
Formal Descriptions of Programming Concepts, E.J. Neuhold (ed.)
North-Ho! land Pub I is hi ng Company, (1978)

EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL

SEMANTICS FOR A FRAGMENT OF PASCAL

K.R. Apt

Mathematical Centre, Amsterdam

*

A fragment of PASCAL is considered in which nested systems of

procedure declarations are allowed. Procedures can call para­

metersby value or by variable. Three semantics for the fragment

are considered -two denotational ones and one operational and

proved all three to be equivalent.

INTRODUCTION

Much work has been done on comparisons between various methods of describing the semantics

of programming languages. Without aiming at completeness we mention the papers of

Lauer ('71), Hoare & Lauer ('74), Milne & Strachey ('76), Milner ('76) and Stoy ('76).

In this paper we focus on two methods of description - denotational and operational

semantics. The aim is to show that they are equivalent for a fragment of PASCAL.

The considered language (taken from Apt & De Bakker) contains simple and sub­

scripted variables, some simple types of expressions, assignment, sequential c9m­

position, conditionals, declaration of simple and array variables, systems of (re­

cursive)procedure declarations and procedure calls. Procedures can call parameters

by value or variable.

The paper is organized as follows. In section 2, 3, 4 and 5 we define the language

and give definitions of two (different) denotational semantics of it. This part of

the paper is taken almost literally from Apt & De Bakker. The two proposed de­

notational semantics differ only in the treatment of procedure calls. In the first

approach the meaning of a procedure call is determined at the moment the call is

encountered in the program text. In the second approach the meaning of each proce­

dure call is determined already at the moment the procedure is declared. In order

to ensure that in both approaches scope problems are dealt with in a correct way

we make extensive use of substitution. Parameter mechanisms are treated by means

of the technique of "syntactic application" by which a procedure body together with

the actuals of the call are mapped to a new piece of program text. In both approach­

es the meaning of a procedure call is determined by a suitable combination of the

least fixed point technique and the technique of syntactic application.

* This publication is registered as Report IW 71/76 of the Mathematical Centre.

140 K.R. APT

Having defined both semantics we show that they are equivalent. The proof of their

equivalence is presented in section 6. It uses the eqivalence between simultaneous

and iterated least fixed points. An important notion which turns out to be useful

is that of the depth of a statement S which corresponds to the level of nesting of

procedure declarations within S.

In section 7 we define an operational semantics for our language. It is defined in

the style of Cook('75)(Cook while giving his definition credits it to Lauer ('71)

and Hoare & Lauer('74))although declarations and procedure calls are treated in a

different way. A careful reader will observe that our operational semantics bears

a strong resemblance to the first denotational semantics. Our intention was to de­

fine denotational and operational semantics in such a way that the proof of their

equivalence could reduce to the essence of the problem while avoiding tedious, but

straightforward, considerations.

The proof of the equivalence (in an appropriate sense) of both semantics is pre­

sented in section 8.

In order to show that operational semantics is included in the denotational one we

use computational induction applying the results proved in section 6. To prove the

converse inclusion we are forced to consider nested sequences of systems of proce­

dure declarations. By looking at the definition of the meaning of procedure calls

we see that the nesting is reflected in the use of iterated least fixed points.

When considering the approximations of the appropriate least fixed points we come

to somewhat complicated "nested" approximations. We prove the desired inclusion by

induction on the so called information sequences which we associate with the nes­

ted approximation and a statement in question.

It is to be hoped that the proofs of this paper will shed some light on the diffi­

culties arising when considering nested systems of mutually recursive procedures.

While writing this paper the work of Stoy('76) 'came to our attention. Stoy proves

equivalence of denotational and interpretive semantics of a language incomparable with

ours. Since in his language procedures are allowed as parameters he inevitably

lands in the realm of reflexive domains. Stoy's paper provides an introduction to

the techniques developed by Milne and used in Milne & Strachey('76).

ACKNOWLEDGC:MENT.

I express my gratitude to J.W. de Bakker who introduced me to the field and whose

willingness to help and patience enabled me to enter the subject. The work on the

joint paper Apt & De Bakker and further discussions with him provided the basis to

this work.

2. DEFINITION OF THE LANGUAGE

We start with the following classes of symbols:

EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL SEMANTICS

sv {x,y,z, ... } - simple variables

AV {a, b, ... } - array variables

PV {P ,Q, ... } - procedure variables

c {m,n, ... l - integer constants.

For later use we assume these sets to be well-ordered.

We now define the classes IV (integer variables), IE (integer expressions), and

BE (boolean expressions) as follows:

IV (with el. v,w, ...) v: := xla[t]

IE (with el. s' t' ...) t: := v In I t 1 + t 2 I ...

BE (with el. p,q, .•.) p::= ~lfalselt 1 = t 2 l"'lpf ...

141

Finally we introduce the class of statements S using auxiliary classes R1, R2, R3,

E and PB defined as follows:

S: := R1 lvar x;R 1
1 2- 2

R ::= R larray a;R
2 3 --3-

R ::= R IE;R

R3 : := v:=tlR;;R~lif
E::= ~BfE 1 ,E 2 1

3 3 p then R1 else R2 filP(t,v) lbegin Send

(where it is required that in each declaration

P1<zB 1 , ... ,Pn<=Bn Pi t Pj for I ,; i, j ,; n, i t j)

B::= <val x;~ ylS> (where x t y)

REMARKS.

(S c S)

(RI ' RI)

CR2 E R2)

(R3 c R3)

(E E E)

(B E PB)

(i) The construct P <= <val x;var ylS> corresponds to the PASCAL procedure

declaration procedure P(x:integer;~ y:integer); begin Send.

(ii) Separate treatment of the begin Send case, being trivial, is always omitted

in the sequel.

(iii) The above defined language is essentially a subset of PASCAL (apart from

the begin S end construct which ensures that the outcome of syntactic

application (see section 4) is a correct statement).

(iv) For technical reasons we allow the empty system of procedure declarations.

(v) All consideration of this paper can be trivially extended to the case of,

possibly empty, lists of variable declarations, array declarations, or

formal parameters (this fact is implicitly assumed in the definition of

syntactic application in section 4).

