-fragment index to allow an efficient choice, instead of using 
just this semijoin. 

Both types of experiments are executed for several different fragmentations, 
where the relative size in terms of the first fragment varies from 903 to 99.93, 
using the fragmentation algorithm described above. 

Obviously, the (a) series can result in loss of quality; if none of the query terms 
have a high idf value, the answer set has been reduced to a random sample from 
the collection. The (b) series are meant to reduce this negative effect. 

We expect that the speed will decrease in favor of the quality with increasing 
first fragment size. The second experiment should be slower, since the evalua­
tion of the second fragment triggered by some of the queries will increase the 
execution time considerably; though resulting in a better quality than for series 
(a). 

Series III: Benefits of Fragmenting. Series II focuses on the trade-off be­
tween ignoring data to obtain speed compared to the quality of the resulting 
answers. However, the second fragment is still quite large in terms of data size, 
impeding main-memory execution. The experiments in series III are mainly in­
tended to investigate the effects of executing our query algorithm on relatively 
small fragments. To do so, we fragment our database in 25 smaller fragments of 
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equal data size. The number of fragments was experimentally determined based 
on two constraints: there should be sufficiently many fragments to demonstrate 
the expected behavior, but, each fragment should still be reasonably large as to 
obtain the advantage of set-oriented processing. 

Again, we perform a couple of variants of these experiments: 

(a) This variant studies the effects of the fragmentation procedure described in 
Section 4 on execution time and quality of results. As in Series IIb, we use a 
term-fragment index to efficiently determine whether a fragment should be 
evaluated or not. 

(b) This variant uses the same fragmentation as for (a), but this time we allow 
query evaluation to be cut-off after each fragment. The choice whether to 
stop processing the query (and after which fragment) is based on estimates 
whether the top-N can still be improved by processing of any following frag­
ments. This strategy uses the computed lower and upper bounds to restrict 
the intermediate ranking to those documents that may still move into the 
top-N, thus limiting the computational efforts needed for any successive frag­
ments still to be evaluated. We evaluate both the safe and (normal) unsafe 
cut-off principle in this variant. 

( c) As described in Section 4 one can relax certain conditions for the unsafe 
algorithm, obtaining a, what we call, heuristic unsafe method. This variant 
performs the heuristic version of the unsafe experiments done for the (b) 
variant, taking l E {0.00, 0.05, 0.10, 0.25, 1.00}. As explained before we 
used l to pre-select the fraction of a priori most interesting documents 7 that 
should not be ignored in case of intermediate result restriction in Part C". 

Since variant IIIa takes into account all query terms, we expect the AP and 
ARR to be equal to the figures measured in Series I. The AET will probably be 
better (e.g. lower) than for Series Ilb, since the overhead occurring from using 
an extra fragment is likely to be lower (since the fragments are smaller). 

Of course, the computation of the estimates in series IIIb introduces an over­
head in execution costs; this investment only pays off if the profits of the op­
timization are high enough. The {b) variant of these series are meant to show 
whether this is still the case when applied to subsets-at-a-time processing rather 
than the element-at-a-time case studied in [6]. Note that in [6] the results for 
the safe method showed no real significant performance improvement. 

As mentioned before, the quality is likely to be somewhat lower in case of 
the unsafe variant of the cut-off. 

We expect the IIIc variant to outperform Illa and IIIb (both for safe and 
unsafe runs) by far for l = 0.00 and quality to be lower but not really bad. For 
growing l we expect the performance to degrade rapidly since the overhead will 
grow significantly. However, in the case of l = LOO the quality should reach the 
same levels as measured for the IIIa variant. 

7 We used the document length which appeared as a natural candidate given the IR 
model we used. As stated before, other measures might be more appropriate in other 
environments. 
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Series IV: Influence of Query Length and Top-N Size. Because we cal­
ibrate the quality measurements using the relevance judgments of the TREC-
6 queries, the experiments in Series III have been performed with fairly long 
queries: an average length of 27 terms, and the longest query contains over 60 
terms. Also, TREC evaluation requires the top 1000 to be produced for each 
query. 

