
SUllllllary.

?air TeJ:!Dination Revisited - Wit:h Delay

(Abstract)

K.R. Apt
LITP, Universit' Paris

2, Placa Jussieu 752~1
Paris, · France '

A. Pnueli
The weizmann Institute of Science

J. Stavi
Bar-ilan University

August 1982

A proof method for establishing t:he fair temination and total correctness of

both ncndeterministic and concurr.ent programs is presented. The method calls for

the extensicn of states by auxiliary delay variables which count down to the instant

in which a certain action will be scheduled. It then uses well founded ranking to

prove fair te:cmination allowing nested fair selection and loops.

The wo7k reported here was partly done while the first author was visiting
the Weizmann Illstitute.

It is supported in part by the Israeli Academy of Sciences, the Basic Re
search Foundation.··

146

INTRODUCTION.

The problem of termination of nond~terministic and concurrent programs under

the assumption of fairness has recently been receiving considerable attention (see

e.g. [Ao]' [GFMR], [LPS]' (P]) .

The basic method for proving invariant properties, such as.partial correctness,

was developed by Floyd ([F]) and Hoare ({HJ) for sequential programs. It is based

on the idea of finding an inductive property which is preserved by every basic action

of the program. When we consider nondeterministic and concurrent programs, the method

of invariance is still applicable with very minor modifications.

By comparison, the suggested method. for proving termination properties (total

correctness for example, [M]), is not.directly extendable to concurrent and nondeter-

ministic programs when we stipulate fair executions. The method, as developed in [F],

[MPJ is based on establishing a mapping from the program states to some we11- founded

domain (a rank) such that any program action causes a decrease in the rank. That this

method does not apply to fiar termination is obvious from the following trivial exam-

ple:

while b do .!:,![b + skip c :0 ..,. b: = ~] fi

A fair execution of this program must eventually choose the second :Oranch of the con-

ditional, causing b to :Oe set to~ and terminating the program. However any

choice of the first branch preserves the program state. correspondingly no mapping

which always decreases can exist.
For

The otudy of fiar executions is mainly motivated by concurrent programs.

concurrent computations fairness or its weaker version-justice ([LPSI) - is a most

~eneral modelling of the fact that the ratio of speeds between cooperating processors

may :Oe ar:Oitrarily large and varying but is always finite. The study of fairness in

the context of nondeterministic but sequential .pi:ograms is motivated in part :Oy the

use of nondeterminism to model concurrency and also as a more restricted interpreta-

tl.on o.f r1ondeterminisrn.

h 11 Of extend'ng •he method of weli fow>ded orderings
Answering to the c a enge • •

to f iar ti!:nnination, several· sugges"t:.ions were made~

147

ODe approach, represented by [LPS) and [GFMR] is to relax the requir-ent that

~ action causes a decrease in the rank of the· state. By this methodology, for

each state there always exist some helpful actions which decrease the rank of the

d · d"ff ent (steady in [GFMR)), which at least
state, and some other actions, te:rme in l. er

do not increase this rank. By fairness (and some additional requirements of the

method), a helpful action must eventually be" chosen which causes the rank to decrease

and thus excludes infinite computations. This method was applied in [LPSJ to con- •

current programs ·represented in an abstract framework, and in [GFMR) to nondeterm1nis-

tic programs in a mere syntax directed lltyle. An interesting point is that the method

of !GlllG!l can·only be applied to programs which te:rminate due to fairness on the top

level, i.e. fair choice between the branches of an encompassing loop and not be tweer.

branches of an enclosed conditional statement.

ThQs the following example:

~b~

!,f[b .. ~

c b .. if[b_ + ~

; c b•-t b: " ~ J fi

Q oa.

c::a.nnot be proven fairly terminating by the method of [GFMR] .

Another approach to fair termination developed in [AO) suggests modifying the

program by the construction of an explicit fair scheduler for the program. This re-

duces the problem of fair terinination to that of the te:rmination of a deterministic

pz:ogra111 in which random assignments x:=? of unbounded natural nwnbers are allowed.

Such assignments are used by the scheduler to implement fair scheduling. By [AP J the

termination of such programs can always be proved by well founded ranking, provided

we allow ordinals higher than w - the first countable ordinal. Once the proof rules

&re obtained for the program augmented by the scheduler statements, these statements

C4I\ be eliminated. . Thus, we .do net have to actually construct the scheduler in order

to apply the derived proof rules. They are directly applicable to the program as ori

ginally presented. In [Aor this method was developed again only for top level fair-

ness in nondeterministic programs.