3. STATES AND ENVIRONMENTS

Let I= {µ,v, .•. } be the set of integers and A
set of addresses. Let

Va!< = SV u (AVxI)

{a,S, ... } an infinite well-ordered

K.R. APT

.1nd ld tHV be the set of nll A such that

(i) is l -

(ii) x St': ~(x) is defined} is finite

(iii) ·u AV: for some w d(a,J)) is defined) is finite

.. ,, anda •((a,µ)) is defined if E((a,v)) is defined for a 11

(v\ A rJ.ngl'.() is infinite.

d b"·,.~.tes and the elements of Env are called f(·,c', ...) are calle -

,, ...

tHV, SV such that y ' dom(E) and u E: A such that ' range(£),
For any y

for the extension of [yielding u when applied to y. Similarly ,:y' :~>

for the extension of c yielding a when applied to

<a, I).

For nny I and A 'iJ/al is the state such that 0/µ/a}(~)

and ·: .: / ': (c) = · (otherwise.

~e introduce the mappings

L: IV
p3rt

R: IE
po.rt

T: BE
part

def irwd dS

L(x) (:­

R(v) I· ·)

(Em• A)

(Em· I)

(fi:l' {T ,F))

fol lows:

<:(x), L(al_s')(c,o)

(Ll,·) (•, J)),

of an integer variable)

of an integer expression)

(va!~c of a boolean expression)

E(a,R(s) (c,o))

R(nl(• ,.~) .1 (where ;J is the integer denoted by n)

R(t 1+t2J(;-, = R(t 1)(,:,.::) + R(t 2)(E,a),. .. ,

F if R(t 2) (s,o) # R(t 2) (c,a)

T(1p)(,·,~) = •T(p)(,c,c),. ...

4. SYNTACTIC SUBSTITUTION AND SYNTACTIC APPLICATION

IJ if

we

we

In order to insure that during the semantical considerations scope problems are

treated in a correct way we make extensive use of substitution.

An occurrence of a simple variable x in8statement Sis bound whenever it is witll-
1 in a substatement of S of the form:!.!!:!._ x;R or <val x;var y[S> or <val z;~ x[S>

An ol.'.:currence of x in S is .t"Y'ee if it is not bound.

We define a substitution of an integer variable v for a simple variable x in a

statement S, written as S[v/x], as follows:

EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL SEMANTICS

(w::t)[v/x] _
3 3 (R 1 ;R2)[v/x] _

P(t,w)[v/x]
I

(~ y;R)[v/x]

wlv/x] ::t[v/x]
3 3

R1 [v /x]; R2[v /x]

P(t[v/x],w[v/xJ)

var y;R1 if x y

var y;R1[v/x] , if x y and y not free in v,

var y' ;R1[y'/y][v/x] , if x y and y free in v, where y'

is the first simple variable such that

y' t x and y' not free in R1 or v.

<val z; var y[S>[v/x] _ <val z;~ y[S> if x - z or x y

143

<val z;var y[S[v/z]> if x t z, x ~ y and z and y not free

in v

o similar to (*) otherwise.

The other cases are left to the reader.

Mutatis mutandis we define S[b/a], S[Q/P] and S[Q/Pl (where Q and P are sequences

of procedure variables). By convention each occurrence of Pi (I ~ i ~ n) in E or

E;R3 , where E = <Pi•Bi>~:l, is bound.

In order to insure that the parameter mechanisms are dealt with in a correct way

while defining a meaning of procedure calls we make use of the technique of "syn­

tactic application".

For each procedure body B we define its syntactic application B[t,v] to the actuals

t and v (corresponding appropriately to the formal value and formal variable para­

mater) as follows:

(<val x;~ y[S>)[t,z]

(<val x;~ yf S> [t,a[s]]

~ u;u::t;begin S[u/x][z/y]end,

~ u1 ,u2;u 1 ::t;u2:=s;begin S[u 1/x][aiu2 J/y]end,

where it is required that u is the first variable I x,y and not free in S, tor z

(.inalogously for u 1,u2). Observe that

(i) this definition implies that the actual value parameter t is indeed evaluat-

ed before execution of S;

(ii) the precaution with the fresh u is necessary since a definition like

~ x;x:=t; ... might give a clash between the local x and possible occur­

rences of x in the actual t (cf. ALGOL 60 report,4. 7.3.2 or Jensen &Wirth ('74));

(iii) the two possibilities for the actual variable parameter v are

- v ;:: z, a simple variable. Call-by-variable then coincides with

the ALGOL 60 call-by-name.

- v - a[s], a subscripted variable. Then s is evaluated (and stored in u2)

before execution of S.

5. DENOTATIONAL SEMANTICS

Let H = IE x IV~ (Env x E ---r E). For n,n' EH define part

144 K.R. APT

r: c n' iff \It, v (n (t, v) ,- q ' (t, v)) .

~naturally extends to a partial ordering on Hn (n ~ 0).

If ':: Hn ., H0 then f1Y' denotes the least element r1 of Hn such that cP(~)

exists if Pv H () (Hn d is monotone. Let 0 = ~ • For each e £ 0, n = n 1 ,. · .,nn an

p = (P 1 , •• .,Pn) where P 1 ,. •• ,Pn are some different procedure variables, let

el~/Pl (P)

'I.
f 1.

1
6(P)

if p p.
1

otherwise.

We now define M: E > S ·+(IC:_,. CEnv x Z---+ 0) as follows:
part

1'clCElv:=t) (0) (c,,r) =

If(I 3 ·R3 ' (') (- ··) I E i Rl' 2) b t_ ,,_,,

o(R(t) (c,n)/L(v) (r,o)}

= Al(E!R;)(e)(s,MCE[R~)(8)(c,n))
:J

M(E:R 1)(8)(c,o) if T(p)(c,o) T

M(E[if p thenR~ .'.'_lse_R; fi) (tl) (£,u)={
3

M(EJR2) (8) (c,o) if T(p) (c,cr) F

MCE'.~ x;R 1)(0)(c,a) = MCEIR 1[y/x])(8)(rn<y,a>,o),

(*) where y is the first variable c SV not in dom(E), and a the first address

not in range(E)

MCEJarray a;R2)(8)(£,o) = MCEIR2[b/al)(B)(Eu<<b,v>,a > .I'o)
-- V\JF.

l**) where b is the first array variable such that no <b,v> is in dom(c), and

where the e< are chosen in some (unspecified but) unique way from
v

il'.range(c)