Series IV try to provide insight in (a) the effect of query length on the AET 
and (b) the effect of the size of required top-N on the AET. The (a) variant 
repeats the experiments of Series I (unfragmented case), Illa (25 fragments, no 
top-N cut-off), IIIb (25 fragments with normal safe/unsafe top-N cut-off), and 
Ille (25 fragments with heuristic unsafe top-N cut-off) for limited query lengths. 
The new queries are constructed by taking the first k terms of each original query 
(or the entire original query in case it was shorter than k terms). We let k range 
from 1 to 25. The (b) variant leaves the queries untouched and computes Series 
I, Illa, IIIb, and Ille for several top-N sizes ranging from 10 to the original 1000. 

We expect that the (a) variant will show a relative performance advantage 
in favor of the top-N cut-off for longer queries compared to the cases without 
top-N cut-off. For shorter queries, fragmentation alone will already result in 
quite efficient processing whereas top-N cut-off would only cause extra compu­
tational costs without much chance to gain a profit. The (b) variant is expected 
to demonstrate better AET values for lower N. The shorter the required top­
N, the higher the lowest ranking value topLB occurring in the top-N; and, the 
higher topLB, the higher the value of topLB + contribLB - contribUB used 
to restrict the intermediate result RANK. This means that more elements in 
RANK are likely to be cut away. Also, the higher ranking values usually tend 
to be further away from their closest neighbors. So, the higher the topLB, the 
higher the chances that restUB will be so much further away (i.e. lower) that 
the gap cannot be bridged anymore: thus allowing for a top-N cut-off. In both 
cases the execution time is reduced, either due to less computational load per 
fragment or fewer fragments being evaluated. 

6 Experimental Results 

The hardware platform used to produce the results presented in this section is a 
dedicated PC running Linux 2.2.14, with two Pentium™ Ill 600 MHz CPUs (of 
which only one was actually used in the experiments), 1 GB of main-memory, 
and a 100 GB disk array mounted in RAID 0 (striping) mode; no other user 
processes were allowed on the system while running the experiments. 

The remainder of this section is divided in four parts, corresponding with the 
four series of experiments. For each of these series of experiments, we included 
some figures/tables to illustrate the results. 

6.1 Series I: Baseline 

In this subsection we present the AP, ARR, and AET for the baseline run of 
the retrieval experiments. Table 1 shows the measured values, next to the values 
provided by TREC as the benchmark. The AET of course is not available for 
the benchmark. 
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Table 1. [Series I] Baseline result statistics (TREC benchmark included for compari­
son) 

Benchmark 100.0 31.8 
Series I 31.0 22.9 44.4 

The ARR of 22.9 means that the recall of our unfragmented is 

ARRtmfragmented = 22.9 = O. 72_ 
avg. actual no. relevant 31.8 

Taking into consideration the fact that many IR systems stay below the 303 
precision next to this fairly high recall, demonstrates that we used a state of the 
art IR model indeed. 

The AET of 44.1 seconds is of course not very competitive. However, note 
that this is also due to the relatively large (1000), and therefore expensive, top-N 
we computed, required to legitimate the use of the TREC benchmarks. In Series 
IV we demonstrate that much better times can be achieved in case of a smaller 
top-N. Furthermore, the relatively long queries we used (again because of the 
use of the TREC benchmarks) also are quite costly when evaluated without 
any special measures like top-N optimization, which we did not exploit in these 
series, yet. 

6.2 Series II: Cut-off Moment 

Series II has been designed to develop an intuitive feel for the trade-off between 
quality and efficiency. Recall that only two fragments are used: a small fragment 
containing the 'interesting' terms and a much larger fragment containing mainly 
'common' terms. 

Series Ila: Use First Fragment Only. Figures 8, 9, and 10 plot the AP, 
the ARR, and the AET of Series Ila, respectively, together with the baseline 
performance of the unfragmented case. Figure 9 also plots the average number of 
relevant documents in the collection, averaged over all topics. The x-axis denotes 
the term count of the first fragment in 30 (i.e. tens of percentages) with respect 
to the total number of terms in the dictionary. 