148

ln this paper we present another approach tc the termination of fai; proqrams,

covering both concurrent and nondetenninistic programs. we believe it to be llillch

silllpler and 1110re natural than any of the approaches discussed above, :.,,d as we will

illustrate below, directly applicable. While the method can also be justified by pro

gram transformations, as in [AO], the presented justification does not call for pro

gram modification but extends instead the states by adding auxiliary variables. In

a certain sense this extension parallels the introduction of auxiliary vairables in

[OG] providing a natural method for invariance properties of concurrent programs. As

will be shown below our method provides proofs for termination under the assumption

of ~ fairness and not only top level fairness. Thus, in comparison with pre

vious proof methods the approach suggested here is more general, is simpler to apply

and justify and forms a natural generali~ation of the method of well founded ranking

successfully used for sequential programs.

Similarly to [AO] we will show that the problem of fair total correctness of

a nondeterministic program is reducible to that of the ordinary total correctness

of a program which allows unbounded random assignments x: = ? . Such programs

were studied in [AP]. In our paper we will show the following additional result

concerning such reductions in the other direction.

Given a program il which allows random assignments, it is possible to con

struct a nondeterministic program rr1 with no random assignments such that the

fail: total co:i:;rectness of n1 is equivalent to t:he ordinary total correctness of

IT • Furthermore, it is sufficient to require top level fairness in the computations

of IT'. This result allows us to resolve the issue raised in [AO! by showing that

all recursive ordinals (order types of recursive well ordering of sets of natural

numbers) are required to establish fiair termination of programs with top level fair

_ness only. This of course is a significant increase iil comolexity over the sequential

deterministic case woere w is the highest ordinal ever needed.

149

The ,..,thod is illustrated first for concurrent programs represented in an un

seructure<l framework. The framework is taken from [LPSJ and we repeat its basic defin-

1tions here:

A concurrent system is a triple:

p • <S,F ,I>

s i• a set of execution states.

I :: s is the set of initial states.

F • ~ •• ,f,/ is a set of transition functions associates with m processes.

!Kach fi' s .. 2S IMP• a state s into a set fi (sJ ::_ S which is the set of possible

'"'tcollle$ '1h<>."l the process Pi executes an atomic instruction on the state s.

If ; II we say that f i is ~ on s, otherwise we say that it is

~ on •. A state s which is disabled for all i = l, ..• ,m is called t:ermi

..!!l· Let T denote the set of terminal states.

An execution sequence of P is a maximal sequence:

sw:h t.Mt s0 £ ! and for each j, sJ'+l £ f. (s.l
lj+l J

A state is accessible if it

oc:curs 1n an ... ,...cution sequence. The set of accessible states is· denoted by Ace (I) .

An execution sequence .is ~ if it is either finite or if every transition fk

wluch is enaille d infinitely many tilnes in the sequence is also scheduled infinitely

uny times ~ Le. i:i = k for infinitely many j •s.

We say that a progrui P is fairly convergent if every fair execution sequence

of f l.£ fi.nite.

We propose the following proof method for proving the fair convergence of con-

150

current systems.

The Delay Variables Method.

1. Choose a state predicate Q ~ S, such that

A. s € I .. (s € T) v Q(s)

B. Q(s) As'€ fi(s) • (s' € T) v Q(s'l for i=l,. •. ,m.

(T being the set of terminal states)

This ensures that the predicate Q holds for all accessible non terminal states.

2. Choose a well founded set (W,>), i.e. a set w with an ordering relation

> such that every W-sequence w0 > w1 > •••

3. Find a ranking function

w. € w is finite.
1

mapping extended states into the well founded domain W.· An extended state consists

of a state s € S augmented by ro scheduling (or delay) variables z1 , ... ,zm (also

referred to dS counters). The role of the delay variiible z.
1

steps will pass in which f.
1

is enabled but not yet scheduled.

can be only a finite number of them.

The ranking function must satisfy:

Q(S) As'€ f, (s) A A [(f.(s) ~ ~ .. ZJ.
~ j~i J

z'.+l) A (f.(s)
J J

is to count how many

By fairness there

9J .. z.
J

Z'.) J
)

All the free variables in the above, i.e. s, s', z, z' are conside:ced to be univer-

sally quantified. To justify the method, consider an infinite fair execution sequence

-.·.

lSl

For each " O,l,... we define the vector of delay values U'.i

as follows:

~ • number of distinct j • ~ j such that fk is enabled on "i , but nqt

scheduled for any j s t ~ j' , i.e. number of contiguous steps from on wheru

fk is enabled but not yet scheduled.

By fairness the uJ'• are well defined, nonneqative and finite.

In addition they have

Consider a transition

a. ~- 0

b. For every !. ,,,. k s.ich that f 1 (sjl ,. Ja uj
1

j+l
" ui + l.

c. For every i ,,,. k such that f 1 (sj l - Ja
uj = uj+l 1 1

Let a now represent an infinite fair sequence. Assume that Q, W and

have beeri found sa tisfyinq the method's requirements. Consider the sequence of aug-

mented states -<l -l
<s0 ,u J • (s1 ,u) , •••

By comparing properties a, b and c to the requirements on Q and p we

obtain

contradictinq the well foundedr>ess of w. This shows that a successful choice of Q,

W and p guarantees fair termination.

conclusion: The delay variable method is sound.

