Pair Termination Revisited - With Delay

(Abstraci)

" K.R. Apt
LITP, Université Paris 7
2, Place Jussieu 752‘21
Paris, France

~A. Pnueli
The Weizmann Institute of Science

J. Stavi
Bar-ilan University

August 1982

Summary.

A proof method for establishing the fair termination and total correctness of
both nondeterministic and concurrent programs is presented. The method calls for
the extension of states by auxiliary delay variables which count down to the instant
in which a certain action will be scheduled. It then uses well founded ranking to

prove fair termination allowing nested fair selection and loops.

The work reported here was partly don i isiti
the wor e here. P y e while the first author was visiting

It is supported in part by the Israeli Academy i -
search Foundation, . emy of Sciences, the Basic Re

146

INTRODUCTION. -

The problem of termination of nondeterministic and concurrent programs under
the assumption of fairness has recently been receiving considerab‘le attention (see
e.g. [ol, [GFMRI, [IPS], [P1).

The basic method for proving invariant properties, such as 'pmia.l correctness,
was developed by Floyd ([F]) and Hoare (tH]) for sequential programs. It is based
on‘ the idea of finding an inductive property which is preserved by efrery basic action
of the program. Whef\ we consider nondeterministic and concurrent programs, the method
of invariance is still applicable with very minor mbdifications.

By comparison, the suggested method for proving termination propertiés (total
correctness for example, [M]), is not'directl;y extendable to concurrent and nondeter-
ministic programs when we sﬁipulate faii executions. .The method, as developed in [Fl,
[{MP) is based on establishing a mapping from the program states to some well” founded
domain (a rank) such that.any program action causes a decrease in the rank. That this
method does not apply to’ fiar‘ termination is obvious from the following trivial exam-
.ple:

while b do if[b + skip O b > Db: = false] fi

A fair execution of this program must eventually choose the second branch of the con-
ditional, causing b to be set to false and terminating thé program. However any
choice of the first branch preserves the program state. Correspondingly nc mapplig

which always decreases can exist.

The study of fiar exeéutions is mainly motivated by concurrent programs. For

. : . : s most
concurrent computations fairness or its weaker version-justice ((Lpsl) is a :

general modelling of the fact that the ratio of speeds between cooperating processors

may be arbitrarily large and varying but is always finite. The study of fairness in

i i i i i rt by the
the context of nondeterministic but sequential programs is motivated in pa y

Y i interpreta-
use of nondeterminism to model concurrency and also as a more restricted rp.

tion of nondeterminism.
. ' -
Answering to the challenge of extending the method of well founded ordering

zo fiar termination, several’ suggestions were made.

147

One approach, represented by [LPS] and [GFMR] is to relax the requirement that
every action causes a decrease in the rank of the-state. By this methodology, for
each state there always exist some helpful actions which decrease the rank of the
state, and some other actions, termed indifferent (steady in [GFMR]), which at least
do not increase this rank. By fairness (and some additional requirements of thle
method), a helpful action must eventually be chosen which causes the r.a.nk to decrease
and thus excludes infinite‘ computations. This method was applied in [LPS] to con- .

ent programs represented in an abstract framework, and in [GFMR] to nondeterminis-
tic program; in a more syntax directed style. An interesting point is that the method
of [GFMR] can-only be aéplied to programs which terminate due to fairness on the t°l;

level, i.e. fair choice between the branches of an encompassing loop and not betweer °
‘brmchex of an enclosed conditional statement.

Thus the following example:

while b do
if [b+ skip
o b+ if[b + skip

> @k b: = false) fi

) £i o8
cannot be proven fairly terminating by the method of [GFMR].

. Another approach to fair termination developed in [AO] suggests modifying the
program by the construction of an explicit fair scheduler for the program. This re-
duces the problem of fair termination to that of the termination of a deterministic
program in which random assignments x:=? .of unbounded natural numbers are allowed.
Such assignments are used by the scheduler to implement fair scheduling. By [AP] the
termination of such programs can always b_e’ proved by well founded ranking, provided
we allow ordinals higher than & - the first countable ordinal. Once the proof rules
are obtained for the program augmented by the scheduler statements, these statements
can be eliminated., .Thus, we do not have to actually construct the scheduler in order
to apply the derived proof rules. They are directly applicable to the program as ori-
ginally presented. In [AO] this method was developed again only for top level fair-

ness in nondeterministic programs.