M (E I P 1<=B 1 , ••• , P n <=B n; R 3) (e) (s , a)
- - - - 3 - -

M(E,Q 1<=B 1fQ/P], ... ,Qn<=Bn[Q/PJ JR fQ/PI) (G) (c,CJ)

where 6 = (Q 1, ••• ,Qn), P = (P 1 , ••• Pn) and Q1 , ••• ,Qn are the first

variables E PV such that for each j = I, ... ,n Qj does not occur in

or R3 E,P 1<=B 1 , ••• ,Pn<=Bn

MCEIP(t,v)) (8) (E,o) = 8{µ,PE,O /P l(P) (t,v) (c,o)

where E

<l>E,B(n)

n - and ~E,s .. Hn ·+ Hn i"s def1'ned as <P.<=B.>. 1 ,P=(P 1, ••• P) ,
Le1_1= Ee- n

(<P 1 (n),'" .,<Pn' (n)) where for i = I, •• .,n

~~' 8 Cnl = a'>.v'MC JBirc' ,v'JlCo!n/Pll

<PE' 8 is clearly monotone, so µ<l>E' 8 exists.

Observe that if P ~Pi for i = l, ... ,n then simply

M (E Ip (t 'v)) (8) (E' 0) 6(P) (t,v) (s,o).

EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL SEMANTICS 145

We now define a function M0 : S -+ (6 -+ (Env x ~ --> Z)) which describes a meaning
part

of a statement S in a different way.

M0(v:=t)(6)(E,o) = o{R(t)(E,o)/L(v)(E,o)}

3 3 3 3
M0 (R 1 ;R2)(e) (E,o) M0 (R2) (G) (c,M0 (R 1)(e) (s,cr))

fM0 <R~) (e) (E,o) if T(p) (E,o)

I. 3
M0 (R2)(8)(s,o) if T(p)(s,a)

I M0Cvar x;R)(e)(E,o) 1 M0 (R [y/xJ)(B)(t:u<y,a>,o)

where y and u are like in (*)

2 M0Carray a;R)(B)(E,o)

where <b,v> and av are like in (••)

3
Mo(E;R) (8) (t:,o) M0 CR3)(B{µ'l1E,O/~l)(c,a)

n - (P) d E,O Hn Hn . where E = <P.<=B.>._ and P = P1, ... , an '¥ : -+ is

T

F

defined

'!'~' e (n)

E e1 - 1 - 1 E e - E en-
as '¥' (n) = ('~ 1 • (r 1), ... ,'¥n' (n)) where for i = I, ... ,n

- - E 8

1
H 1 \v'M0 (Bi[t',v'])(O{n/P)). '¥' is clearly monotone.

M0(P(t,v))(8)(E,o) = e(P)(t,v)(E,a) .

Observe that the only difference between M and M0 is in the treatment of procedure

declarations and procedure calls. M determines the meaning o_f a call only at the

moment it is encountered in the program text, whereas Mn determines the meaning of

each call already at the moment the procedure declaration is encountered.

In the definitions of M and M0 it is always assumed that E is defined for all simple

and array variables, which are free in E or S.

6. EQUIVALENCE OF M AND M0

Our first task is to prove that M and M0 are equivalent in the sense of the follow­

ing theorem:

~ I. For> all E < E, S < S and e E CJ

(i) M0(s)(e) =MC !sJ (e)

(ii) MCE!S)(e) = M0 (E;begin s end)(e)

Before proving the theorem we prove a few lenunata. We first introduce the following

useful notion:

DEFINITION 1. We define d(S)

(i) d(var x;R1) = d(R 1)

(ii)

(iii)

(iv)

(v)

- 2 2
d(array a;R) = d(R)

d(E;R3) = d(E)+d(R3)+1

(depth of a statement S) as follows:

146

(vi)

(vii)

d(if p then Rf else R~ fi)

d(begin S end) = d(S)

(viii) d(P(t,v)) • 0

(ix) d(E 1 ,E2) = d(E 1)+d(E2)

(x) d(P<=B) d(B)+l

K. R. APT

(xi) d() = O (depth of the empty system of procedure declarations is 0)

(xii) d(<val x;var y[S>) = d(S)

d(S) corresponds to the level of nesting of procedure declarations within the

statement S.

By i'.(S) we denote the length of a statement S. Suppose that A1 , ••• ,An' (n :c 1) are

some well-ordered sets. Then -<e denotes the lexicographical well-ordering on

A x . . • < A i. e.
I n

3i(J<i-sn A Vj(lsj<i -• a.=a'.) A (a.<a'.)).
J J 1 1

Observe that the definition of the meaning ~l(E[SJ(8) was given by the -<£-induction

with respect to (d(E)+d(S),l(S)).

LEMMA I. (Bekic ('69)) Suppose that Y: Hn+k -> Hn and il: Hn+k + Hk (n,k < 0) ar•e

rr1ono tone .f'unctions., Let for au ;:; E Hn

~(~,µ[An 1, ... ,n ka(n,n 1 , ... ,n kJJl
n+ n+ n+ n+

LEMMA 2. Let E and E' <P .<=B.>? be given systems of p.rocediiI'e deela1~a"tions. 1.Phen
1 1 i=l

M(E,Q 1-=B 1lQ/PJ, ... ,Q -=B [Q/PJ[SCQ/P])(e)
n n

M(E,Q 1'<=B 1CQ'/PJ, ... ,Q'-=B [Q' /PJ[S[Q' /PJ) (8) n n ·

for• every 8 c r:1, S c S and sequences Q = (Q 1 , •.. ,Q) and Q' = (Q ', .•• ,Q') such
n I _ n

that j'oP j = I, ... ,n Qj and Qj do not occur frne in E, E' or Sand where P = (P 1 , ... ,Pn).

PROOF. We leave it to the reader. The proof proceeds by -<_e-induc t ion w. r. t.

(d(E,E')+d(S),t(S)) and is straightforward, though details are tedious.

n n+k
LEMMA 3. Let E = <Pi<=B/i=I and E' = <Pj<=B/j=n+l (n,k ~ 0) be given systems of

pPocedure declarations such that for j = n+l, ... ,n+k P. does not occur in E.
J

EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL SEMANTICS

'!'hen j'm• all S c S and " O

(i) M(E,E']S)(U) = l.i(E':s)(8{µ'PE,iJ/P}) ji (Pl, ... ,Pn)

(ii) i\f(EjS)(O) = ,ll(E,E']S)(:;) :mda us.;:-mptfor• thc:t for• j n+ 1, , n+k

does no-t oc:et~i' -in S.