Completeness is even more trivial. Assume that P is fairly converqent.

Take Q • Aec(I) - i.e. true for all accessible states.

Take W to be S ~ Nm, p the identity mappinq

The relation > over W is defined by

lSZ

>

-
3i Q($)As'€fi (s)A A [(f. (s) F ~ .. zJ.=zJ~+l)A(f.(s)•~ .. z..=z'.))Az.=O

j;'i J J J) i

i.e. it holds exactly between two accessible augmented states thai: ~an appear con-

tiguously in a.computation. That this relation is well founded follows immediately

from the fact that P is fairly convergent.

We conclude this section by an example of proving fair ter111ination of the fol-

lowing distributed GCD program:

[yl>y2.,. Y1'-Y1-Y2 c yl<y2 + skiplli, od

\!
[yl>y2 _,.skip o yl<y2 _,. Y2:=y2-y1l£~

In our fra11>ework

The transition functions f 1, £2 are given by

that both functions are disabled on states of the form [y,y] which are t:here-

terminal.

To apply the delay variables method we choose Q as

set of pairs of nonnegative integers with the lexicographic ordering

lS3

l'e have to show that'the value of P decreases on ·each .transition. Take for ex-

we consider separately i • l and i "'2. We have to

show

so that p > p '. For i • 2

we have to snow

But in tills case so that

This proves that the distributed GCl> proqram is indeed fairly terminating·

~. NOND!::TEl!MINISTIC PP.OGRAM$.

this section we develop the variant of the method o.ppropriate to nondetermin-

ist.i.c proqrams. The programs considered here will be presented in a structured lang-

uage, ani! the method will lead to the establishment of overall fair total correctness.

The synux of olll" progrillllll is given by the following grU>qWlr:

m
x: • t I n,n i if o B n. fi

-i-=ll. i-

Here x is a progr!llll variable, t a term, B and Bi are boolean expressions.

The boolaan Bi in the context of the !!_-fi construct are called guards. our language

differs from that of Dijkstra [DJ in that the loop is always guarded by a single con-

j1tion.

:i.l. Semantics

Let Var denote the set of prog:r!llll variables and 'D a domain of·an inter

pretation. By a ~ we mean a mapping s : var +'D.

Following !HP] we define a sin\ple operational semantics for programs based on

c:. transit:ion re.lation u, 11

between configurations, that is pairs <n,s>

154

tinq of a proqram and a state. In addition we consider the two epeci&l states J.

standinq for divergence and ~ standinq for abortion.

In qeneral <II,s> +<II' ,s'> means that one step of execution of !I applied

to s can lead to a state s' with II' beinq the ru&illder of II yet to be -

cuted.

It is convenient to asslllne the empt}· proqram I. Then II' u 1 if n te.r-

minates in s' .• we assume that for any proqram !I E1ll,.ll;X-ll.

we define the above relation by the following clauses:

il <skip,s> + <E,s>

ii) <x:=t,s> ~ <E,s'>

where s • (x) " s (t) and s' (y) • s (y) for y f. x
m

iii) <!f o Bi + Ili fi,s> + <Ili 1 s> if lo Bi (s)
i•l

m ID

iv) <!f 0 Bi ... ni fi,s> <E,fail> if F " -.Bi (a)
i•l i•l

vJ <!!!!lli B ~ n ~ s> .. <Il; while B do n od,s> if lo Blsl

vi) <~a~ ii~· a> .. <&,s> if I" ·\f5(s)

vii) if <II,s> .. <Il',s'> then

Let " +* " stand for the reflexive transitive closure of • + • • lfe

say tha~ n0 can diverqe from s0 if there· exists llll infinite ~

We say that n can fail from s if f~r llOlll8 n1

w., lllil.Y now defirie various semantics of pzoqram$ by putti.nq

Ml'(.II] (s) = {s' l<D,s> +• <E,s'>)

Mwt; r. n D (s) 3 Ml!. :I] (S)

u (J.ln can diverqe fraa s)

155

Mt[n)(sl • Mvt[nll(sl

u \!,!g \ n can fail f:rom sl

1111 llOW proceed 1:0 defiM yet another semantics of programs - the one talcing

u aid tc be !.!.!!. if it is either finite or for every program IT
m

if OB,+fi fi
i=l l l -

"'1id Meh i • l,. •• ,111, if there are infinitely many j 's for which <IT,s.>
J

then there are infinitely many j 's among them such

'!llli.a O.<Jain capturH the idea that every guard associated with a fixed location

I.I\ thiO p;rOlJrillll, ~ioh is tested and found enabled an infinite number of times will

'!'<l a'll<l1d Cllnfuzioo :i:csulting from the fact that various occurrcmco" of

l.:11 do not n....i, to correspond with the - proqram, we should actually label

31.<'l\ Ji>«l<;rraa with a mique label. It is clear how to perform this process and we

- my - defw Mfair[!I1J (s) analoqously as Mt[!! D (s) by allowing .J.

