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Abstract A static analysis is proposed as a method of reducing complexity of the 

correctness proofs of CSP programs. This analysis is based on considering all possi­

ble sequences of communications which can arise in computations during which the 

boolean guards are not interpreted. Several examples are provided which clarify its 

various aspects. 

1. INTRODUCTION 

Correctness proofs of concurrent and distributed programs are complicated 

because in general they are of the length proportional to the product of the lengths 

of the component programs. We claim in this paper that in the case of the CSP pro­

grams the length and the complexity of these proofs can be substantially reduced 

by carrying out first a preliminary static analysis of the programs. This analysis 

allows to reduce the number of cases which have to be considered at the level of 

interaction between the proofs of the component programs. 

The analysis is quite straightforward and contains hardly any new ideas. It 

is based on considering all possible sequences of communications which can arise 

in computations during which the boolean guards are not interpreted. In this respect 

it bears a strong resemblance to the trace model for a version of CSP given in [H 1]. 

We apply this analysis to three typEEof problems. The first one consists of 

determining which pairs of input-output commands (i/o commands) may be synchronized 

during properly terminating computations. The second one consists of determining 

all possible configurations in which deadlock occurs. Finally we provide a suffi­

cient condition for safety of a decomposition of CSP programs into communication­

closed layers, a method of decomposition which has been recently .proposed by 

Elrad and Francez [EF]. 

A similar analysis can be carried out for other programming languages which 

use rendez-vous as a sole means for communication and synchronization. In fact 

while writing this paper we encountered in the last issue of the Communications of 

ACM a paper by Taylor [T] in which such an analysis is carried out for ADA programs. 
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1 d"ff is 1·n the presentation of this approach. R.N. Taylor presents 
The on y i erence 
an algorithm which computes all rendez-vous which may take place during execution 

of a program and all configurations in which deadlock may arise. His algorithm is 

also capable of determining which actions may occur in parallel. We on the other he 

present the analysis in a formal language theory framework providing the rigorous 

definitions which can be used in the case of concrete examples. We also link this 

analysis with a subsequent stage being the task of proving correctness of the 

programs. 

The paper is organized as follows. In the next section we introduce the 

basic definitions. In section 3 we provide three applications already mentioned 

above. Section 4 is devoted ta a more refined analysis which takes into account 

the problem of termination of the repetitive commands. Finally in section 5 a numbs: 

of conclusions is presented. 

2. BASIC DEFINITIONS 

We assume that the reader is familiar with the original article of Haare [HJ 

Throughout the paper we consider programs written in a subset of CSP. We 

disallow nested parallel composition, assume that all variables are of the same 

type and consequently omit all the declarations. Additionally we allow output 

corrrnands to be used as guards. For the reasons which will become clear later we 

label each occurence of an input or output command by a unique label. 

By a parallel program we mean a program of the form P 1 II ••• lip n where 

each Pi is a process. For simplicity we drop the process labels. So according to 

the notation of [HJ each process is identified with ti'Ecammand representing its 

body. The name of the process can be uniquely determined from the position of the 

command within the parallel composition. 

The analysis carried out here can be straightforwardly extended to the 

full CSP. 

Throughout the paper we denote by S, T arbitrary (sequential] commands, by 

g guards, by b, c boolean expressions, by t expressions and by Cl, S i/o 

commands. lab~ls of the i/o commands are denoted by the letters k. l,m. Finally, 
we write [ 0 g1 + s1J instead of [g + s O 0 

i=1 1 1 ·•• gm+ Sm]. 

Consider now a parallel program p D 11 p w 
1 ··· n" e proceed in two stages. 

1ol With each process pi we associate a regular language 

structural induction. We put 

l(x:=t) ~ L(skip) = {€}, 

L(l:Pj!tl = {l : <i,j>}, 

defined by 



LCl:Pj?xl = {l : <j,i>}, 

LCS1;s2J = L(S1JLCS2J, 

L(g + S) L(g)L(S), 
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L(b) = {€}, L(b;l:a) = L(b)L(l:al (=L( l :all, 

m 
g! + S1J = iV1 LCgi + S1l, 

m * 
gi +Si]) = L([ 0 g1 + S.]l 

i=1 J. 

Note that LCP1l is the set of all a priori possible communication sequen­

ces of Pi when the boolean guards are not interpreted. Each communication sequence 

consists of elements of the form l:<i,j> or l:<j,i> where 1 is a label of an 

i/o command uniquely identified and <i,j> (<j,i>l 

i/o command stands for a communication from PiCPj) 

records that fact that this 

to 

It is important that we associate with assignment and skip statements the 

set {€} and not the empty language 0. Otherwise not all communication sequences 

would be recorded in L(Pi). The following example clarifies this issue. 