What we need for our considerations is the property i). However the proof of i)

uses the property ii) and, what is worse, the proof of ii) uses i). We prove i)

147

p,
J

and ii) simultaneously by-<,e-induction with respect to (d(E,E')+d(S) ,i(S). The

apparent circularity in the proof is avoided thanks to the observation that i) can

be proved due to inductive assumption about i) and ii), whereas ii) follows from

i), which at this moment is already proved, and the inductive assumption about ii).

PROOF. Let 8 and S be arbitrarily fixed. Assume that i) and ii) are true for all

E1 ,E; ,s 1 and e 1 satisfying the assumptions and such that

(d(E! .El)+d(S 1) ,l(s 1 J)")>(d(E,E')+d(S) ,£(S)).

We prove at first i).

\Je have to consider various cases depending on the form of S. All cases follow

straightforwardly from the inductive assumption with the exception of t"o.

CASE I. S is E";R3 where E"

Q) • Then Ai(E,E']E";R3) (!J)
n

3 3 <Q.<=B'.>1:1 c E (m :· 0) and R ,, R. Let Q = (Q 1, ... ,
1 i i=I

(by definition

Al(E,E' ,Q;-=Bj[Q' /Q], •.. ,Q~<=B~[Q' /QJ f R3[Q' /Q]) (ti)
where Q' = (Q 11 , ... ,Q') and Q', ... ,Q' are first variables PV such that for

m I m 3
i = I, ... ,m Qi_ does not occur in E,E' ,E" or H.

(by inductive assumption)

M(E' ,Qj-=B; [Q' /QI,. . .,Q~<=B~[Q' /Q] I R\ Q' /QJ) (i){ µ<jJE, fj /P}),

since d(E,E',Qj-=Bj [Q' /QI, ... ,Q~<=B~[Q' /QI) + d(R3LQ' /QJ)

= d(E,E' ,E") + d(R3) = d(E,E') + d(E") + d(R3) < d(E,E') +d(S),

so for E 1 = E, E; = E',Q;-=Bj[Q'/Q], ... ,Q~<=B~[Q'/Q]
3 - -

and s 1 = R [Q'/Q] i) holds

(by 1 enuna 2)

M(E' ,Q\'-=B;[Q"/Q], ... ,~<=B~[Q"/QJ]R3!Q"/Ql) (8{µ1>E,ll /P})

where Q" = CQ\', .. .,~) and Q';, ... ,Q~ are the first variables c PV
such that for i I, ... ,m Q'.' does not occur in E', E" or R3

1

(by definition)

M(E']E";R3) (8{µ<l>E,e /P}).

CASE II. S is P(t,v) for some P E PV, t E IE and v E IV. Then by definition

M(E,E' f P(t,v))(8) = 8{µ4JE,E',B /(P 1 , ... ,Pn+k) }(P) (t,v) and

M(E']P(t,v)) (8{µ<1lE,B /P}) =

148 K.R. APT

= B(µ~E,e/(P , ... ,P)){
I n

, ,, IP) \
/(Pn+l'''"•Pn+k),(P)(t,v)

Thus it is enough to prove that

(1)

E r, -
E 0 E' 8 1 µ~ './PI

(~~ ' ,µ~ ' .) .

We have for all n c Hn and i = l, ... ,n
E 8 -

ct·i' (n) \ t' \ v 'H (I B. Lt ' , v']) (0 { n /P l)
l

(by inductive assumption)

\t')v'l.{(E' iB.[t' ,v']) (O{n/P})'
1

since d(E')+d(Bi[t',v' J) = d(E')+d(Bi) < d(E,E')+d(S) ,

so for E 1 empty, E; = E', s 1 = l\Lt' ,v'], 111 = i!(n/P)

ii) holds.

(by inductive assumption)

\.t'>v'~f(IBi[t',v'l)(e{n/PH ',G(n/P}/(P11+l' ... ,Pn+k)J),

since d(E')+d(Bi[t',v''I) < d(E,E')+d(S), so for E 1 = E',

= G!n/Pl il holds. E; empty, s 1 = B.[t' ,v' J, e1
l 'I

(by definition of_ ~~,E •8)
,E,E' ,8(- ~E',8{n/p}l
Yi n,w .

'P (n)

where n E. Hn+k

So we have just proved that for all n ~ Hn

(2)

Observe that for j = 1,. . ., k and for all n 1 , .. ., 'ln+k E H

= H'\v'M(1Bn+}t',v'J)(8{(n 1, ••• ,nn+k)/(P 1, ••• ,Pn+k)))

H'\v'M(IB +.[t',v'J)(8{(n 1, ... ,n)/(P 1 , ••• ,P)}{(r1 1, ••• ,ri k)
n J n n n+ n+

EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL SEMANTICS

In particular for every n e Hn

(3)
,,E' ,B{n/P}

µ" .

By (2) and (3) we get that for all n E Hn

<1>E' 8 Cn) = 'l'Cn,µC>-n 1, ••• ,n krJ(n,n 1 , ••• ,n k))l.
n+ n+ n+ n+

Since 'f and [J are clearly monotone, by lemma 2 we get

(4) µ ('ll, rJ) (µ<!>E,8,µ(:\n I, ... ,n ka(µ~E,e,n i·····n k))).
n+ n+ n+ n+

But by definition for all n1, ••• ,nn+k • H

('l'(nl, ... ,r,n+k),rJ(nl, ... ,nn+k))
E ,E', B ()

$ n 1 ' ••• 'rin+k '

so

(5) µ ('l'. 11)

Now by (4), (5) and (3) we get (I).

We now prove ii).

Again all cases are straightforward with the exception of the same two ones.

CASE I.Sis E";R3 where E" = <Q.<=B'.>m and R3 e R3 . Let Q = (Q 1 , ... ,Qm).

MCEIE";R3) (8) J J j=l

(by definition)

M(E,Q;-=B;[Q' /Q], •.. ·~<=B~[Q' /Q] !R3 [Q' /Q]) (8)

where Q' = (Qj, ... ,Q~) and Q;, ... ,Q~ are the first variables e PV

such that for i = !, ... ,m Q; does not occur in E,E' or R3.