148

In this paper we present another approach to the termination of faiy programs
’
covering both concurrent and nondeterministic programs. We believe it to be much

simpler and more natural than any of the approaches discussed above, and as we will
jllustrate below, directly applica.ble. While the method can also be justified by pro-
gram transformations, as in [AO], the presented justification does not call for pro-
gram modification but extgnds instead the states by adding auxiliary variables. In
a certain sense this extension parallels the introduction of auxiliary vairables in
[0G] providing a natural method for invariance properties of concurrent programs. As
will be shown below our method provides proofs for termination under the assumption
of overall fairness and not only top level fairhess. Thus, in comparison with pre-
vious proof methods the approach suggested here is more §eneral, is simpler to apply
and justify and forms a natural generalization of the method of well founded ranking

guccessfully used for sequential programs.

similarly to [AD] we will show that the problem of fair total correctness of
a nondeterministic program is reducible to that of the ordinary total correctness
of a program which allows unbounded random assignments x: = ? . Such programs
were studied in [AP]. 1In our paper we will show the following additional result
ccmc'erning such reductions in the other direction.

Given a program [l which allows random assignments, it is possible to con-
struct a nondeterministic program Hl with no random assignments such that the
fair total correctness of Hl is equivalent to the ordinary total correctness of
1. Furthermore, it is sufficient to require top level fairness in the computations
of ['. This result allows us to reéolve the issue raised in [AO] by showing that
all recursive ordinals (order types of recursive well ordering of sets of natural
numbers) are required to establish fair termination of programs with top level fair-
ness only. This of course is a significant increase in complexity over the secuential

deterministic case where w 1is the highest ordinal ever needed.

143

2. CONCURRENT PROGRAMS.

The method is illustrated first for concurrent programs represented in an un-
structured framework. The framework is taken from (LPS] and we repeat its basic defin-
itions hexe:

A concurrent system is a triple:

P = <S,F,I>

where
§ is a set of execution states.

1< S is the set of initial states.

Fo= “1" ..,£ > is a set of transition functions associates with m processes.
n
S . N)
Bach fi: 5 - 2° maps a state S into a set fi(s) € s which is the set of possible
outcomes when the process P, executes an atomic instruction on the state s.

1f !i(S) # § we say that fi is enabled on s, otherwise we say that it is

disabled on s. A state s which is disabled for all i =1,...,m is called termi-

nal. Let T denote the set of terminal states.

An execution sequence of P is a maximal sequence:

such that 5 €1 and for each j, sj+1 € £ij+1(s.)

. A state is accessible if it

occurs in an execution sequence. The set of accessible states is denoted by Acc(I).
An execution sequence is fair if it is either finite or if every transition £

which is enabled infinitely many times in the sequence is also scheduled infinitely

many times , i.e. ij = k for infinitely many j's.

We say that a program P is fairly convergent if every fair execution sequence
of P is finite.

We propose the following proof method for proving the fair convergence of con-

150

current systems.

The Delay Variables Method.

1. Choose a state predicate Q © S such that
A, s€I= (s€T) vQols)
B. Q(s) As'E€ fi(s) = (s' €T) vQ(s') for i=1,...,m .
(T being the set of terminal states)

This ensures that the predicate Q holds for all accessible non terminal states.

2. Choose a well founded set (W,>), i.e. a set W with an ordering relation

> such that every W-sequence Wy > Wyt W EW is finite.

3. Find a ranking function

p : 5 x N+ W

mapping extended states into the well founded domain W.- an extended state consists

of a state s € S augmented by m scheduling (or delay) variables

zl, . ,zm {alsc

referred to as counters). The role of the delay variable zi ' is to count how many

steps will pass in which fi is enabled but not yet scheduled. By fairness there

can be only a finite number of them.
The ranking function must satisfy:

Qls) A s' € fi(s) A jﬁi[(f.(s) Y- zj = 23”') A“(fj(s) == z.j = za‘)] ’,

= p(s,zl, ...,zi_l,o,z

j.+1""’zm) > p(s',zi,.‘.,z;l) .

All the free variables in the above, i.e. s, s', Z, 2' are considered to be univer-

sally quantified. To justify the method, consider an infinite fair execution sequence

151

For each j = 0,1,... we define the vector of éelay values W = (ui,...,uz‘) 2 0

as follows:

u]j‘ = number of distinct j' > j such that fk is enabled on s-j , but net
scheduled for any j € & ¢ j' , i.e. number of contiguous steps from) on where

!k is enabled but not yet scheduled.

By fairness the W's are well defined, nonnegative and finite.

In addition they have the following properties:

£
: ‘et k . .
Consider a transition sj —_— sj+l , i.e. 1j+1 =k .
a. ui =0.
3 j+l
b. For every 2 # k suach that fz(sj) 9 uy uy + 1
c. For every £ # k such that fl(sj) =g ui - It

)

Let 0 now represent an infinite fair sequence. Assume that Q, W and p
have been found satisfying the method's requirements. Consider the sequence of aug-
mented states (so,EO) . (sl,El) P

By comparing properties a, b and c to the requirements on Q and p we

obtain
—o]
o(so,u) > p(sl,ul) > ..