Example 

Let 

P1 = [b1 +skip 0 b2 + k:P21x] 

*[l:P2?y + ••• ; m:P2 1y] 

where ••. stands for a "private part" of P 1, i.e. a command not involving any i/o 

commands. Then 

LCP1J = {(1:<2,1>l(m:<1,2>J}* 

u {k:<1,2>}{(1:<2,1>lCm:<1,2>l}* 

If we associated with skip the empty language then the first part of LCP1 J 

would not be present even though it represents possible communication sequences. 

2°) We associate with P1U ••• 0Pn a regular language LCP 1D ••• 11Pnl. Its 

letters are of the form k,l:<i,j> standing for an instance of a communication 

between the output command of Pi labeled by k and the input command of Pj 

labeled by l. 

First we define a projection function [.Ji (1sisnl from the alphabet of 

LCP1 H.,.Rpn) into the alphabet of L(Pil. We put 

[k,l:<i,j>]i k:<i,j> 

[k,l:<i,j>]j l:<i,j> 

[k,l:<i,j>] h = € if h "' i,j 

and naturally extend it to a homomorphism from the set of words of LCP111 ... llpn) 

into the set of words of L(Pil. 
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We now define 

UP111. .. 11Pnl {h:[h]i E L(Pil. i = 1,. .. ,n} 

Intuitively, LIP1 11 ..• 11Pnl is the set of all possible communication sequen­

ces of p111 .•. 11Pn which can arise in properly terminating computations during 

which the boolean expressions are not interpreted. 

3. APPLICATIONS 

1. Partial correctness 

Given a parallel program P1 11 .•. 11Pn we define 

STAT = {[k:a, l,Sl k:a is from Pi' l:S is from 

I 3h 3a [h E L(P 1 11 ••• 11Pn), a is an element of h, 

Uk:al = {[a]i} and L(l :Sl {[a]j}}. 

Intuitively STAT [standing for static match) is the set of all pairs of 

i/o commands which can be synchronized during a properly terminating computation of 

P111 •.• 11Pn which ignores the boolean guards. 

The set STAT should be compared with two other sets of pairs of i/o commands 

SYNT {[k:a, l:Sl : k:a is from Pi, l:S is from Pj and k:a 

and l:S address each other (match]} 

SEM { ( k :a, 1: Sl : in some "real" properly terminating computation 

of P111 ... 11Pn k:a and l:S are synchronized}. 

In the proof systems of [AFR] and [LG] dealing with partial correctness of 

CSP programs the crucial proof rule is the one that deals with the parallel composi­

tion of the processes. First one introduces so called proof outlines for component 

processes. A proof outline of S is a special form of a proof of partial correct­

ness of the program S in which each subprogram of S is preceded and succeded by 

an assertion. These assertions are supposed to hold at the moment when the control 

is at the point to which they are attached. As behaviour of each component process 

depends on the other processes we ensure the above property by comparing proof out­

lines of the component processes. Given a proof outline the only assertions which 

have to be justified using proof outlines ot other processes are those succeeding 

the i/o commands. 

Thus one identifies all pairs of possibly matching i/o commands and checks 

that the assertions attached to them are indeed justified when the communication 

takes place. This part of verification of the proof outlines is called in [AFR] the 

cooperation test and in [LG] the satisfaction test. 

If the proof outlines satisfy the test then one can pass to the conclusion 

stating partial correctness of the parallel program. 



5 

We now concentrate on the step consisting of identifying all pairs of possibly 

matching i/o commands. According to our definition this is the set SEM. But since 

SEM is in general not computable as a function of the program P111 .•• 11Pn' this set 

is replaced in [AFR] and [LG] by a larger set SYNT being obviously computable. We 

propose to replace in this analysis the set SEM by the set STAT. 

Note that the following clearly holds. 

Fact SEM c STAT c SYNT 

Moreover, the set STAT is obviously computable. Using the set STAT instead 

of SYNT as an "approximation" for SEM is more economical as less checks in the 

cooperation (satisfaction) test phase are then needed. Also the proof outlines (and 

in the case of [AFR] - the global invariant) can be simplified. 