'"" .it ®ly if r. cu diverqe from s by a fair computation sequence.

:...i~ P,Q,!t :stand for formulae (assertions) in an assertion language which

~ta.ins all pro<;ru variables, terms and boolean expressions. we put

iP] " ·:s. 1'< Fis) J. NOte that for any assertion p, .J. ([P] and fail ([;.].

!"or "'"'l' f E ip, wt, t, fair) , assertions P,Q and a program we define

11.a: :lJ ([PJ,l c u M [n ll (sl
• J s€[PJ. f

J

156

The statement of program correctness is defined by:

We thus have flltW types of program correctness:

l=P - partial correctness

Pwt - weak total correctness

l=t - total correctness

I= fair - total correctness under the assumption of fairness (fair total

co=ectnessl

'I'he weak total correctness and the corresponding Mwt semantics are less of

ten considered in the literature. We need these notions in the next section. we

call the constructs {p) IT {Q} the correctness formulae.

3.2 A Transformation Realizing Fairness

In the sul:>sequent considerations we need an atomic program .x:•? called a

random assignment which sets >< to an arbitrary nonnegative integer. The seman;:.icr;

of random assignment is defined by adopting the clause

<x::?,s> + <E,s'~

for any state s' such that s' (y) • s (y) for y 1' x. We assume that l< ranges

over natural nwnbers which form a sulJs:et of the domain V of the interpretation.

Programs allowing random assignment have been extensl.'l(ely studied in [Al? l .

In particular a system for proving total correctness of these programs has been pre-

' sented there and we shall value use of it in order to develop proof rules for fair

total correctriess.

'I'o this purpose we provide first a transformation of an arbitrary program n

i:nto a program ![fair allowing random assignments which realizes exactly all fair

computations of n. We proceed by the following successive steps:

157

lll g_ a B + n. fi of n by the · ~ollowing sub-
l. replace M.Ch sul:lpro9%P i•l i i -

proqr•

Lor 3' ·•l to 111 if B. thsn % • :•% .-1;
• - - ;-- j '

_!! : Bi ;, ai·• 0 ;, s ~ 0 ~ %i r•? I Ili ~
J.•l

._.,,ere i stands tor : 1, · · · ,:11 •

2.
• • qppropriately so that each if-£ con-r"name all variables •i • · · · ,. m

struct h..s its "°""" set of these varial:>les.

'-'-' z play hare exactly the same role as in Section !'IU! va.r,..,. :tl ' • • • ' Ill
2 -

th~y co1mt. i!l<:Ml llOw lll&llY tiaes the corresponding guard is enabled but not yet selec-

t"~· 'l'u c:orrespond.il>;g aci;ions on these variables .are incorporated ·in the program

l:!!!!!.l.· For any sta.te s

i!are and later we disregard the problem that nfai:r can chanqe the initial

'"atl:>H of th<> iawciliary) d~lay variables z1 ,... whereas n cannot. It is easy

:.c. <illllody thu diffic\Ll.ty by retaining the initial values of these variables before

the $Xllcut.ion of Ilfair and restore them after the execution of n. We ignore this

isoue here SJ.ll.Ce it is not relevant in the further discussion.

·~. a) we prove the =:-incJ:usion. Let a = <1!0,s0> + <Il1 ,s1> -+- •••

°" • £air computation of n. We extend it to a computation of Ilfair by assigning

ir, each state or a· the values to the· delay ·variables z i - s. Given a state s j ·

~,a.re- an:: two cases.

~· For n.>· state sk (k > j) the guard corresponding with z.
J

is selected.

!•nen by th£ assumption of £airness this guard is en<Lbltid only finitely many

158

times in this COl!lputation. We put sj (zi) to be equal l + the number of times

this guard will be enabled beyond sj.

~- For some state sk (k>j) the guard corresponding with z iJS hlected.
j

Then we put sj (zi) to be equal l + the number of ti11111s this qurd will be

enabled before being next time selected.

b) We prove the ~ - inclui;ion.

Let a be a computation of nfair" Then its restriction tc tbe ccmpuution

steps dealing with !! is a computation sequence of n. We shoY tbat it u a fair

computation sequence. Suppose otherwise. Then behind some point in this CO\lll;'Utat:i.on

a guard would be infinitely niany times enabled and yet never choser.. Sy the construe-

tion of nfair the corresponding variable zi would become arllitraxily uall.