Contradicting the well foundedress of W. This shows that a successful choice of 9,

W and p guarantees fair termination.

Conclusion: The delay variable method is sound.
Completeness is even more trivial. Assume that P is fairly convergent.
Take Q = Acc(I) - i.e. true for all accessible states.

Take W to be S X Nm, ¢ the identity mapping

§,2 cser? = <8,%Z cee T >
pl(s,z,, 'm) rByreeenZy

1

The relation > over W is defined by

152

<s.zl,...,zm> > <s',zi,..- z;,...,z‘?

3i Q(s)As'€f (s)A A [(£.(s) =z!
' €E 3 # P zj zj+1)A(fj (s) =@ = zj-zg)],\ziﬂo

i.e. it holds exactly between two accessible augmented states that can appear con-

tiguously in a.computation. That this relation is well founded follows immediately

from the fact that P is fairly convergent.

We conclude this section by an example of proving fair termination of the fol-

lowing distributed GCD program:

while v, # vy, do if [y >y, * y,:=y;~Y, O y;<y, > skipifi od
while y, #y, do if [Y1>Y2 -+ gkip a Y <Y, y2:=y2-yl]£j__9£

In our framework

I1=5=1{(y,,y,) |y, >0, 9, >0} .
1'¥2 1 2

<

\

The transition functions fl, f2 are given by

£l ¥ol) = AE vi0y, then [y,-y,,y,l else if y,<y, then lyyo¥,l

£,Ulyy r¥,)) = if v, >y, then ly,,v,] else if v, <y, then ly,r9ymyyi

Note that both functions are disabled on states of the form [y,yl which are there-

fore terminal.

To apply the delay variables method we choose { as
Q(lyl.yzl) =y, 7 ¥y A (yyey, 2 o) .

W= N x N - the set of pairi of nonnegative integexs with the lexicographic ordering

on pairs given by:

(my,n) > (my(n,) o= (m, > m,) or (m, =m, and n, - a,)

Uy, ¥, la2),2)) = ¥y *ype 1E Yy > ¥y then z, else z,)

153

we have to show that the value of p decreases on“each transition. Take for ex-
ample the case of y1>y2. We consider separately i=1 and i=2. We have to

show
ryvy) = £Uy, D) A2y = 241 = p(ly;r¥,]/002) > plly;ry3l o2y ,2)) -

But certainly in this ‘case vty > yi-ryi so that p > p'- Por i =2 and v, >y,

we have to show
[yi,yil = fz([yl.yzl) Az = z,;+1 = 9_([y1,y2) ,21.0) > p([yi.yé) ,zi,zé) .
But in this case ly]'_,yi] = lyl,yzl so that a
p(lyl.yzl.zl,m = (y1+y2,zi+1) > (y1+y2.zi) = o(lyi,yil .zi,zé) .

This proves that the distributed GCD program is indeed fairly terminating.

3. NONDETERMINISTIC PROGRAMS.

1- this section we develop the variant of the method appropriate to nondetermin-
istic programs. The programs considered here will be presented in a structured lang-
uage, and the method will lead to the establishment of overall fair total correctness.

The syntax of our programs is given by the following grammar:

m
D::=skip |x:=t| ;N | if 0B, » 0, fi | vhile Bdo Il od
: i=l

Here x is a program variable, t a term, B and Bi are boolean expressions.

The boolean Bi in the context of the if-fi construct are called guards. Our language

differs from that of Dijkstra [D] in that the loop is always guarded by a single con-
dition.

3.1. Semantics

Let Var denote the set of program variables and 0 a domain of-an inter-

pretation. By a state we mean a mapping s : Var +D.

Following [HP] we define a simple operational

semantics for programs based on
& transition relation " + ¢

between configurations, that is pairs <I,s> consis~

154

ting of a program and a state. In addition we consider the two special states .
s:.mding for divergence and fail standing for abortion. .

In general <II,s>+<I',s'> means that one step of execution of T applied
to s can lead to a state s' with NI' being the remainder of T yet to be exe-
cuted. ‘

It is convenient to assume the empty program E. Then ' is B if [ter-
minates in s'., We assume that for any program I E;l=lI;E=R .

We defineithe above relation by the following clauses:

i) <skip,s> + <E,s>

ii) <x:=t,s> + <E,s'>

where s'(x) = s(t) and s'(y) = s(y) for y # x

m
) <if o . .
i) <if o B, > I, fi,s> > <,,s> if kB, (s)

m m
iv) <if a B, + ﬂi fi,s> » <E,fail> if k A =B (s)
i=1 T i=1 1

v) ~<while B do Il od s> - <Il; while B do Il od,s> if k B(s)
vi) <while B do i od, &> + <E,s> if F 8(s)
vii} if <M,s> - <I',s'> then

<H;Hl,s> - <H';Hl,s'>

Let " »* " stand for the reflexive transitive closure of * + " . We

say that ﬂo can diverge from Sy if there exists an infinite sequence

<My,sg> > <n1,sl> E

We say that 1 can fail from s if for some 111
<[, s> % <I[l,fail> .