As an illustration of the difference between the sets STAT and SYNT consi­

der the following example : 

Example 2 

Then 

and 

Let 

P1 = k.1 :P2?x i ••• ;k2 :P2!z i •• .; 

*[b1 + ••• i k3:P2?x; .•• i k4:P2 !z ; .•. ], 

p2:: 11:P1!y ; •• .; 12:P1?u ; ... ; 

*[b2 + •• .; 13 :P11y ; ••• ; 14 :P1?u i ••• ] 

STAT s i s 4} 

SYNT • {[k.i:ai' lj:Bjl : li-jl is even, 1 s i,j s 4}. 

Thus STAT has here 4 elements whereas SYNT has 8 elements. 

The difference between STAT and SYNT becomes more evident for longer pro­

grams. For example if in the above programs both repetitive commands contained 2k 

instead of two alternating i/o commands in succession then STAT would contain 

2(k+1l elements whereas SYNT would contain 2(k+1J 2 elements. 

It is important to note that the set STAT consists of pairs of i/o commands 

whinh can be synchronized during a properly terminating computation. The following 

two examples clarify this issue. 

Example 3 

Let 

P 1 - •• .i k1 :P1 ?x i ••• , 

P2 - ···l 11 :P2 !y ; •.• i 12 :P2!u l··· 
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Thus STAT = IZI even though the i/o commands labelled by k1 and 11, respectively 

can be synchronized. On the other hand, since UP1 llP2J IZI, there does not exist 

a properly terminating computation of P 111P2• Indeed, far any properly terminating 

computation the sequence consisting of its consecutive communications belongs 

ta UP 1ftp2J. 

Example 4 

Let 

p2 - [c1 + D c2 + 11 : p 1 ! y J ••• J12 : p 1 ! y J. 

Then L(P 1) = {~. (k1:<2,1>)(k2:<1,2>l} and UP 2 J = {.;:. (11 : <2. 1 > J 

(12:<2,1>]} so L(P 1llP2 l = {€}. Thus STAT = IZI. The i/o commands labeled by k1 

and 11, respectively can be synchronized but not during a properly terminating 

computation. 

The situation when LCP111 •.. 11Pnl= IZI should be compared with the situation 

when LCP111 ••• RPnl = {€}. In the first case no properly terminating computation of 

P1li •.• liPn exists. In the latter case the properly terminating computations of 

P 1 ll ••• llP n can exist but in none of them a communication will take place, 

In both cases STAT = IZI so no cooperation [resp. satisfaction) test will 

take place in the proof rule dealing with parallel composition. This is in accor­

dance with the fact that partial correctness of programs refers to properly termi­

nating computations only. In both cases above no communication will take place in 

any such computation. 

Example 

Finally we consider the following example 

Let 

p1 = *[k1:P2?x + ••• ] 

P2 = *[l1:P1!y + · •. ] 

k2 :P 2 ! u, 

12 :P1?z. 

Then STAT = SYNT = {[ki:ai, li:Sil : i=1.2}. Note however that the communi­

cation between the i/o commands with labels k2 and 12 • respectively cannot take 

place as none of the repetitive commands can terminate. In particular no computa­

tion of P1llP2 terminates. The tools used so far do not allow us to deduce these 

facts formally. We shall return to this problem later. 
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2. Proofs of deadlock freedom 

In the proof systemsof [AFR] and [LG] one proves deadlock freedom of the 

parallel programs by identifying first the set of blocked configurations, i.e. the 

vectors of control points corresponding to a deadlock. Then for each blocked confi­

guration one shows that the conjunction of the assertions attached to the corres­

ponding control points (and the global invariant in the case of [AFR]l is inconsis­

tent. Thus the length of the proof of deadlock freedom is proportional to the num­

ber of blocked configurations. 

We now suggest a more restricted definition of a blocked configuration 

which is sufficient for proofs of deadlock freedom and results in shorter proofs. 

The control points which are of interest here are those when the control resides in 

front of an i/o command or at the end of a process. With each control point of the 

first type we associate a set of i/o commands which can be at this point executed. 

With the control point of the second type we associate the set {end Pi} corres­

ponding to the situation when the control is at the end of the process Pi. 

We define 

C(k:al = {{k:a}} 

where k:a occurs in the process as an atomic co!TVTland, 

where 

C([b1 + s1 O ... O bm +Sm 0 k1:a1 + Sm+ 1D ... 0 kn:an + Sm+n Obm+ 1ikn+1 :an+1+ 

sm+n+1 0 ... Obm+p;kn+p=an+p + sm+n+p]l ={A:A = {ki:ai : i=1, ••• ,n} u B 

B,:: {kn+i:an+i : i=1, •.• ,p}}, where m ~ O and n+p ~ 1, 
m m 
0 gi +Si]) = C([ 0 g.+ S.]). 

i=1 i=1 l. l. 