(by lemma 2)

M CE, Q'!<=B; c Q" /QJ, ... , ci:i;-=B~[Q" /QJ I R3C Q" /Q J) (8)

h Q-., - (Q" Q") d Q" Q" h f. . bl PV were - 1, ... , m an 1 , ... , mare t e 1rst var1a es e

such that for i = l, ... ,m Q;' does not occur in E,E',E" or R3.

(by inductive assumption)

M(E,E' ,Q'1'-=B'[Q"/Q], ... ,Q"<=B'[Q"/Q] IR3[Q"/Q1) (8),
I m m

since by the choice of Q\', ... ,Q~ Pj (j = n+I, ... ,n+k) does not occur in

149

150 K.R. APT

- - 3 - -
E,Q"<=B'[Q"/Q],. .. ,~..,B'[Q"/Q] or R [Q"/Q]. Also

I I m - - 3- -
d(E E' Q"<=B'rQ"/Q] Q"<=B'[Q"/Q]) + d(R [Q"/Q]) ' ' l 1 , ... , m m

= d(E,E',E") + d(R3) < d(E,E') +d(S), so for

El = E,Q']<=Bj[Q"/Q], •.. ,~<=B~[Q"/Q], Ej = E' and s1

ii) holds.

(by definition)

M(E,E' IE";R3l (e).

CASE II. S is P(t,v) for some P E PV, t E IE and v E IV. Then by definition

MCEJP(t,v)) (9) = 9{µq;E• 9 A)? 1, ••• ,Pn)}(P)(t,v).

(i) is already proved for E,E' and P(t,v), so

M(E,E' JP(t,v)) (6)

= M(E' JP(t,v))(8{µ~E, 8 /(P 1 , ••• ,Pn)})

8{µol>E'~(P , ..• ,P)}
I n

{\lq;E',6{µ1E,8/(Pl, •.. ,Pn)}/(P l, •.. ,P k)}(P)(t,v).
n+ n+

By assumption Pt Pn+j for j = l, ••. ,k, so clearly

e{µq,E,S /(P 1, ••• ,Pn) }(P) (t,v)

B{µIE,8/(Pl, .•. ,Pn)}

{µIE',S{µq;E,6/(Pl, ... ,Pn)}/(P l, •.. ,P k)}(P)(t,v),
n+ n+

which concludes the proof.

This finishes the proof of lemma 3.

n
COROLLARY. Suppose that E = <Pi<=Bi>i=I E E. Then for aZZ 9 E 0, t E IE, v E IV
and i = l, ... ,n

MCEJP.(t,v))(8) = MCEIB.[t,v])(e).
l l

PROOF. By definition

EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL SEMANTICS 151

(by lemma 3(i))

M (E I B. [t, v J) (8) .
l.

Now we are in a position to prove theorem I.

PROOF OF THEOREM 1 .

(i) We prove it by-<e_-induction w.r.t. (d(E)+d(S),l(S)). All cases are straight­

forward with the exception of the case when S is E;R3 for some

E = <Pi'•=Bi>~=l E E and R3 E R3 . Then

by ind. assumption

by lemma 3(i)

= M (R3)(8{µ"1E,B/ P})
0

MO(R3) (e{µ<l>E,e /P})

MC JR3) (e{wPE,e /P})

MCEJR3)(8)

where P (PI ' ••• 'p n)

by lemma 2
- - - - 3 - -

M(Q 1<=B 1[Q/PJ, ... ,Qn<=Bn[Q/PJJR [Q/P])(8)

where Q = (Q 1 , ••• ,Q) and Q1 , ••• ,Q are the first
n n 3

variables E PV which do not occur in E or R

by definition= M(IE;R3)(8).

(ii) Assume that E = <P.<=B.>~ E E and let P
l l. i=l

M<EIS)(e) (by lemma 3 (i))

MC Js)(B{µ<l\E,e /P})

by (i) M(Js)(8{µ "IE,e /P})

Mo (s) (e { µ "IE, 8 /P})

by definition M0(E;begin S end)(8).

7. OPERATIONAL SEMANTICS

Now we introduce an operational semantics of our language. Let 'f.t•l denote the set

of all finite or infinite sequences of states and let n denote concatenation of

two sequences. We define a function

Comp: S x 'f. x Env x E---+ 'f.w as follows (Out(S,o,s,E) denotes the last element
part

of Comp(S,cr,s,E) if that sequence is finite, and is undefined otherwise):

Comp(v:=t,cr,s,E) = <cr{R(t)(s,cr)/L(v)(s,o)}>

3 3
Comp(R 1 ;R2 ,o,s,E) 3 n 3 3 Comp(R 1 ,cr,s,E) Comp(R2 ,0ut(R1 ,cr,s,E),s,E)

nc C 3) i· f
{

<cr> omp R1,o,s,E

nc (R3) i·f <o> omp 2,o,s,E
Comp(if p then R~ else R; fi,o,s,E)

T(p) (£ ,cr)

T(p) (£ ,o)

T

F

152

Comp(P(t,v),a,E,E)

I
Comp(~ x;R ,o,e,E)

K.R. APT

<a>°Comp(B[t,v],o,E,E)

where p <= B is an element in the sequence E

<o>°Comp(R 1 [y/x],o,Eu<y,~>,E)
where y and a are like in (*) from section 5

Comp(array a;R2,o,£,E) <o>nComp(R2[b/a],o,EU<<b,v>,av>v£1'E)

where <b,v> and av are like in (**) from section 5

3
Comp(P <=B , ..• ,P •B ;R ,a,E,E)

I I n n n 3-- -- --= <o> Comp(R [Q/PJ,a,E,E,Q 1<=B 1[Q/P], .•• ,Qn<=Bn[Q/P])

where Q = (Q , ••• ,Q) , P = (P 1, ••. ,P) and
I n n

q1, ••• ,Qn are the

each j = I, ... ,n

or R3•

first variables E PV such that for

Intuitively Comp(S, o, E, E) represents the sequence of successive states of the com­

putation determined by S from the initial state a in the environment E and with

procedure declarations E.

It is always assumed that E is defined for all simple and array variables which

occur freely in E or S and that there are no procedure variables which occur freel.y

in E;begin Send. The last assumption is clearly necessary for procedure calls.

8. EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL SEMANTICS

Now we prove that operational and denotational semantics which we defined are

equivalent. Observe that in the definition of M(EiSJ(S)(E,o) it is not required

that there are no procedure variables occurring freely in E;begin S end. Thus

M(EiS)(S)(E,o) can be defined whereas Comp(S,o,t,E) not, so an additional assumptio·

is necessary. What we prove is the following theorem:

THEOREM 2. Suppose that E E E, S E S and that there are no procedure variables

which occUI' freely in E;begin S end. Then for aZZ E e: Env, o e: E and e E e

M(E IS) (S)(E,O) Out(S,o,E,E).

More precisely: either M(EiS)(S)(s,o) and Out(S,o,s,E) are both defined and are

equal or are both undefined.

PROOF. Suppose that for some E E Env and o E E Out(S,a,E,E) is defined. We prov-e

that then Out(S,o,E,E) = MCEISJ(S)(E,o).

Suppose by induction that it is true for all e',S' ,o' ,E' and E' satisfying the

assumptions and such that the length of Comp(S',o',s',E') is shorter than the

length of Comp(S,a,E,E). We have to consider various cases depending on the forni

of S. In all of them the claim follows straightforwardly from th!! inductive assUillp­

tion. Only the case of procedure calls is not obvious.

EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL SEMANTICS 153

Suppose that S is P(t,v). Then

Out(P(t,v) ,o,e:,E) Out(B[t,v],a,E,E)

where P<=B is taken from E. By inductive assumption

MCE[B[t,vJ) (8) (e:,o)

is defined and equal to

Out(B[t,v],o,e:,E).

By corrollary 1

M(E[B[t,v]) (8) (e:,a) MCE[P(t,v))(8)(e:,a),

so the claim follows.

The proof that the converse implication holds, to which the rest of the paper is

devoted, is much more difficult. We shall need the following two lemmata.

LEMMA 4. Suppose that for some E E E, e: E E~v, a c and SE S Comp(S,a,e:,E) is

a finite sequence. Then for every E' such that E,E' ,c E and all procedur•e va;'iables

occurring freely in E' are declared in E the sequences Comp(S,o,s,E) and Comp(S,o,

e:, E, E ') are identical.

PROOF. We leave it to the reader. The proof proceeds by induction with respect to

the length of Comp(S,o,e:,E).

LEMMA 5. For every E E E, s E S, e E 0, P 0, 1, ...)

where n ? 0 and c -

M(E[S)(8{ u nk/P}) = u M(E[S)(8{nk/P})
k=O k=O

PROOF. We leave it to the reader. The proof proceeds by-<l-induction w.r.t

(d(E) + d(S), l(S)) and is straightforward. Observe that by lemma 2 we can assume

that all procedure variables declared in E are different from Pi - s (i = 1, ... ,n).

n
Suppose now that 8 E O and E = <Pi<=Bi>i=I E E (n ~ 0). Up till now we have only

used the fact that the function ~E· 8 is monotone. What we need now is that wE' 8 is

continuous, i.e., that

for all 0,1, •..) such that

154 K.R. APT

and this is an immediate consequence of lemma 5.

Now define n~' 8 E Hn (k ~ 0) as follows:

f'-'='-'" if k = 0
E,8 n-t1mes

rik = E,e(E,8) if k > 0, ~ 11k-1

where 0 is the empty function. Then, by continuity,

. . n.
Now assume that l ~ O. Let for i 1, .•. ,l+I E.

l
<P:<=B:>.i be a system of

J J J= I
procedure declarations and let S E S.

DEFINITION 2. The sequence E1• ... ·El+! ·S (where dots signify separators and are

used instead of commas in order to avoid ambiguities) is called nested if

(i) whenever a procedure variable P occurs freely in Ej then j > I and P is

declared in E1, ... ,Ej-I

(ii) all procedure variables which occur freely in Sare declared in E1 , ... ,El+!

(iii) for l > 0 d(El+l) + d(S) < d(El) < •.• < d(E 1).

Intuitively a sequence E1 • ... ·El·El+l ·S is nested for j 1, ... ,l Ej+l occurs in

a procedure body of a procedure declared in Ej and S is a statement in the scope

of El+! (in a procedure body s}0 (I s j 0 s nl)).

If we represent the nesting of procedure declarations within E1 in the form of a

tree (see fig. I) a nested sequence E1 • ... •El·El+I ·S (forgetting for a moment about

S) will correspond to the marked subtree.

DEFINITION 3. Let E1• .•. ·El·El+l·S be a nested sequence, e E 0 and let k1 , .. . ,k1
be some non-negative integers. For i = 1 , ..• ,l-1 let

i i -+
where Pi (P 1, ..• ,Pnil and ki stands for k1, ••. ,ki. (Strictly speaking eki

depends on E1, ... ,Ei. We drop indices indicating this dependence since no confusion

should arise.) If l = 0 then simply 8kt is 8.

EQUIVALENCE OF OPERATIONAI AND DENOTATIONAL SEMANTICS

Figure 1.

A word of explanation should help. Bk , i.e.,
I

155

l I
assigns to procedure variables P 1, ... ,P the k 1-th approximation of their meaning

nl
computed with respect to e. e~ ' i.e.,

k2

. . . 2 2 .
agrees with ek on all procedure variables different from P 1 , ... ,Pn and assigns

P2 2 I . . f . . b 2 d . h to 1 , ... ,Pn2 the k2-th approximation o their meaning ut n~w compute wit

respect to ek . And so on. Sullllllarizing, values assigned to P: - s where I s i < i 0
I J i

s l, l s j s n. enter the definition of the values assigned to P.o - s (where
]. J

$ j $ IliQ) •

LEMMA 6. Assume that for some

integers k 1, ... ,kl' e Ee, £ €

Then

nested sequence E1· ... ·El·El+l·S, non-negative

Env and a€ r M(El+l /sJce;)(£,a) is defined.
l

156 K.R. APT

M(E 0 Js)(e+)(e:,o) = Out(S,o,s,E 1, ... ,E 0 1).
-e+l k_f c+

PROOF. With every nested sequence E1 · ... ·E.e·E,f+l·S and non-negative integers

k 1, ... ,kl we associate an ·1:nf0Pmation sequence

(*) (k 1 , .•• ,kl,~'d(El+l) + d(S), i(S))

c-times

where if l = 0 then c = d(El+l) + d(S), otherwise c = d(E 1) - i.