We may now define various semantics of programs by putting

Mpc{,n I(s) = (s'l<1-1,s> +* <E,s'>}

M“[T 04{s) = ME 1T (s)

U {L|Nl can diverge from s}
155

M IDI) = W TTD(e

U ifail|l can fail from s}

We now proceed to define yet another semantics of programs - the one taking

wnder consideration the assumption of fairmess.

A computation seguence

o : <O ,5>-o<ﬂ1,s>-...

0’7o 1
. m :
is said to be fair if it is either finite or for every program I : if o Bi*ﬁi £i;
=== i=1

o' apd each i = 1,...,m, if there are infinitely many j's for which <n,sj>
appears 1n ¢ and F Bi"j)' then there are infinitely many j's among them such

chat the transition

<u,sj>-><ni ;s

j>
appears in O .

This again captures the idea that every guard associated with a fixed location
in the program, which is tested and found enabled an infinite number of times will
be selected an infinite number of times.

To avoid confusion resulting from the fact that various occurrences of
in ¢ do not need to correspond with the same program, we should actually label
each program with @ unique label. It is clear how to perform this précess and we
leave it to the reader.

¥We may now define Mfmmnnm analogously as “t[TP (s) by allowing 1
in it only if I can diverge from s by a fair computation sequence.

Let P,Q,R stand for formulae (assertions) in an assertion language which
contains all program variables, terms and boolean expressions. We put

[P] = (s k P(s)/. Note that for any assertion P, L€ [P] and fail € [F].

For any f € {p, wt,t, fair}, assertions P,Q and a program we define

METI(RI) = U M_IHD(s)
£ i s€[1>]j £

156

The statement of program correctness is defined by:

i-f {r} 1 {g} iff Mfunn(mj) c [Qlj .

We thus have few types of program corractness:

kp ~ partial correctness

l'wt - weak total correctness

ist - total correctness

E - total correctness under the assumption of fairness (fair total

fair

correctness)

The weak total correctness and the corresponding M Wt semantics are less of-

ten considered in the literature. We need these notions in the next section. We

call the constructs {P} I {Q} the correctness formulae.

3.2 A Transformation Realizing Fairness

In the subsequent considerations we need an atomic program x:=? called a

random assignment which sets x to an arbitrary nonnegative integer. The semantics

of random assignment is defined by adopting the clause
<x:=?,s> + <E,s'>

for any state s' such that s'(y) = s(y) for y Z x. We assume that x ranges
over natural numbers which form a subset of the domain [of the interpretation.
Programs allowing random assignment have been extensively studied in [AP].
In particular a system for proving total correctness of these programs has been pre-
san\ted there and we shall value use of it in order to develop proof rules for fair
total correctness.
To this purpose we provide first a transformation of an arbitrary program i1

into a program I allowing random assignments which realizes exactly all fair

fair
computations of II. We proceed by the following successive Steps:

157

n .
: i of I by the following sub-
each am if © B, + I, £ :
1. replace each mbprogran i1 © B Ty
program

. smz -1
Ejz-l_ﬂgﬂ}_‘.‘jw‘j 5

n
:5 D’lAli

‘-0 AE 3 0"1"7’!!1&
a=1

wnere z stands for zl,...,'zm-

i i that each if-fi con-
2. rename all variables Zyenee oz gppropriately so if-fi

struct has its "own" set of these variables.

The variables 2z play here exactly the same role as in Section 2 ~

AR

they count down how many times the corresponding guizd is enabled but not yet selec-
ted. The corresponding actions on these variables are incorporated 'in the program
Taxt.

The following lemma relates I to ntair'

Lemma 1. For any state s

Mepo DOD () = M LT, T(s)

Here and later we disregard the problem that I fair can change the initial

values of the {auxiliary} delay variables zl,... whereas I cannot. It is easy
¢ remedy this difficulty by retaining the initial values of these variables before

the execution of Il fair and restore them after the execution of 1. We ignore this

issue here since it is not relevant in the further discussion.

‘Broof. a) We prove the C-inclusion. Let ¢ = <110.so> +-<nl,sl> -+ ...
oe a fair computation of II.. We extend it to a computation of nfa ir by assigning
30 each state of o' the values to the delay variables 2z, ~s. Given a state s,

i 3

there are two cases.

-a8¢ 1. For no state s (k >3) the guard corresponding with zj is selected.