For other type of commands S C(S) is not defined. Note that a typical set 

A considered above consists of all i/o guards which occur without the boolean guards 

together with a subset of those i/o guards which occur with a boolean guard. 

Given now a process Pi we define C(Pil to be the union of all sets 

C(S) for S being a subprogram of Pi together with the element {end Pi}. Each 

element of C(Pil corresponds to a unique control point within Pi. 

The identification of all blocked configurations depenss on the fact whether 

so called distributed termination convention (d.t.cl of the repetitive commands is 

taken taken into account. According to this convention a repetitive command can be exi­

ted when all processes addressed in the guards with boolean part true have termina­

ted. This convention corresponds to the following definition of a guard being failed 

a guard ~ if either its boolean part evaluates to false or the process addressed 

in its i/o part has terminated. A repetitive command is exited when all its guards 

fail. If in the definition of a failure of a guard we drop the second alternative 

we obtain the usual termination convention of the repetitive commands. In [HJ the 
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distributed termination convention is adopted. 

used. 

Consider first the simpler case when ths usual termination convention is 

A triple <A1, ... ,An> from CCP 1Jx ••• xCCPnl is called blocked if 

il 3i Ai-/{end P) 

[not all processes have terminated) 

ii) U Ai x A.l n SYNT = 0 
iilj J 

[ no communication can take place) 

Alternatively ii) can be stated as : no pairs of elements from Ai and Aj 

[i-/j) match. The notion of a blocked tuple is from [AFR]. 

Let Init(L) for a formal language L denote its left factor i.e. the set 

{u 3 w(uw € Ll}. We now put 

LPCP1 11 ... 11Pnl = {h : [h]i E Init[L(PiJ), i=1, •.• ,n}. 

Intuitively, LP (P 111.,. lip n) is the set of all possible communication sequen­

ces of P111 .•. HPn which can arise in partial computations during which the boolean 

guards are not interpreted. 

We now say that a twple <A1, •.. ,An> from CCP1 lx ..• xC(Pnl is statically 

blocked if 

i) it is blocked 

ii l 3 h • LP [P 111 ... II P n J \/ i 

[Ai ii {end Pi}*\/~€ Ai([h]ia E Init(L(Pilll where L[d) {a} 

11 A. = {and P.} => [h]. E UP.)] 
l l l l 

The second condition states that there exists a communication sequence which 
reaches the vector of the control points associated with <A1, ••. ,An>. Reachability 

is checked by considering the projections [h]i of the sequence h. If Ai -/{end Pi} 

then [h].a for all a € {L(d) :d €A.} should be an initial part of a sequence 
l - - l 

from UP i). If Ai = {end Pi} then [h]i should be a sequence from L(P i l. 

If d.t.c. is used then we should add the following condition to the defini­
tion of a blocked triple 

iii) For no i o' 11" · "ik from {1, •. .,n}, where i. 
J 

i il for j i l : 

A. {end P. } and the processes addressed in the i/o commands of A. are all l. l. l J J 0 
among {P. 

11 
,. . .,P. }. 

lk 

This condition states that no exit can take place due to the distributed 

termination convention. Thus the set Ai should correspond to a repetitive command. 
0 
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We denote the set of all statically blocked tuples by STATB and the set 

of all blocked tuples by SYNTB. 

We now consider a couple of examples. 

Example 6 

Consider the processes P1 and P2 from the example 2. O.t.c. cannot be 

used here. It is easy to see that 

whereas 

SYNTB 

STATB 

{ <{ki :ai}, {lj :Sj}> : 

LI {<{ki :ai}. {end P2 }> 

LI {<{end P1 }, {lj:Sj}> 

{<{k3 :a3}, {end P2 }>, 

<{end P1 }, {13 :S3}>} 

li-jl is odd, 1 s i,j s 4} 

s i s 4} 

s j s 4} 

Thus SYNTB has 16 elements whereas STATB has only two elements. 

Example 7 

Let 

p 1 - .. .; k1 : p 2 ! x l .. .; k2: p 2? z l .. .; 

*[b1 + k3 :P2 !x ; ... ; k4 :P2 ?z ; ... ], 

p2 - 11:P1?y ; .. .; 12:P1u ; ... ; 

*[13 :P1?y + ••• 14 :P1 !u ; ••• ]. 

This is a structure of the program partitioning a set studied in [OJ and 

[AFR]. 