The experiments confirm our expectations. The AP fragmented increases with 
increasing term count of the first fragment, moving towards the AP unfragmented· 
This also holds for the ARR fragmented, respectively ARRunfragmented. The shape 
of the plot in Figure 10 is also not surprising; since the data distribution is 
highly skewed, the data size of the first fragment grows faster and faster with 
increasing term count of the first fragment; explaining perfectly how the AET 
increases ever faster as the term count of the first fragment increases, reaching an 
AET of just over 44 seconds when the first fragment contains all terms (100%). 



142 H.E. Blok et al. 

If the first fragment contains 993 of the terms, the AET is still 3.8 s while 
the ARR is 16.2 (or, average recall is 0.51) and the AP is 0.27: half of the 
documents that should have been retrieved are (on average) indeed retrieved, 
and, the average precision drops only a few percentages (to a level that various 
custom IR systems would not reach). In other words, a very reasonable quality 
can be reached in almost 20 seconds, which is more than 2 times faster than the 
time required to compute the best possible answers (given our retrieval model). 

Series lib: Use Second Fragment when First One is Unable to Handle 
Query. Even the best known retrieval models don't exceed the 403 AP level. 
So, although the results shown in the previous case can be considered quite good 
compared to many other IR systems, the quality degradation still comes down 
to moving away further from that - already quite poor - upper limit of 403 AP. 
Series IIb aims to investigate a possible improvement in the quality at the cost 
of, hopefully, only a minor fall-back in efficiency. 

As is clearly demonstrated by the results shown in Figures 8 and 9, the quality 
of the results has improved significantly thanks to the switching technique. But, 
the AET has risen significantly (Figure 10). This observation particularly holds 
for the fragment size ranges below 98.53. For larger fragments, the AET has 
stayed the same. 

This behavior can be explained by the following argument. The larger the 
size of the first fragment, the more terms are handled by the first fragment; so, 
the higher are the chances that at least one of the query terms is contained in 
the first fragment. But, this also implies that the chances that a switch is needed 
drop. Conversely, the smaller the first fragment, the system switches more often, 
to a rather large second fragment; resulting in quite expensive execution costs. 

When increasing the number of terms in the first fragment up to approxi­
mately 98.53, the system switches less and less often to the second fragment; 
and, as the 'data size' of the first fragment is still relatively small, and the second 
(more 'expensive') fragment is used ever less, the total execution time drops. Up 
from 98.53, the first fragment always contains at least one of the query terms. 
But, from that same point the data size of the first fragment starts to grow 
faster and faster: causing the AET to rise. Since from the 98.53 point up only 
the first fragment is used, the quality and performance coincide with the figures 
obtained at the previous experiments. 

As expected, the efficiency of Series Ilb is lower than that of the previous 
experiment, in particular for smaller first fragment ranges. But, the AET is still 
always 2 times smaller than for the unfragmented case and the quality exceeds, 
or at least equals (from around the point of 98.53 terms in the first fragment), 
the levels reached in Series Ila, as we had hoped. The AP never drops below 
0.23, and the ARR always stays above 14. Summarizing, the switching procedure 
does improve the quality, but in more extreme cases also degrades efficiency quite 
firmly; caused by either switching to an expensive second fragment (sizes smaller 
than 953) or always operating on an often too expensive first fragment (up from 
993). 
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Concluding Remarks. These series of experiments clearly show the trade­
off between speed and quality. They also demonstrated that, while remaining 
quite competitive quality, the efficiency of the retrieval process can be increased 
significantly by using this two-fragment approach. 

6.3 Series III: Benefits of Fragmenting 

In Series I we already showed the quality and performance results of the 'no 
fancy tricks' approach. These series focus on the situation where we have many 
equally sized (in terms of data size) fragments (25 to be precise). 

In Table 2 we listed the quality and performance results of the Series Illa, 
IIIb, and Ille experiments. We also included the results of Series I and the TREC 
benchmark values for comparison. 