Then by the assumption of Ffairness this guard is enabled only finitely many

158

times in this computation. We put sj (zi) to be equal 1+ the num r of times
this guard will be enabled beyond s 30

Case II. For some state Sy (k >3) the guard corresponding with zj is selected.
Then we put sj(zi) to be equal 1+ the number of times this gquard will be

enabled before being next time selected.

b) We prove the - inclusion.
Let © be a computation of Hfair' Then its restriction to the computation
steps dealing with II is a computation sequence of Il. We show that it is a fair
computation sequence. Suppose otherwise. Then behind some point in this computation
a guard would be infinitely many times enabled and yet never chosen. By the construc-
tion of I fair the corresponding variable z; would become arbitrarily small.

This is however impossible because as soon as z; becomes negative a failure will

arise. a

Corollary. Suppose that none of the delay variables occurs free in assertions

P and Q. Then

Feaip P41 {Q} iff Vs [E P(s) » I cannot fail from s}

and "wt {r} L. {0}

3.3 A Proof System for Fair Total Correctness

The above corollary indicates that in order to prove fair total correctness

of I it is sufficient to prove weak total correctness of [l provided the

fair
ahsence of failure in [I can be established.

To prove weak total correctness of Il we can use the proof system intro-

fair
duced in [AP} slightly modified for our purposes. The following axioms and proof
rules are adopted

1. kandom assignment axiom

(P, x:=? (P!

wrovided x 1s not free in P

159

i,

5.

6.

T

Consider now a proof of a correctness formula {r,}1

Skip axiom
{p} skip {p}

Asgignment axiom

{plt/x]} xa=t (P}

here Plt/x] stands for a substitution of t for all free occurrences
of x im P.

Composition rule

i} n il {gh 1, {x}
{P} Hl: 112 {R}

Selection rule

{P A ai} LY gt i=l,...,m

n
ipb af o B -1, £i {Q}
- i i=
i=l

While rule

iPla) A

} <a I(B)}
(Pla))} while B

B} T {38
do 1l od {38 <a I(B) A B}

where &,8 are variables ranging over ordinals (or more generally well

founded sets).
Consequence rule

PR, {PI} 1 {Ql}, o *Q
{p} 1 {p}

The above system is appropriate for proving weak total correctness of I fair"
We call it WTC.

fair {Ql} in the above

system. Due to the form of ﬂﬁk this proof can be transformed into a proof of

the correctness formula iz} n {Ql} provided we use the following transformed ver-
sion af the selection rule

ip} i—f-!uir £ {o}

m
{p} if © B

j=]1 i - Hi -fi {Q}

169

where _:'_.g_fa ir £i stands for the subprogram introduced in step 1 of the transforma-
tion from section 3.2.

The hypothesis of this rule can be simplified if we “absorbd™ all assignments
to delay variables into the assertion P and apply "backwards” the original selection
rule. In such a way we obtain a proof rule which deals exclusively with the if-con-

struct and its components. It has the following form

{P[Bj >z +1, zj/zj]j}‘i ll/zil AB AZ 20} ni (Q}i.l'“.'.

m
{p} if i:l B, ~ M, f£i {9}

where Bj - tl,tz stands for the conditional expression gaj then cl else tz f1
According to Corollary we still have to deal with the issue of freedom of
failure. This problem can be taken care of in the usual way, i.e. by simply adding
to the premises of the above rule the assertion
m

P+ V B, .
i=1

Summarizing, the final version of the rule has the following form

8. Fair selection rule

m
p+ V B, .
i=]

{PIBj - zj+l, zj/zj]j;li (1/2,1 A B, A z 30} 11i {Q}i-l....,n

m
{p} if o B, ~I; fi {0}
i=1
We have thus obtained a proof system for proving fair total correctness of
programs. It consists of the axioms 2,3 and proof-'rules 4, 6-8. Note that the
.random.assignment axiom .is.not needed -. it was used only to derive the final form

of the fair selection rule. Call this proof system FIC (for fair total correctness.

161

1.4, souniness snd Completanass of FIC

Safore we dwell on the issue of soundness and completeness of FTC we have to
spesify for which assertion langusges and their interpretations FTC is an appropriate
poost wystes.

We assume that the assertion langusge L contains two sorts: data and oxd.
«s bave & constant O of type ord and a binary predicate symbol < over ord. Ad-
ditionally we assume that L includes second order variables of arbitrary arity and
sogt, The secend order variables can be bound only by the least fized point opera-
ter » provided the bound variable occurs positively in the considered formﬁla.
(ere a variable occurs positively in a formula if none of its occurrences in a dis-
Junetive sommal form of the formula is in the scope of a negation sign). Thus if
the set variable a oocuxrs positively im pla] then yua.p is a well formed for-
mala. The free variables of ua.p are those of p other than a.

s ioterpretaticn J for this type of assertion language is an ordinary two-
viad second order structure subject to the following four conditions

1. The domain of sort data is countable and contains all natural num-

" data
bers.