Consider first the case when the distributed termination convention is not 

used. Then SYNTB and STATB are the same as in the previous example. 

and 

Suppose now that d.t.c. is used. Then 

SYNTB 

u {<{ki:ai}, {end P2}> 

u {<{end P1}, {lj:Sj}> 

STATB = {<{k3:a3}, {$nd p2}>}. 

s i s 4} 

j 1,2,4} 

Here SYNTB has 15 elements whereas STATB only o~e. Note that the only sta­

i:icly bloc~ed pair cannot arise in actual computations either. The only way P2 can 

-terminate is due to the termination of P1• Thus if the control in P2 is at its 

E3nd then the same must hold for P1 . We note that our analysis is not precise 

E3nough in order to deal with this type of situations. The next example gives more 

E3Vidence to this effect. 
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Example 8 

Let for i=1, .. .,n 

P. - *[bi ; Pi-1!xi .... ... 
1 

D ci;Pi+1!xi + ... 
0 pi-1?yi .... 

0 pi+1 72i-+ 

where the addition and substraction is modulo n. 

This is a structure of the distributed gcd program considered in [AFR]. The 

labels of i/o commands are omitted as they are not needed here. 

and 

We have in the case when d.t.c. is not used 

SYNTB = {<A1, .•. ,An> : j i Ai t {end Pi} 

STATB = SYNTB. 

AV i[Pi_1!xi E Ai-+ Ai_ 1 = {end Pi_1} 

A pi+1!xi E Ai .... Ai+1 ={end pi+1} 

A Ai t {end P.}-+ {P. 1?y., P. 1?zi} c A1.]} 
1 1- 1 1+ 

Suppose now that d.t.c. is used. Then 

SYNTB = {<A1, .•. ,An> : j i Ai t {end P1} 

A v i [Pi-1!xi E Ai .... Ai-1 = {end pi-1} 

A pi+1!xi E Ai .... Ai+1 = {end pi+1} 

A Ai t {end Pi}-+ ({Pi_1?yi, Pi+ 1?zi} .=_Ai 

A (Ai_ 1 t {end Pi_ 1} v Ai+ 1t {end Pi+1}J)J} 

and once again STATB = SYNTB. 

We see that in this example all blocked tuples are statically possible. The 

reason for it is that recording sequences of communications does not suffice to 

distinguish between two control points : the beginning and the end of a repetitive 

command. 

On the other hand a simple informal argument allows to reduce the number of 

blocked triples which can arise in actual computations to one. The argument runs as 

follows. Suppose that d.t.c. is not used. Then no process Pi can terminate. Assume 

now that this convention is used. If some process Pi has terminated then by d.t.c. 

his neighbours Fi_ 1 and Pi+1 must have terminated, as well. Thus no process can 

terminate as the first one. In other words no process can terminate. 
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Thus in both cases a blocked tuple <A1 ••.•• An> with some Ai= {end Pi} 

is not possible. This reduces the number of possible blocked tuples to one being 

<A1 •••• ,An> where for i = 1 ••••• n Ai= {Pi_ 1?yi,Pi+1?z1}. 

In the next section we propose a more refined analysis which leads to a more 

restricted notion of static match and staticly blocked configurations. These notions 

will allow to deal properly with the above examples. 

3. Proofs of safety of a decomposition of programs into corrrnunication-closed layers 

In a recent paper [EFJ Elrad and Francez proposed a method of decomposition 

of CSP programs which simplifies their analysis and can be used for a systematic 

construction of CSP programs. It is definsd as follows. 

Suppose that we deal with a parallel program p of the form P 11. .. DP n 
s1 k sk where for all i=1, •.•• n P. - ;,,,; Si. Some of the commands can be empty. i l i 

We call the parallel programs T. = s~I. .. Is~ (j=1 ..... k) the layers of P. 
J 

A layer Tj is called corrmunication-closed if there does not exist a com­

putation of P in which a corrrnunication takes place between two i/o conmands from 

which mne lies within Tj and the other outside Tj. A decornpoaition 

T1; ••• ;Tk of P is called safe iff all the layers Tj are communication-closed. 

In other words a decomposition T1; •.• ;Tk of P is safe if there does not exist a 

computation of P with a communication involving two i/o corttnands from different 

layers. 

In [EF] lalso more general types of layers are considered whose boundaries 

may cross the repetitive commands. Our analysis does not extend to such decomposi­

tions. The interest in considering safe decompositions stems from the following 

observation. 

Fact ([EF]) Suppose that T11 .•• 1Tk is a safe decomposition of the parallel pro­

gram P. Then the programs T1; .•• ;Tk and P are input-output equivalent. 