The results for the Series IIIa, where we only fragmented the database in 25 
fragments but did nothing else in particular to speed things up, clearly shows 
that fragmentation by itself does not introduce any extra costs. Also one clearly 
sees that the quality has not decreased in any way, as we expected, since all 
information of any relevance has been taken into account. 

The Series IIIb shows the results for the experiments where we used normal 
safe/unsafe top-N cut-off. As we predicted, the quality has degraded for the 
unsafe top-N technique (but only slightly) and stayed the same for the safe 
method. 

Although we did anticipate on a poor performance gain for the safe method, 
the drop in performance was rather unexpected. The unsafe method was ex­
pected to perform even more better than the safe approach, but also shows 
disappointing execution times. This performance degrade of course is the oppo­
site of what we intended to happen. A more close review of our log files learned 
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Table 2. [Series III] Results of experiments with 25 fragments, with and without top-N 
cut-off (TREC benchmark and Series I results included for comparison) 

ilAP c%>1ARRjAET c•il 
Benchmark 100.0 31.8 -
Series I 31.0 22.9 44.4 
Series Illa 31.0 22.9 44.8 
Series IIIb 31.0 22.9 50.9 
(safe top-N) 
Series IIlb 31.0 22.7 51.0 
(unsafe top-N) 
Series Ille (l = 0.00) 30.0 15.1 7.9 
Series Ilic ( l = 0.05) 29.8 15.6 13.5 
Series Ille ( l = 0.10) 29.7 15.9 18.7 
Series Ille (l = 0.25) 30.0 17.6 33.0 
Series Ille (l = 1.00) 30.l 22.9 89.l 

that the cut-off conditions were too weak, allowing a cut-off in only rare cases. 
Also the intermediate result restriction technique appeared to suffer from the 
same weak boundaries resulting in no effective limitation of the computational 
effort. Due to the extra administrative work needed for the desired but never 
occurring cut-off this resulted in a performance degrade instead of a performance 
gain. 

However, the reasons for the disappointing results for IIIb also explain the 
huge performance gain for the Ille case with low l. For the Illa (and IIIb) 
case the computational effort (indeed) appeared to increase for fragments with 
terms with higher df - e.g. the fragments in the end of the fragment-sequence 
- due to the Zipfian nature of the data. In case of Ille the intermediate result 
restriction did occur with almost no exception, reducing the computational effort 
per fragment to almost a constant factor. Furthermore, the AP stayed almost 
the same, while the ARR dropped a bit more. However, the recall still is about 
50% in the worst case, which is not really that bad. For the case of l = 1.00 
the quality indeed equals the values measured for the Illa case, as expected. 
However, the performance for this case is very bad, as one can expect of this 
naive approach to forcefully rank all documents. 

6.4 Series IV 

Here we describe the measured performance and quality results when we relax 
the requirements we used to comply with the TREC evaluation standards till 
now. The (a) variant shows the effects of shorter queries, whereas the (b) series 
show what happens when a smaller top-N is delivered. 

Series IVa: Influence of Query Length. Figures 11, 12, and 13 plot the AP, 
the ARR, and the AET of Series IVa, respectively, together with the baseline 
performance of the unfragmented case. 
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As expected, the smaller the query length the better the performance. And, 
although not completely compliant with the usual TREC evaluation standards, 
we also performed the query result quality evaluation, which not surprisingly, 
shows a degrade for reducing query length. Again, the normal safe and unsafe 
techniques do not result in a significant performance gain. The heuristic method, 
in turn, shows very good performance for the lower l values. For l = 0.00 the exe­
cution times per query only lightly increases for growing query lengths. However, 
for growing l the performance collapses quickly. 

Series IVb: Influence of Top-N Size. Again, we combined all the results of 
these series into 3 plots, being the Figures 14, 15, and 16. 