4. The domain Jm'd of sort ord is an initial segment of ordinals (to ensure

a proper imterpretation of the while rule).
4. The comstamt 0 denotes the least ordinal and the predicate symbol <
denotes the strict ordering of the ordinals, restricted to Jor a-

4. The domains of each of the set sorts contain all sets of the appropriate

kind {to ensure the existence of the fixed points considered below).

The truth with respect to an interpretation J 1is denoted by inJ . The truth

of the formulse of L (assertions) with respect to J
i
way. The only nonstandard case is when a formula is of the form ua.P . We put

is defined in a standard

then -, uaipo 1ef ‘myPla/al whers A iz the least fixed point'of an operator

naturally induced by p.

Tue truth of the correctness formulae with respect to j is defined as be-

fore. We only need to indicate the dependence of the appropriate program semantics

162

on the interpretation J.

By TrJ denote the set of all formulae of L which are true with respect to
J. Given a set of assertions AS and a proof system G for proving correctness
formulae we denote by AS |k ch the fact that the correctness formula (p can be
proved in G from the set of assumptions AS which can be used in the consequence
rule.

After having introduced all these notions we can now state a lemma which is a

proof theoretic counterpart of Corollary from section 3.2.

Lemma 2. Suppose that none of the delay variables introduced in Hfa.ir oc~-

curs free in the assertions P and Q. Then for any interpretation J of the above

kind

STy bone (e} m {Q} iff Tx, Furc {p} Meosr {o}

and Vs{ I=JP(s) + I cannot fail from s].

Proof. The proof is based on the analysis of the proofs in the corresponding
proof systems and makes use of the Corollary from section 3.2. We leave the details

to the reader. a

Corollary and Lemma 2 reduce the question of soundness and completeness of the
proof system FTC to that of WIC. But the results of [AP] show that the proof system
WIC is sound and complete for all interpretations J of the above kind. This shows
that the proof system FTC is also sound and complete in the sense of the following

theorem

THEOREM 1. For all interpretations J of the above kind and all correctness

tormulae @

Try + @ iff i=J

. =]
FTC ©

, faix

163

3.5 An Example of a Proof in FTC

we conclude with an example, which can be dealt with using our system but not
by any previous method. The program was suggested by Shmuel Katz.
Let
T:while x > 0do
if {z,} true ~ if {z;} B »x = x-1

o {24} B + b := false

a ‘1251‘-8-* skip £i
o iz,} true =+ b := true
£i

od

wé want to prove

E

. itrue} I {true}
fair —— —_—

i.e. that [always terminates under the assumption of fairness.

The well founded set we will consider is NQ under lexicographic ordering. We

have annotated each guard with an appropriate delay variable. There is a ranking

function which underlies our formal proof which is given by
pU%,5,2) = (x,2y, 1-B, (B > z,,2,))

In the expression 1-B, true is interpreted as 1, false as O.

™ et £ i 1
The crucial fact upor which the proof depends is that in a fair execution the
value of ; decreases on each iteration of the loop. We first demonstrate this
fact 1 idi
anformally providing the formal proof later. An iteration of the loop can be
characterized by the guards which are selected.
Consider first the 2z ‘ i
v+ 2y path. Here x is decremented so that p cer-
tawnly decreases.
Along the z_ .2
; 1% Peth, the z. guard was enabled since b must have been

rue for z, o
; te selected. Consequently z_ js decremented, being an enabled

3

164

but unselected guard. Since x remains the same
P 2gain decreases. Along the

zl ’ zs path, B must have been false so that the fourth component of p is z
2
which is decremented when its guard is not selected.
In the Z, path we have to distinguish between the cage that B is initially

false in which case 1-B drops from 1 to 0, and the cage that 3 initiall
was tially

true in which case the last component i s .
mMPO. of p is zl which is decremented since 22

is selected.
We now present a formal proof of (1). Let I' be the body of the loo we
D.

have to find an assertion P(a) such that

{P(a) Aa>0 A x>0} I' {38 <ap(p)} @

and

Jar(a) . (3)
We define
P(e) 2,220 A s =p(x,B,z)

It is clear that (3) holds. To prove (2) we have to apply the fair selection

rule so we have first to prove the premises

{(P(a) Aa>0Ax>0) [2,+1/2,] [l/zl] AZis 2,2 o} IIl {38 < ap(p)} (4)
and

{(Pla) Ao >0Ax>0) (2,+1/2,1(1/2,] A 2y, 2,3 0} B:=true {3g<a P(B)} (5)

as the first premise of the fair selection rule is obviously satisfied. Here

T, 2 if B > xi=x-1

a B -+ B:=false

O0-B + skip fi .