Proof (informal) Obviously every computation of T1 i ••• ;Tk is also a computation 

of P. Consider now a properly terminating computation of P. Due to safety of the 

decomposition we can rearrange some steps of this computation so that it becomes a 

properly terminating computation of T1 i ••• ;Tk. Both computations terminate in the 

same final state. 

Thus both programs generate the same pairs of input-output states. D 

As an example of a safe decomposition consider the following program 

P:: P1?xlP2!ylP3?ulP4lz 

Consider now the layers 
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and 
T2 ::: .A.II A llP 3?ullP4 !z 

where .IL stands for the empty program. 

The decomposition T1 ;T2 of P is obviously safe. Note however that the 

program T1;T2 admits less computations than the original program P. 

This property holds in general for safe decompositions of parallel programs 

with more than three components. Consequently the safe decomposition is in general 

easier to study than the original program. 

A natural question now arises how to prove safety of a decomposition into 

layers of a given parallel program P. We propose a simple sufficient condition for 

safety of a decomposition. It has been suggested by H. Fauconnier, 

We first slightly refine the definition of the set STAT. Let STAT' be defi­

ned in the same way as STAT but refering to LPCP 1 11 ... 11Pnl instead of LCP1 ll •.• 11Pn). 

Intuitively STAT' is the set of all pairs of i/o commands which can be synchronized 

during~ computation of P 1 11 ••• llP n which ignores the boolean guards .Such a computa­

tion can be infinite or deadlocked. Clearly STAT c STAT' but not necessarily conver­

sely. 

Let SEM' be defined by an analogous refinement of SEM. 

Theorem Consider a decomposition T1 ; ••. ;Tk of a parallel program P. Suppose 

that there does not exist a pair (k:a, l:Bl in STAT' (of P) such that k:a is 

from Ti and 

safe. 

1 :B from T. (i#jl. Then the decomposition 
J 

Proof By definition the decomposition T1 ; ••• ;Tk of P 

(k:a, l:Bl from SEM' (of P) k:a is from some Ti and 

Since SEM' .:_ STAT', the result follows. D 

of P is 

is safe if for no pair 

1:13 from some 

As an illustration of the use of the above theorem consider its two simple 

applications. First, the above given decomposition T1 ;T2 of 

P = P 1 ?xllP2 !y~P 3?ullP4 !z obviously satisfies the condition of the theorem thus it 

is indeed safe. 

and 

Secondly, consider the parallel program from the example 2. 

T2 - *[b1 -+ ... ;k3 :P2 ?x; •.• ;k4 :P2 !z; ... ] 

II *[b2 ..,. •.. 11 3 :P 1 ly; •.. ;l4 :P1?u; ••. J 

Then the decomposition T1 iT2 is safe because STAT' (of Pl obviously satis­

fies the required condition of the theorem. Note that here STAT' = STAT. 
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We conclude by observing that whenever STAT' = SEM' (which is the case for 

many CSP programs suggested in the literature) then the condition from the theorem 

becomes equivalent to the safety of the decomposition T1; ••• ;Tk of P. 

4. A MORE REFINED ANALYSIS 

We now return to the problems signaled in section 3.2. We stated there that 

our analysis is not sufficiently precise to deal with some type of blocked configu­

rations. We now refine some of the concepts in order to bbtain an even more restric-

ted notion of staticly blocked tuple. To this purpose we need three additional typss 

of symbols. One is Vi denoting a sucessful termination of the process Pi. This 

symbol is directly inspired by [H1]. The second new symbol is 

marks termination of a repetitive command within the process 

<i+i1, .•• ,ik> which 

Pi due to the termi-

nation of the processes Pi , •.. ,Pi • The symbols Vi and <i+i1, •.. ,ik> are used 
1 k 

only when d.t.c. is assumed. Finally we adopt the symbol z which is intended to 

indicate that a repetitive command cannot terminate. It will be used only when 

d.t.c. is not assumed. 

Consider first the case when d.t.c. is not used. We now refine the defini­

tion of L(S) (see section 2.1°) for a repetitive cormiand as follows. 

Let S = * s1 for an alternative convnand s1. If all guards in s1 contain 

* a boolean part (distinct from true) then L(S) = LCS1J , i.e. the former definition 

is retained. Otherwise L(S) = LCS1J*{z}. 

Note that in the latter case S cannot terminate. An occurrence of Z in 

a communication sequence will mark the fact that an impossibility of termination of 

a repetitive command has been ignored. Consequently such sequences will not be 

admitted. A different possible approach to this problem is by admitting infinite 

communication sequences. We prefer to use the above approach since it is simpler. 