The following explanation should clarify the above notion. Suppose that

M(El+llS)(ek)(E,o) is defined. Then for any i = 1,. .. ,l and j = l,. . .,ni during

the executio~ of S starting from the state a in the environment £ and with procedurE

declarations E1 , ... ,El+l the stack of currently active procedures will never

contain more than ki copies of calls of Pl. We can view ki - s as bounds associated

with appropriate levels of the marked tree corresponding to the nested sequence

E1• ... ·E.e·El+l·S (see fig. 2). We cannot say anything about the execution of other

procedures which could be called during the execution of S. ro - s stand for the

bounds associated with each other level of the nesting tree of E1. On the whole

there can be at most d(E 1) (or d(El+l) + d(S) if t = 0) levels of nesting, which

explains the choice of c.

{ ~ c-times =

Figure 2.

EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL SEMANTICS

If (al'··· ,an,an+l 'an+2)

sequences, then by definition

and

and

iff n ,; k

157

So, for example (3,3,4,oo,8,S)-< (3,3,oo,oo,1,0).-< is clearly a well-ordering on the

information sequences.

We prove the lemma by--<-induction with respect to associated information sequences.

Let a be the information sequence associated with E1• •.• ·El•El+l·S and k 1 , .•• ,kl

and assume that the claim is true for all nested sequences E]·· .. •El 1 ·EL'+I ·S',

non-negative integers kl, ... ,kL'' e' E 0, E 1 E Env and cr' E Z such that b -<a where

b is the associated information sequence.

We have to consider various cases depending on the form of S.

CASE I. S is v:=t. Obvious.

3 3 CASE II. S is R1 ;R2 . By definition

Observe that

d(El+I) + d(R~) ,; d(El+l) + d(S)

d(El+l) + d(R;) s d(El+I) + d(S),

3 3
so E1 • ... ·El·El+l·R1 and E1 • ••• •El•El+l·R2 are nested sequences and clearly for

i = I ,2

where if l 0 then c.
i

l(R~) < l(S)
i

for i

Thus by inductive assumption

d (E 1) - l, because

1,2.

158 K.R. APT

3 I 3 M(E,('+I [R2)(ek,e)(s,M(El+I R1)(8k,e)(s,cr))

3 3
= M(El+l [R2)(ek,e)(s,Out(R1 ,cr,s,E 1 , ••• ,E-l'+l))

3 3
Out (R2 ,Out (R 1, a, s, El, ... ,El+ l), s, E1 , ••• , E ,('+I)

CASE III. S is if p then R7 else R; fi. Similar to case II.

. 1
CASE IV. S is ~ x;R • Then

where y and a are as in(*) from section 5. Observe that d(R 1[y/x]) = d(S), so

E1 • ••• ·E,e·El+l ·R 1[y/x] is a nested sequence and since -l'(R1[y/x]) < -l'(S)

(k 1, ..• ,k,e,~d(E,('+J) + d(R1[y/x]), l(R1[y/x])) <a.
c 1-times

where if l = 0 then c 1 = d(El+l) + d(R 1[y/x]), otherwise c 1

inductive assumption

M(E-l'+l [R1[y/x])(ek,e)(su<y,a>,a)

1
Out(R [y/x],a,su<y,a>,E 1 , •• • ,El+l)

CASE V. S is array a;R2 Similar to case IV.

CASE VI. S is E·,R3 where E m Then = <Qj<=Bj>j=l

M(El+l [E;R3)(8kl)(s,a)

d(E 1)-l. So by

M(El+l 'Qj<=B 1[Q' /Q], ... ,~<=Bm[Q' /Q] [R3[Q' /Q]) (8kl) (s,a)

where Q = (Q 1, ... ,~), Q' = (Q; , ... ,Q~) and

Q;, ... ,~ are the first variables in PV which

do not occur in E,('+J' E or R3

EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL SEMANTICS 159

= (by lemma 2)

M(El+l 'Q'{<=B 1 [Q"/QJ, ... ,Q~<-Bm[Q"/QJ fR3[Q"/QJ) (ekl) (E,a)

where Q" = (Q'{•····~) and Q';, ... ,Q~ are the first

variab;es in PV which do not occur in E 1 , ••• ,El+l,

E or R •

Observe that

(i) all procedure variables which occur freely in

Q'1'<=B 1[Q"/Q], •.. ,~<=Bm[Q"/Q] occur freely in E;

(ii) if a procedure variable occurs freely in R3 [Q"/QJ then it is either

Q'.' for some i :; m or it occurs freely in E; R3 ;
1

(iii) if d = d(El+l 'Q']<=B 1 [Q"/Q]; ... ;~<=Bm[Q"/Q]) + d(R3[Q"/Q]) then

d:; d(El+l) + d(E) + d(R3) < d(El+l) + d(E;R3).

Th . E 3 . us, since 1 • ••• ·El·El+I ·E;R 1s a nested sequence,

E1• ••• ·El•El+l'Q'1'<=B 1[Q"/Q], ... ,~<=Bm[Q"/Q]·R3cQ"/Q] is a nested sequence, as well.

Clearly, by (iii)

where if l = 0 then c 1 = d, otherwise c 1 = d(E 1) - l, so by inductive assumption

M (El+ 1 ,Q']<=B 1 [Q" /Q], ... ,Q~<=Bm[Q" /QJ f R3 [Q" /Q]) (ekl) (E ,o)

Out (R3 [Q" /Q] ,o, E ,El, ... ,El+l ,Q;'<=B l [Q" /QJ, .• • ,~<=Bm[Q"/Q])

(by definition)

CASE VII. Sis P(t,v) for some PE PV, t E 1E and v E IV. Since El':• .•E.e·El+(P(t,v)

is a nested sequence P is declared in E1, ••• ,El+!·

Subcase I. P is declared in E 1 '. ••• ,El. Thus l > 0 and for some i and

0:; i:; l-1, I :; j :; ni P = Pj+l. Then by definition

such that

I i+I
M(E.t+l Pj (t,v)) (ekl) (E,o) =

i+I
e~k (P. (t,v)(E,O)

l J

i+l
ek k (P.)(t,v)(s,o)

i' i+I J

160 K.R. APT

(E • , 8-+ (E • , EH· \\
.,, i+l ki n i+l ki (t v)(s o)

I'" \ k. -1)). ' ' \ i+l J

(Ei+l ' 6k· \
because ki+l > 0, since \nk. 1). (t,v)(s,o) is

i+l J
defined

I i+l
M(B. [t,v])(ek k _ 1)(s,o).