To prove (4) we once again wish to apply the fair selection rule. The premises

to prove are

{pl[a > z,+l, z,/z,] ("B~ z.+1, z./z] [1/2,] A B A 232,22 O}x:=x~1{3B<aP(B)} (6}

165

By (B * 2y4),2,/2,) B > 2041,2, /2] (1/z) A B A 23,2.,25 3 0}B:=false {3B<ap(p)}

and

(By 1B # 241,z /2,0 o [1/25] ATB A 2,2,z > O) skip {38 < aP(B)] (8
where Pl i (Pla) Aa>0Ax>0) [z2 + 1/22] [1/21] A zl,z2 2 0.

We have by the assignment axiom
{o(x,1,0,1) mc ABAX>0AZ3 0}

sEx~1

Wix+l,1,0,1) ma ABA X 20 AZ3 0}
wnich jmplies by the consequence rule (6) as the necessary implications clearly
hold.

To prove (7) we note that by the assignment axiom and the consequence rule

ip(x,zz,o,l') =aABAXD> O0Az3 0}

B:=false

(p(x,zyl,zz) ®=aABAX2CAZ32 0
so (7) holds by the consequence rule.

Pinally, to prove (8) we notc that

2 0 implies

B B~ z, Ly zi/x] [l/z5] AB A 24,202

1 i%i=3,4
plx 2z, 0,240 = a AT A Z 2 0Ax >0 which in turn implies 3B < aP(B) .
Hence (8] holds by the skip axiom.
Wow, from (6) - (B] we get (4) by the fair selection rule.

To prove (5) we note that by the assignment axiom and the consequence rule

:9“‘033 Jitb b rziel 1)) = A x, Z s 0}
B o= true
mu.zg,;;,:_:.u w uon B oA x, z 2z 0}
s 15) by toe conseguencs rule.
Wy may fead have gaowvesd both (43 and (5) and we gut (2} by the fair selection

cale, Bow (20 and (0 umgly by the while rule {true) © itz

soundnans wf the system FIO we get (1), This coneludes the proof.

166

¢! B0 by virtue of the

(7}

4. ON THE SIZE OF NEEDED ORDINALS.

In the pregeding sections we have presented methods for proving fair termina-
tion of (concurrent or structured non—deteministick) programs, using ranking func-
tions into well-founded sets or predicates of ordinals. It is well-known that any
well-founded set <W,>> has an order preserving mapping into <wu,>> for some or-
dinal o , where W_ = {B|B < a} (see [LPS] for details). Thus, one measure of
the "complexity" of fair termination of a concurrent program P is the least ordi-
nal o for which there exist @, W and p as in the delay variables method with
W= wa . Let us call this ordinal o the "fair oxrdinal" of P and denote it by

%

can be associated with structured nondeterministic programs by studying ordinals

(up ®# 0 in case P is not fairly convergent). A similar measure of complexity

needed for applying the while rule.

Consider bounds on up for natural classes of programs P. For definiteness
we consider proérams operating on natural numbers, i.e. the state space S is NE'
for some 2. 1In .t:he case of concurrent programs each transition function corresponds
to some recursive subset of Nl. (In fact, it suffices to look at transitions coxr-
responding to assignments of the form x:=0, x:=y+l, x:=y-l1 and guarded by tests
of the form x=07?, without affecting the following theorem.) Call such programs
“concurrent numerical programs”.

In the case of structured nondeterministic programs assume that all functions
.and relations used in the expressions are recursive (i.e. effectively calculable)
and the usual functions and relations of Peano arithmetic are available in the lang-
vage. Call such proyrams "“nondeterministic numerical programs".

In the subsequent discussion we restrict our attention to nondetexministic
numerical programs. Similar results can be proved for concurrent numerical programs.
The complexity of fair termination of nondeterministic numerical programs is closely
related to the complexity of numerical (nondeterministic) programs with random assign-
ments.

‘The translation presented in section 3.2 and the converse one replacing Xx:=7%

by

167

x:=0 ; while B 2}}_3 + X:=x+l
o B + B:=false
£i

o]

show that both classes of programs are reducible to each other.

since the proof rules for fair termination were obtained through the first
translation, the ordinals up for both classes of programs are in fact the same.
In [AP] it was proved that exactly all recursive ordinals are needed to prove total
correctness of numerical programs with random assignments. Hence the same result
nolds for the ordinals up associated with nondeterministic numerical programs.

We now prove the following stronger theorem concerning top level fairness

only.

THEOREM 2. For any recursive ordinal o there exists a nondeterministic
numerical program P with nondeterminism on a top level only, with “p satisfying

ﬂ’!ﬂ-

This theorem should be compared with [AO], where the authors prove an analo-

gous statement for a < w only.