This is however impossible because as soon as· zi beeot11es negative a faiiure will

arise. c

Corollary. Suppose that none of the delay variables occurs free in as;sertions

P and Q. Then

P.fair l!'I n {Q} iff Vs [I= !'(s) +II cannoc fail from sl

and l=wt {P} rrfair (Q)

J.3 A Proot System for Fair Total Correctness

The above corollary indicates chat in order to prove fair total correctness

of r. it is sufficient to prove weak total correctness of ilfair ~ovided ::he

absence of failure in can be established.

To prov"' weak total correctness of llfair we can use the proof systai inero

duced in tAP l slightly modified for our purposes. The followin9 ax10lll5 and proof

rules are adopted

1. Xandom ass,1qrunen.t axJ.om

2:.rovided x l.S not tree in P

lS9

s. mWf!Pt lllUCa

lPli/lCJl 111-t {p}

~ p ltJ•l at&llU tar a IUbatitution of t for all free occurrences

Of II .111 P.

s. N!£lj.!M 1:'11.1.e

lP) Dl {Q), {Q} 12 {R)

{p) ll 1 D2 hi)

{P " a1) 51 {(l} i•l, • • • ,111

•
{p) !! D Bi + Hi !,! {Q}

1•1

\P(o:) A BI D (EIS < a D(Sl}

llMA a,- ar• ftrilbles riUMJinq over ordina.ls (or 1110re qenerally well

iOlllodild Mta).

7, ~rule

P .. •1• {pl} D {Ql), Ql + Q

!r} n {Ql·

'1'lle liboft .,._it ~iate to:: FOVin9' -.le total correctness of Ilfair·

... Clf.ll ~ t tr.l'C •

Couider new a proof Of a corrtetneu forlllUJ.a {P1 l. nfair {g1} in the above

sy1ta. Due to m. fora of lfai: tb.ill I*OOf can be transfoxmed into a proof of

tllit aorrttctne1a fozm.il& !P1} II {Oi} provided we U8e the following' transformed ver

sion of the 1&lectiaa rub

{P) iltair !!_ {Q}

•
{p) .!! c l!I. +Iii fi {Q)

i•l l. -

160

where M.tair !!. stands for the aubproqr• int.roduce4 in step l of tile truaf-

t.ion from section 3.2.

'l'!:le hypothesis of this rule can be ailllplified i:f 11e •u.oc• l.ll &Ni~

to delay variables into the assertion P and &aily ·~· the or:!4ililal Rlect.lcll

rule. In such & -Y - obtain a. proof rule which ~ acl.u.i'lely Wida tbe 1!,-con

struct. and it.s components. It has the foll-inq fom

{P[Bj ... l:j +l, zl&j]jz'i (l/&i] A Bi A Z~O} Iii (Q}i•l •••• ,e

m
{p} !f a Bi ... Hi fi {Q}

i•l

whare Bj ... t.1 , t 2 stands for the conditional. exprueioa 1!, aj ~ t.1 !!!!! t.2 !!

AcCOJ:;dinq to Corollary we still have to deal with tile a- of fNelilam of

failure. 'l'!:lis problem can be take care of in the UMl&l. wey, i.e. bf a:i.llply ~

to the premises of the above rule the assertion

111
P ... V II .•

i•l l

S~icinq, the filial version of the rule has the followinq fom

8. Fa.ir selection rule

m
P ... V B. ,

i•l l.

111

{p} ll, a Bi +Iii !!_ {Q}
i•l

Ne have thus obtained a proof system for pravinq fair total co.rrecaiesa of

programs. It consists of the axiOlllS 2,3 and proof·rulea 4, 6-8. llOt.e that: t:.be

• raMQL..aa11i9lll!Mlllt. .llXiom .is .• not .needea. ,,-. it '!HIS 1111ad only to deriv. 1:be final for:!

of 'Che fair select.ion rule. call this proof system. FTC (for !,a.ir ,:.Ot.a.l :,c.rr111et.ness) ·

161.

over~· Ad-

£lcl!Jlllq,l.}.y w - wt L u;cl~ "_.i. or<lu vanahles of ai:bi i::rary ar i ty and

~ _._ !lr""'1Y IYl!.:rlJl!l>lq ca11 btil lloood only by the Zaast fixed point opera-

of 111..,.,..t ~ ls countable and contuns all natural num-

o.f aort ~ u an initial segment of ordinals (t:o ensure

~ i'<\l'~ Utt,"""'""tati.<m of the~ rule).

'l'llllil -t ~ Wmlo~ tlut least ordillal and the predicate symbol

'1<w.'°;"~ t>1e str;<:t ~ril'Jl9 o.f the ocrdinals, i:estricted to J£!£.
The ~a~ <>f .W of tll<I set sorts contain all sets of the appropriate

killd lt.i.> <M,-..rdl tll<il uisunce of the fiJced points considered below).