J i. i+l

Observe that d(Bt 1[t,v]) < d(Ei+l), so clearly E1• ••• •Ei+l· ·B~+l[t,v] is a

nested sequence. By definition

i+l i+I
(k 1 , .•• ,k. ,k. 1-1,«>, ••. ,oo,d(B. [t,v]) ,l(B. [t,v]))-< a,

l i+ ~ J J
c 1-times

where (since l > 0) c 1 = d(E 1) - (i+l). Thus by inductive assumption

I i+l
M(B. [t,v]) (ek k _ 1) (s,o)

J ; • i+l

i+l Out(B. [t,v],o,s,E 1, ••• ,E. 1)
J i+

i+l
Out (P . (t, v) , o, E , E I , ... , E . I) J i+

(by lemma 4 (which assumptions are satisfied since

E1 ···:·E1l+l·S is a nested sequence))
l.+

Out(Pj (t,v),o,s,E 1, ... ,E.t'.+l).

.t'.+1
Subcase 2. P is declared in EL+l. Thus for some i such that 1 $ i $ nl+l P =Pi ·

This means that d(El+l) > 0, so if l > O then, since E1• ... ·E.e.•El+l·S is a nested

sequence, there are l natural numbers smaller than d(E 1), which implies that

d(E 1) ~ l+l. This means that in (*) c > O. By definition

EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL SEMANTICS 161

for some k 2: 0

(oo E.t+1' 8k.e_\
(because \k~O nk). (t,v)(E,o) is defined)

1

(E 0 , 8-+ (E 0 , 8-+ \\
~,c+l k.e_ <.-+l k.e_ (t)()

\ ~ \ nk)) . , V E , 0

1

E0 ,8-+ (Eo ,8-+ \
~ <-+ 1 k.e_ -<.. + 1 k .e_ () ()
~ i \ nk) t, V E , 0

I .t+ 1 ; M(B. [t,v])(8-+k k)(E,o).
1 .t'

Observe that d(B:+ 1[t,v]) < d(E.t+l), so clearly E1 · ... ·El+l· •B:+l[t,v] is a

nested sequence. Set c 1 ; d(Bf+ 1[t,v]) if l; 0, otherwise set c 1 ; d(E 1) - (l+l).

By definition

l+l f_+l
(kl , ... , k 0 , k,"", ... , "", d (B . [t , v]) , .t (B. [t, v])) -< a

"- "----.,---' 1 1

c 1-times

because k < ""·

By inductive assumption

I f_+ I
M(B. [t,v])(8-+k k)(E,O)

1 .t'

162 K.R . .APT

This finishes the proof of lemma 6.

Now the proof of theorem 2 is immediate. Namely, suppose that for some e: E Env

and o € ~ M(EjS)(S)(c,a) is defined. Then by assumptions of theorem 2 E•S is a

nested sequence. Taking l = 0 and applying lemma 6 we get that

M(EjS)(S)(e:,a) Out(S,cr,e:,E)

what was to be proved.

Observe the results of this paper hold also for the appropriate fragment of ALGOL

60. If we require that the variables have a dynamic scope instead of a static one

then after the appropriate changes in all three semantics (for example putting

where

1 1
M(~ x;R)(S)(e:,o) = M(R)(S)(e:' ,o),

J Cl
C I (y) = 1.

e:(y)

if y - x

if y ~ x

and a is the first address not in range(e:)) the same results hold.

Infact, in both cases the same proofs work.

REFERENCES

Apt, K.R. & J. W. de Bakker. Semantics and proof theory of PASCAL procedures. Proc. 4th

:Coll. Automata, Languages and Programming. to appear in Lecture Notes in Comp. Science.

Bekic, H. (1969). Definable operators in general algebra and the theory of automata

and flowcharts. Report IBM Laboratory, Vienna.

Cook, S.A. (1975). Axiomatic and interpretive semantics for an ALGOL fragment.

Technical Report no. 79, University of Toronto.

Hoare, C.A.R. & P.E. Lauer (1974). Consistent and complementary formal theories of

the semantics of programming languages. Acta Informatica 3, pp. 135-153.

Jensen, K. & N. Wirth (1974).PASCAL: user manual and report. Lecture Notes in

Computer Science 18, Springer.

Lauer, P.E. (1971). Consistent formal theories of the semantics of programming

languages. Report TR 25121, IBM Laboratory, Vienna.

Milne, R. & C. Strachey (1976). A theory of programming language semantics. Chap­

man and Hall, London and Wiley, New York.

Milner, R. (1976). Program semantics and mechanized proof. in: Foundations of

Computer Science II, Part 2 (K.R. Apt, J.W. de Bakker, eds.), pp. 3-44, Math­

ematical Centre Tracts 82.
l _ _;

Stoy, J.E. (1976). The congruence of two programming language definitions. Oxford

University Computing Laboratory.

DISCUSSION 163

DISCUSSION

Robert Tennent: Your first two semantics are not "denotational" in the sense of
Scott/Strachey/Milne because the meaning of the procedure call construct is not
defined only in terms of the meanings of its components; they are thus partly
operational in nature.

~: I must admit that in the papers of Scott and Strachey I don't remember
having encountered a precise formulation of what exactly the word "denotational"
means. I agree with you that both "denotational" semantics I presented use
syntactic substitution to obtain the meaning of procedure calls, so in your sense
these are not purely denotational.

Tennent: Would you explain how your syntactic application models static scope;
there seems to be no allowance for properly binding non-local identifiers of the
procedure body.

~: Static scope is achieved by renaming local identifiers in order to avoid
clashes with non-locals.

Tennent: It seems to me that it would be much simpler and clearer to use only
environments, rather than environments and substitution.

~: Let me remark that the concept of syntactic application is a formalization
of the clauses from the Algal 60 Report concerning the treatment of procedure
calls and parameters. For me, syntactic substitution seems to be a natural
technique to deal with static scope.

Hans Langmaack: Which of the three definitions would you recommend for the
pratical programmer?

~: The definition which seems to be more natural is probably the operational
semantics which talks about computation sequences.

Langmaack: The question now is whether the theory can be extended to allow
procedures as parameters.

~: Within a case of operational semantics, there will be no
the denotational case the problem of self-application arises.
would not make any claim about the equivalence between the two

problems, but in
In that case I
semantics ..