We expected the performance to increase for decreasing top-N size. This 
indeed does happen, but it clearly only happens for really small top-N sizes, and 
then still only in a minimal form, which is less than we hoped for. Apparently 
the size of the required top-N does not really affect the computational effort that 
is required. Probably this has to do with the fact that the top-N cut-off did not 
really work as we expected and that the main performance gain is obtained from 
reducing the intermediate results/work. This latter observation is supported by 
the fact that the heuristic unsafe method always results in significantly lower 
execution times for lower values of l, independent of the size of the top-N. In 
general, the differences between the results obtained for the used optimization 
techniques are clearly visible and resemble the figures we already saw for the (a) 
variant. 
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Concluding Remarks. The effects we hoped to see for the (a) variant indeed 
occurred and the heuristic unsafe cut-off technique seems very promising due 
to its still relatively good quality along with very good performance for low l 
values. The (b) variant also, in a sense, did show what we expected, but much less 
significantly than we hoped for. Apparently the size of the top-N is not really an 
important issue in our case. Future research has to show whether we can improve 
the top-N cut-off conditions to obtain effective top-N cut-off behavior indeed. 
Maybe then indeed the size of the top-N will turn out to be of significance. 

Fortunately, our heuristic unsafe method does show very interesting perfor­
mance gain with only minor quality loss. 

7 Conclusions and Future Work 

This paper presents a convincing case for the suitability of the 'database ap­
proach' in the non-standard domain of information retrieval. We first specified 
the typical IR retrieval process declaratively. This allows the integration of IR 
techniques in our prototype DBMS, without fixing the physical execution of 
queries that use these techniques on a predetermined order, which is particularly 
important for the development of search engines for XML documents, handling 
queries that refer to a combination of traditional boolean retrieval with retrieval 
by content. 

The experimental validation of our proposed techniques confirm strongly 
the expected quality versus efficiency trade-off. Series II and III establish the 
suitability of data fragmentation as an instrument to tailor the physical database 
design to match the hardware restrictions of the server machines. The final series 
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of experiments demonstrates further evidence in favor of further adaptation of 
our fragmentation method for top-N optimization techniques. 

Summarizing, our results demonstrate convincingly that the smart usage of 
domain knowledge can significantly improve the retrieval efficiency when oper­
ating in a database context. Note that for short queries (i.e. only a couple of 
terms) the execution times reduce to only a few seconds per query when using 
our heuristic unsafe top-N cut-off technique. This even outperforms the initial 
Google of few years ago for uncached short queries [5]. Of course Google then 
(already) operated on a data collection of about 100 times bigger than the one 
we used in this paper. Also, such state of the art search engines make use of 
(query) caching techniques closely related to database optimization techniques 
like multi query optimization, which we haven't incorporated in our system, yet. 

Based on the results of Series II we have already devised a first prototype cost 
model that seems to predict the execution costs of our fragmented query evalua­
tion approach very accurately (also see [l]). We eventually plan to use this model 
to optimize the allocation of fragments on a shared nothing parallel system. Next 
to that we plan to incorporate the cost model in the (physical)optimizer under 
the logical level of our system (i.e. Moa). This will allow the optimization of the 
IR part to blend in with the rest of the optimizer, due to the transparent nature 
of our approach. To evaluate the efficiency gain and opportunities for scalability 
of this cost based optimizer we are setting up a database with a data collection 
that is a 100 times larger than the one we used to perform the experiments 
presented in this paper. We plan to exploit the parallel processing features of 
our physical (Monet) and logical (Moa) layers to cope with this dataset using a 
cluster of PCs similar to the one we described in Section 6. Our ultimate goal 
is to demonstrate that our fragmentation approach indeed does allow seamless 
integration of multi media information retrieval technology in a DBMS in an 
efficient, scalable, and flexible manner. 

Finally we want to point out that a dedicated IR system most likely always 
will outperform the best database solution but will lack its flexibility, scalability, 
and general efficiency. This holds in particular when dealing with both structured 
and unstructured (like text content) data. Our goal is to find a database solution 
that at least shows acceptable performance for the unstructured part. We see 
the results presented in this paper are a first step in the right direction. 
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