The t:ruth

i,llaMrtiQfll&) "'ith ~$;>«et to J is defined in a standard

~a.P . We put

·wheni· A is the· lust fixed point· of an operator

is defined as be-

!llli Mly "'t<O<:i to 1.!iidicitt~ the a..-ndence of ~- - the appropriate prog>:am semantics

162

on the interpretation J.

By TrJ denote the set of all formulae of L which are true with respect to

g. Given a set of assertions AS and a proof system G for proving correctness

fOrmulae we denote by AS I-G (jl the fact that the correctness formula (jl can be

proved in G from the set of assumptions AS which can be used in the consequence

rule.

After having introduced all these notions we can now state a lemma which is a

proof theoretic counterpart of Corollary from section 3.2.

~· Suppose that none of the delay variables introduced in rrfair oc

curs free in the assertions P and Q. Then for any interpretation J of the above

kind

.'l'rJ I-FTC (p} IT {Q} iff TrJ 1-WTC {p} Ilfair (Q)

and 'tsi FJP (s) + IT cannot fail from s) •

Proof. The proof is based on the analysis of the proofs in the corresponding

proof systems and makes use of the Corollary from section 3.2. We leave the details

to the read.er. c

Corollary and Lemma 2 reduce the question of soundness and completeness of the

proof sys~em FTC to that of WTC. But the results of [APJ show that the proof system

WTC is sound and complete for all interpretations J of the above kind. This shows

that the proof system FTC is also sound and complete in the sense of the following

theorem

'l'l!E:OREM l. For all interpretations J of the above kind and all correctness

tormula" <i>

TrJ '"FTC<.j) iff .. J 'fair ttl •
0

163

l.S An txaJ!ple of a Proof in FTC

wtiich can De dealt with using our system but not we conclude with an example,

· ted by Shllluel Katz . l:il' any previous method. The program was sugges

n !!!!ll!. x • o ~

if {zl) ~ .. .!:! !z3} s..,. x

c {z:4) s b := !!!.!!.

fi c iz5)-.s-+ ~

c \:.2) ~ +b =·~

we 11&11 t. to prove

I= I true} Il {true}
fair -- --

i.e. that always terlllina.tes wider the assumption of fairness.

(l)

'd 1·s N4 under lexicographic ordering. We :me well founded set we will cons1 er

hlL"" -.nnotat<ld each guard wi"th an appropriate delay variable.

tumc;ion 1duch underlies our formal proof which is given by

111 the expruuon l-ll , ~is interpreted as l, ~as O .

There is a ranking

'?hil cruc:ul tact upon which the proof depends is that in a fair execution the

value of p decreases on each iteration of the loop. We first demonstrate this

hct :i.nfo:nnally providing the formal proof later. An iteration of the loop can be

character izeci by the guards which are selected,

::onsider first the z~ , z3 pal:h. Here x is decremented so that µ cer

ta1 ... nly deC'reases.

Along the z1 , z4 path, the z3 guard was enabled since b must have been

true for z,. to be selected. Consequently z3 is decremented, being an enabled

lG4

but unselected guard. Since x remains the same P &qain decreases.

B must have been' false so that the fourth component of P

which is decremented when its guard is not selected.

In the z 2 path we have to distinguish between the c.ase that 11 ill initially

false in which case 1-B drops from 1 to O, and the case that B was initially

true in.which case the last component of p is z1 which is decremented since ,.2
is selected.

we now present a formal proof of (1). Let II' be the body of the loop. We

have to find an assertion P(a) such that

{p(a) A c.>O A x>O} II' {38<aP(S)}
(2)

and

3c.P(a) .
(3)

We define

P \al - x, z ;: o ti " = P cx,11, z>

It is clear that (3) holds. To prove (2) we have to apply the fair select:ion

rule so we have first to prove the premises

and

as the first premise of the fair selection rule is obviously satisfied. aere

rr 1 g B ... x:=x-1

c B .., B:=false

TO prove (4) we once again wish to apply the fair selection rule. The premise,;

to prove are

o }x:=x-1 {36<<lP (8) l (61

165

where P1 i (P(a) /\ o > 0 " x > 0) [z2 + l/z2J [l/z1J " z1 ,z2 ll O •

We ti.ve by the assignment axiom

{p(x,l,O,l) • o /\ l:l /\ x > 0 "z ~ O}

x:•x~l

\plx+l,l,O,l) "' Cl /\ B /\ x it 0 /\ :i: ;. O)

which :IJ=plie• by the consequence rule (6) as the necessary implications clearly

hold.