Proof. We prove that each numerical program with random assignments which is

otherwise deterministic is equivalent to a nondeterministic numerical program with
top level fairness only. More precisely we show that for each program Il of the
first type there exists a nondeterministic numerical program IIl with nondeterminism

on a top level only such that Htl[ﬂ 1= Mfairn: Hlﬂ. The result then follows, since

by [AP] exactly all recursive ordinals are needed for proving total correctness of

the programs of the first type.

Let [be a program of the first type. Insert before each random assignment

of the form x:=? the assignment x:=0. By a well known theorem 1 is egquivalent

to a program ' which contains one while loop only and makes use of the auxiliary

variable C ranging over labels attached to atomic Programs and tests
Assume that the labels form the set {1,...,halt-1} and that X is a vector

of all variables of M. Then we can assume that II' jg of the form

ci=l ; x:=t ; while c # halt do
halt-1
if o ¢ =i + execute statement with label i; update c
i=1

Ei.

If the statement is a test then its execution is void but updating the counter
¢ is performed accordingly to the value of the test. Replace now each part of the
if-fi construct of the form O c=i + i :x:=?; update ¢ by Oc=i + x:=x+1 Dc=i-+
update ¢. Call the resulting program nl .

By the construction the value of x just before updating the value of ¢ to

i is 0. It is now clear that “1 is the required program. o

Conclusions.

We hope to have shown here that the issue of fair termination admits a simple
approach being a straightforward extension of the usual method based on the use of
well founded ranking.

The main novelty of the tialay variables approach is the augmentation of the
states by the delay variables which are not directly manipulated by the program but
can be computed for each fair computation sequence. In the case of nondeterministic
program the method was justified using program translations but it is certainly a
simpler version than any of the previous methods based on such transformations. Its
ability to deal naturally with fairness on all levels is again a proof of its strength
and appropriateness. As we have shown it provides a unified principle upon which
proafs of fairness properties of both nondeterministic and concurrent programs can
be based.

The method was applied here to deal with the issue of fairness only. It is

however clear that it can be also used to deal with the issue of justice (see [LPS])

169

by sisply refining the way the values of delay variables are changed.

Another advantage of the method is that it can pe applied to study the issue

of fustice and fairness in the context of structured concurrent programs considered

6.g. in (DG]. The appropriate proof rules can be obtained by applying appropriate

wransforsations similar to that studied in section 3.2

This subject will be dealt

with in asother paper which will form a sequel to the present one.

Beterencas.

101

LR

Wpt, K.R., Oldersy. E.R. Proof Rules Dealing with Fairness, in: Worksnop
en Logic of Programs, Springer Verlag, Lecture Notes in Computer Science,
130 pp. L-B, 1982, (to appear in Science of Computer Programming).

apt, K.R., Plotkin, 5.D. A Cook's Tour of Countable Nondeterminism, in:

Proc. Bth Colloguium on Automata Languages and Programming, ACre 1981 Springer
Verlag Lecture Wotes in Computer Science, 115, pp. 477~-493, 1981, (Pull
version appeared as: Technical Report of Dept. of Computer Science, Edin-
burgh University, 1880).

Chandza, . putable Non-Deterministic Functions, in: Proc. 19th Annual
Symposius on Poundations of Computer Science, pp. 127-131, 1978.

Drykstra, E.W. A Discipline of Programming, Prentice Hall, 1976.

Ployd, RN, ASsigning Meanings to Programs, in: Proc. AMS Symposium in
Appiied Mathematics 1§, pp. 19-31, 1967.

srambery, O., Francez, N., Makowsky, J.A., Roever, W.P. A Proof Rule for
Fayr Termination of Guarded Commads, in: Algorithmic Languages (eds. J.W.
de bakker, J.J. van Viiet), pp. 399~416, IFIP, North Helland, 198l1.

Hennassy, M.C.B., Plotkin, G.D. Full Abstraction for a Simple Programming
Language, in: Proc. 8th Symposium on Mathematical Foundations of Computer
Sceence, Springer Verlay Lecture Notes in Computer Science, 74, pp. 108-120,
197e

Hoare, I.A.R. An Axiomatic Basis of Computer Programming, CACM 12(10}, 1965.
Lehmann, D., Pnueli, A., Stavi, J, Impartiality, Justice and Fairness: The
Bthics of Concurrent Termination, in: Proc. 8Bth Coll. on Automata Languages
;ﬁ Pioqzmzng. Springer Verlag Lecture Notes in Computer Science, 115, PP-
64277, 198L.

Manna, I. Mathematical Theory of Computation, McGraw Hill, 1974,

Manna . .:..u Poueli, X, Axiomatic Approach to Total Correctness, Acta Infor-
matica 3, pp. 243-263, 1974.

Qwicky, 3., G;‘.es, D. An Axiomatic Proof Technique for Parallel Programs,
Acta Informatica &, pp. 319-33%, 1976.

170