All other definitions including that of LCP1D ••• 1Pnl' STAT and STATB are retained. 

Note that Z does not occur in any sequence of the form [h]i so no convnunication 

sequence from LCP1D ••• DPnl or LPCP1U ••• DPnl "violates" the impossibility of 

termination of a repetitive construct. 

Let us now return to the examples 5, 7 and 8. 

ad Example 5 

With the new definitions we have V w ~ L(Pil CZ is an element of wl for 

i=1,2. Thus LCP1HP2J = 0 and consequently STAT = 0. This agrees with our informal 

definition of STAT. 

ad Example 7 

According to the new definition V w E LCP2J CZ is an element of w). Thus 

by the definition <{k3:a3}, {end P2}> i STATB. We have here 
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STATB = {<{end P1}, {13 :S3}>}. 

Note that here L(P111P2J = 0 for the same reasons as above, so STAT 

ad Example 8 

We have V w € L(Pil (Z is an element of wl for i=1, ... ,n. Thus by the 

definition of STATB if <A1 ••.• ,An> is a staticly blocked triple then for all i 

Ai # {end Pi}. We thus have 

STATB = {<A1,. .. ,An> : Ai= {Pi_ 1?yi' Pi+i?zi}, i=1,. .. ,n}. 

We now pass to the case when d.c.t. is used. 

Let S be a repetitive command within the process Pi. Let {i1, •.. ,ik} be 

the set of indices of the processes addressed in the guards of S which do not have 

a boolean part. Note that if S terminates in a computation of p II .. ,lip 
1 n 

then at 

least the processes P. , •.• ,P. must have terminated at this moment. 
11 1k 

We now refine the definition of L(S) by identifying <i+> with € and putting 

* L(SJ = l(S1l {<i+i1, ••• ,ik>} where s1 is the alternative command such that 

S = *s1• All other clauses for sequential commands remain the same. We now put 

L'(P1 l L(Pil N) and define l'CP111 ... llpn] and L'P(P 111 ••• llPnl by defining 

first 

[<i+i1'''''ik>]j = € if i ~ j 

cVi Ji Vi 

[\ji]j E if if j 

and putting 

l'(P18. .. 11Pn) = { h 

C'PCP111 ••• llPnJ = {h 

[h]. € L' (P.), i=1, .• .,n /\A} 
1 1 -

[h\ € Init(L' (Pi]), i = 1,. .. ,n A~} 

where the condition A is defined as follows 

A= V p,J· (h = a 1 ••• ap /\ aJ. = · <1+i1' .•. 'ik> 

+ V 1 € { 1, ••. , k} 3 m < j a 
m 

The condition A states that if in a communication sequence h an exit 

from a repetitive command in Pi has been recorded then necessarily all the pro­

cesses on which termination this loop exit depends have terminated before this 

exit took place. 

The set STAT is defined as before but with reference to L'(P1R ••• UPnl 

instead of L(P 111 ••• 11Pnl. Similarly the set STATB is defined in the same way as 

before but with reference to Init(L'(Pill and L' (P 1D .•. RPnl instead of 



15 

Init[L [Pill and LCP 1H •.. HPnl' respectively. Also the condition iii) in the 

definition of a blocked tuple is adopted. 

We now return to the examples 7 and 8. 

ad Example 7 

It is easy to see that the new definition of STATB is more restricted than 

the previous one considered in section 3, so 

STATB c {<{k3 :a3}, {end P2}>}. We now show that <{k3 :a3 },{end P2}£ STATB, 

i.e. that STATB is empty. 

and 

We have 

L'fP1 l = Ck1 :<1.2>l Ck2 :<2,1>l CCk3 :<1,2>l Ck4 :<2,1>lJ* {1/1} 

L' CP2 l = Cl1:<1,2>l Cl 2 :<2,1>l ([13 :<1,2>) Cl4 :<2,1>ll"'{<2+1> 112}. 

Suppose that <{k3 :a3}, {end P2}> € STATB. 

Then there exists h € L'PCP 1H .•• HPnl such that [hJ 1 Ck3 :<1,2>) €Init(L'CP1ll 

and [h]2 EL'[P2l. 

By the form of L'CP2 l [hJ2 so a fortiori h contains the element <2+1>. 

Since h € L'P(P 1H ••. llpn), by the condition A h contains the element V1• But 

this is impossible because by the above [h] 1 does not contain v1. Contradiction. 

Thus STATB is indeed empty. 