'l.'o prove (7) we note that by the assiqnment axiom and the consequence rule

(p(x,z 3,0,l) "o "11" x > o "z ~ O}

81•!!1:!!

(p(x,z3,1,z2) •a /\~B /\ x ~ O "z ~ OJ

so (7) llold1 by the conseq11ence rule.

Finally, to prove (8) we note th.at

P1 IB + z1+l, zi/zili•l,4 Cl/z5) A"18" z3,z4,z5 ;i 0 iillplie•

p(x,z 3,l.z2+l) •a ,...~B" i ~ 0" x > O which in turn i111plies 311 < aP(Jl) •

Hence CBI holds by the skip axi0111,

Now, trClll (6) • !SI we qet (4) by the tair selection t'Ule.

To prove (51 we ru:'tt' that by t.he Hli9M1ent axiOlll •md the cons•quence rub

II;• !-Lt.!.

lolx,i 3,o,i;•ll • o." 8 " x, t ~ O}

llQ 151 by t1111 ~··r·~"'lue11c,111 rule.

IN 11>/1.'I ™"' '"'"" ;.1t•V111J Loth 14) and (5) .imd wo "l"t (21 by the t41r Htlect1on

t.11111. lkN "' 111"1 1'.11 l"'l·I~ by the!!'.!!.!!.! rula l_:.t!~!,I r. ll_r~,i llO by vat11t of the

IOllll4BHI "' tl'I• •irn- l'tC WI! 9<1t (lj, ThiliO 1:<1t1r::lu1l&ti. the f•rC>Of.

166

4. ON THE SIZE OF NEEDED ORDINALS.

In the preceding sections we have presented methods for proving fair termina-

tion of (concurrent or structured non-deterministic) programs, using ranking func-

tions into well-founded sets or predicates of ordinals. It is well-known that any

well-founded set <W, >> has an order preserving mapping into <W0 , » for some or

dinal a., where W0 • {13113 <a.} (see [LPS] for details). Thus, one measure of

the "complexity" of fair termination of a concurrent program p is the least ordi-

nal a. fer which there exist Q, W and P as in the delay variables methOO. with

w = wa. • Let us call this ordinal a the. "[air ordinal" of p and denote it by

"P (tip ~ 0 in case P is not fairly convergent). A similar measure of complexity

can be associated with structured nondeterministic programs by studying ordinals

needed for applying the ~ rule.

Consider bounds on for natural classes cif programs P. For definiteness

we consider programs operating on natural numbers, i.e. the state space s is N£

for some i. In the case Of concurrent programs each transition function corresponds

to some recursive subset of N.e.. (In fact, it suffices to look at transitions cor-

r~sponding to assignments of the form x:=O, x:=y+l, x:=y-1 and guarded by tests

of the form x = 0?, without affecting the following theorem.) call such programs

"concurrent numerical programs".

In the case of structured nondeterministic programs assume that ail functions

and relations used in the expressions are recursive (i.e. effectively calculable)

and the usual functions and relations of Peano arithmetic are available in the lang-

uage. Call such prc,.rams "nondeterministic numerical programs".

In the subsequent discussion we restrict our attention to nondeterministic

rllJ>llerical programs. Similar results can be proved for concurrent numerical programs.

The complexity of fair termination of nondeterministic numerical programs is closely

related to the complexity of numerical (ncndeterministic) programs with· random assign-

ments.

·The translation presented in section 3. 2 and the converse one replacing x :='?

by

167

11 ,.0 1 ~ B ~ ~ B .. x:=x•l

o B + B:•~

od

lllliCW that both classes of programs axe reducible to each other•

Si.nee the proof rules for fair termination were obtained through the first

t;:anslation, the ordinals llp for both classes of programs are in fact the same.

l'.11 [Al'l it was proved that exactly all recursive ordinals are needed to prove total

wrnictnees of nlll1>erical programs with randol!l assignments. Hence the same result

nol.4'1 for the ordinals "P associaU!d with nondete:rministic numerical programs.

we now prove t.he following st.ronqer theorem concerning top level fairness

T!SORD! 2. For any recursive ordinal et there exists a nondeterministic

n!Mrii:al program I' with non.determiniS!ll on a top level only, with r.tp satisfying

Thi$ ~-should be OOll\!?'lred with [AO!, where the authors prove an analo

tolilS l!tll.teMnt for o < w" only·.

~· We prove that each nUlllerical program with random assignments which is

oth@rwi~e deterllllinistic is equivalent to a nondeterministic numerical program with

t..ep levd fairness only. .More precisely we show that for each program ll of the

first type thli!r" exists a nondeterministic nwnerical program rr1 with nondeterminisrn

o~ ~ toi: l~vel only such that Mt!!: n D = Mfair[rr1 1J. The result then follows. since

Dl' [APj exactly all recursive orrlinals are needed for proving total correctness of

i::~e prograJOs of the first type,

Let be a ~rogram of the first type- Insert before each random as~ignmcnt

of the form >::='? the assiglll!l<>nt x:=O. lly a well known theorem !I is equivalent

which contains one ~ loop only and makes use of the auxiliary

l68

variable c ranging over labels attached to atomic prog:r1111S alld tests.

Assume that the labels form the set {l, .•. ,haJ.t-l} and that x is a w.ctor

of all variables of n. Then we can assume that ll' is of the fem

C:•l X:•t ~ C 1' ha.lt ~

c ~ i + e"ecute stat..,.ent with label i 1 update c

If the statement is a test then its execution is void but updatill<;! the counter

c is performed accordingly to the value of the test. Replace now each pet of the

.!!_-fi construct of the form c c=i-+ i: x:=?; update c by Cc• i """x:•x+l 0 c= i-+

update c. Call the resulting program n1 .

By the construction the value of x just before up:ia.tinq the value of c to

i is 0. It is now clear that rr1 is the required program. a

conclusions.

We hope to have shown here that the issue of fair termination admits a. simple

approach being a straightforward extension of the usual method lJa.sed on the use of

well founded ranking.

The main novelty of the delay variables approach is the auqmentation of the

states by the delay variables which are not directly manipulated by the program but

can be computed for each fair computation sequence. In the case of nondeterministic

program the method was justified using program translations but it is certainly a

simpler version than any of the previous methods based on such transformations. Its

ability to deal naturally with fairness on all levels is again a proof of its strength

and appropriateness. As we have shOwn it provides a Wlified principle upon which

proofs.of fairness properties of both nondeterministic and concurrent programs can

be based.

The method was applied here to deal with the issue of fairness only. It is

however clear that it can be also used to deal with the issue of justice (see [LPS] l

169

li'rol:lf ~JlH tl&!lling with Fairness, in: Wcrksnop
:±~p,r.lJ\,,.711/'r. V&rla.q! !Act.ure NOtes in Computer Science f

'"J?!i't'lll.% a sci~ of C"""i>uter Programming).

t,.fi~, E'J.otJr .. i.n, ,~ coo& 1 s 'rou.t of Col.mta.ble Nondeterminism, ln;

ittl i.))ll~z:ttm AutLv.ma.ta L.lng'WJ.·gililS and Programmiw;, Acre 1981 Sprinqe!'.
V'J?t;rl;i\~ t~""tiJ.~1& ~t©\% C~tar Sci~nce~ 115" pp. 477-493, 1981. (Full -
'"ll~•rnm ~arad '11$' '.!'~"l?hnit:llll 1t1ipon of Dept. of Computer science, Edrn

lln,1w:i:u:1. lHOi ,

t:lut'!li1trJq ~:able Nom"'"tieterminl$tic Functions~ in: Pro.:. l9th Annual
~~¥1;1.4/i,i\l\ f.}j;,t rc·r.~-::i.o.u .et ~~uter science, pp. 127-131, 1978.

~. to l':ograos, in: Proc. l\MS Symposium in
1967.

:'1 1 rt'.tMC«e!l.1 ~"~ Makowsky1 J.A.r Roever, W.l?. A Proof Rule fox
'!'~1l''ffilt.&1t.1:;:::.rt of :;;ardod 1,:~s, int Alqorithmic Languages (eds. J .W.

V!lm Vl1et), pp. 399-416, !!'IP, North Holland, 198l.

~.,C . .B., PL?t!.tit~~ .3 .. D. Full Abstraction for a Simple Programming
~:n. P':to;;.;; •. 6t.h Syq1os;1..um ® Mathematical Foundations of Computer

~l't".rigor \l~:::l"q Utc>;ure l!Otes in COlllputer Science, 74, pp. 108-120,

Ar: Ax:i.'*ll.tic Basu of Computer Programming, Cl\CM 12 (lO) , 1969.

J P".nuiel.::.i A., ~tavi,, J. Impartiality, Just:ice and Fairness: The
~:i.::if'.,cu;r~nt Terl'U.nat.1onff .:.n: Proc. Bth .Coll. on Automata Languages

"""'''"'""'·w;;, ~Fnnger Verlag L&ctuz:e !Iotas in Computer science, llS, pp.

~.Atlieat.i.cal T'heery Of Coaputation, McGraw Hill, 1974.

l?nue!i, l\. AxlCNUC Approach to Total Correctness, Acta lnfor
pp. 243-263' 1974.

Qw·l,.;;::k,l, . .a.• ~r. i.,es,, D.. An Axiomatic Pr"'""f '" "-Ac' , ~ .ec.u.ique for Parallel Programs,
... a .1.r~:rc:n.at. 1ca. i. P PP· 319-339 1 1976.

170