Note that 

L'CP 1 11 ••• 11Pnl ={(k1,1 1 :<1,2>) [12,k2 :<2,1>l} 

{k3.1 3:<1,2>l c1 4.k4 :c2,1>l(N1c2+1>V2} 

so STAT 

used. 
{[ki:ai,li:Sil' i = 1, ... ,4} in contrast to the case when d.t.c. was not 

ad Example B 

Suppose that h E L'PCP 1H ... 0Pnl. We prove that h does not contain any 

element of the form <Hi-1, i+1>. Suppose otherwise. Let <i+i-1,i+1> be the 

first element of this type in h. By the condition A some earlier element of 

must be of the form 11i-1" We have [h]i-1 € Init(L'(Pill and by the form of 

L' [Pi l 11i-1 must be preceded in [h]i-1' so also in h, by <i-1+1-2.i>. 

Contradiction. 

Suppose now that <A1, .•. ,An>€ STATB. Let h € L'P(P 1ll ••• llP~ be a 

sequence certifying that <A1' • • •,An> is a blocked tu ple. If for some i 

A. = fond P.} then [h]i E L' (P. l i.e. by the definition of L' (p. l [h]i 
1 1 1 l 

terminates with <Hi-1,i+1>V1 . Thus h contains the element <Hi-1, i+1> 

which is impossible. 

h 



16 

Thus for no i A = {end p }. We conclude that similarly as in the case when d.t.c. 
i i 

was not considered earlier in this section 

STATB consists of exactly one element <A1, ••• ,An> where for i=1, ••• ,n 

Ai {pi-1?yi,Pi+1?z}. 

The same conclusions about STATB in the examples 7 and 8 above were reached 

in [AFR] by a formal reasoning within a proof system. The above proofs are more 

straightforward and moreover require only a limited knowledge about the programs 

under consideration. 

As a final remark we observe that the use of the set STAT is not sufficient 

for the proofs of safety properties (in the sense of [OL]lthat are more general than 

partial correctness. In such cases more appropriate set to be used is STAT' in the 

definition of which one refers to arbitrary, possibly non-terminating or blocked 

computations. 

Observe that in the case of example B (independently of the fact wheth&r d.t.e. is.used) 

STAT = 0 whereas 

STAT' {(Pi_ 1?yi, P1!xi_1l : i=1, .•• ,n} 

u {(Pi+ 1?zi.Pi!xi+1l i=1, ..• ,n} 

In [AFR] it is proved that a distributed gcd program whose structure is 

considered in the example B computes the g.c.d. of n numbers at the moment of 

reaching the only blocked configuration, the one discussed above. A proof of this 

fact within the proof system of [AFR] requires the use of the set STAT' and not 

STAT in the proof rule for parallel composition. 

5. CONCLUSIONS 

We have presented in this paper a method of analyzing the CSP programs 

which leads to simpler proofs of their correctness. 

It can be easily automated and in fact such an algorithm for the case of 

ADA programs has already been described in [T]. 

It should be however noted that (as indicated in [TJJ the algorithms compu­

ting the sets STAT, STAT' and STATB arising in this analysis are necessarily expo­

nential. This can lead to inherent problems in the case of longer programs for 

which such an analysis is especially useful. 

One could envisage a still more refined analysis in which one would take 

into account the boolean guards of the program under consideration. One could then 

infer for example that the second repetitive command in the process 

Pi= •.• *[b + s1J i *[b + s2J 

cannot be entered so no i/o command from s2 can be reached. 
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Such an analysis, however does not lead to any useful conclusions when 

applied to concrete examples. Any gain obtained by it is restricted to ill designed 

programs such as for example the above process Pi. 

This leads us to an interesting question about the usefulness of the analy­

sis presented in this paper. How accurate is it with respect to the semantical 

analysis ? 

Consider first the sets STAT and STAT' which are used as "approximations" of 

the sets SEM and SEM', respectively. It is easy to design programs for which STAT 

(STAT') differs from SEM(SEM'l. However, all such programs seem artificial. We 

observed that in all examples studied in [HJ these sets do not differ and we conjec­

ture that it is always the case for well-designed CSP programs. Of course such a 

conjecture is difficult to prove because no definition of a well-designed CSP 

program exists. 

The situation changes when we compare the set STATB with the set of blocked 

configurations which can arise in actual computations. These sets may differ for 

simple and well-designed CSP programs. One can easily design a program of the form 

studied in the example 2 which is deadlock free whereas in this case STATB is not 

empty. An example of such a program is a slightly modified version of the program 

partitioning a set from [OJ. 
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