
1 • INTRODUCTION

SEMANTICS AND PROOF THEORY OF PASCAL PROCEDURES

K.R. Apt

J.W. de Bakker

Mathematisch Centrum, Amsterdam

Our paper is devoted to an investigation of (recursive) procedures with the para­

meter mechanisms of call-by-value and call~by-variable (the FORTRAN call-by-reference)

as occurring in the language PASCAL. We use the method of denotational semantics

(SCOTT & STRACHEY [15], MILNE & STRACHEY [13]) and propose proof rules in the style

of HOARE [7].

Our analysis is presented within the framework of a simple sublanguage of PASCAL,

containing simple and subscripted variables, a few simple kinds of expressions, as­

signment, sequential composition, conditionals, declarations of simple variables, of

arrays and of procedures, and procedure calls. It turns out that an adequate treatment

of procedures in this setting - i.e., a treatment which describes their meaning both

exactly as in the PASCAL report and with sufficient mathematical rigour - is already
I

quite complicated, reason why we have organised the presentation in a number of stages.

In section 2, we present syntax and semantics of a very simple language with expres­

sions (these remain the same throughout the paper) and as statements only assignment

statements, together with sequential composition and conditionals. In section 3 we

add parameterless recursive procedures - which are by now reasonably well understood

- and introduce our notation for their least fixed point semantics. Section 4 brings

the full story on procedures with parameters called-by-value and called-by-variable,

together with a treatment of declarations and the ensuing scope problems. In section

5 we finally give the corresponding proof theory.

We now list some of the more difficult issues encountered in our investigation,

and indicate the tools used to overcome them.

Sema:ntics

scope problems (e.g. as described in the ALGOL 60 report, sections 4.7.3.2 and

4.7.3.3): these have been tackled essentially by a systematic and careful use of

substitution (in the sense as used e.g. in predicate logic).

- declarations: these are dealt with through more or less standard use of environments

(dynamically varying partial functions from variables to addresses) and of a some­

what similar construct assigning meaning to procedure variables.

- procedures with parameters: these are dealt with by suitable combination of the

least fixed point technique and the technique of "syntactic application" by which

31

a procedure body together with the actuals of the call are mapped to a new piece of

program text.

Proof theory

- assignment to subscripted variables (arising through subscripted variables used as

actual parameter called-by-variable): an extension of Hoare's assignment axiom,

using a new definition of substitution for a subscripted variable (details are

given in DE BAKKER [3]), is proposed.

procedures with parameters: an extension of Scott's induction rule using the above

mentioned "syntactic application" is proposed.

Apart from PASCAL concepts which we consider more or less "orthogonal" to the

concept of procedure (goto's, data types etc. - e.g., we do not treat index types for

arrays), there are two major omissions in the paper, viz. function designators in

expressions, and procedures and functions as parameters. The first omission is mainly

motivated by expected complications in the proof theory, the second by anticipated

problems in the semantics.

The issues studied in our paper have been discussed already by several authors.

Without aiming at completeness, we mention the following: In the work as exemplified

by MANNA & VUILLEMIN [12] call-by-value and call-by-name-like parameter mechanisms

are investigated, but only in so far as the order of evaluation of the actuals is

concerned. Problems raised by scope considerations, or by subscripted variables as

actuals, are not dealt with. Another contribution to the subject is the recently

published book by DONAHUE [5]. In his approach (as e.g. in the older one of LAUER

[II]) occurrences of global variables in procedure bodies are not allowed. An attempt

at removing this restriction in HOARE & WIRTH [9] leads to problems concerning an in­

adequacy of the proposed proof rules. In the papers by COOK [4] and GORELICK [6],

global variables are treated incorrectly (see a discussion of these issues in [5],

p.41 and 139). HOARE [8], COOK [4], DONAHUE [5], and IGARASHI et al. [10] impose re­

strictions on the actual parameters in procedure calls- in particular, their syntax

does not allow Jensen's device. In DONAHUE [5] and IGARASHI et al. [10], subscripted

variables cannot be passed as actuals called-by-variable. In HOARE [8], COOK [4] and

GORELICK [6], only call-by-name is allowed.

Finally, let us mention what we see as the main contributions of our paper.

a, A treatment of procedures which allows urr.r>estriated use of both globals and of

parameters called-by-value and called-by-variable.

b. The use of a "proof-theory-oriented" denotational semantics, which considerably

facilitates justification of the proof rules. (Syntactic application and substitu­

tion play an important role here.)

c. An extension of computational (or Scott's) induction which we believe to be new.

(Some partial steps towards these goals have already been made in our [I]. However,

32

syntactic application was used there only in rudimentary form, and neither ZoaaZ nor

systems of procedure declarations were allowed.)

AaknawZedgements

R. Milne and P. Mosses made some helpful comments on a previous version of this paper.

2. EXPRESSIONS. SYNTAX AND SEMANTICS OF S0 (assignment, composition, conditionals)

We use a slight variant of BNF which should be self-explanatory.

Expressions

As starting point we take the classes SV of sirrrpZe variabZes with x,y,z,u, ..• as

typical elements, AV of array variabZes with a,b, .•• as typical elements, and C of

integer aonsta:nts with m,n, ••• as typical elements. For later use we assume these

sets to be well-ordered. We then define

IV (integer variabZes) with typical elements v,w, •.•

v::= xJa[s] (i.e., a variable vis simple or subscripted)

IE (integer expressions) with typical elements s,t, .•.

t::= nJvJt 1+t2 J •.• I if p then t 1 else t 2 fi

(other operations may be added)

BE (booZean expressions) with typical elements p,q, ••.

p::= ~lfalseJt 1 =t2 1 ••• Jp 1 ~p2 l .•• I if p then p1 else p2 fi

(other operations may be added).

Statements

The class of (as yet very simple) statements S0 is defined as:

s0 (statements) with typical elements s,s 1, •••

s::= v:=tJS 1;s2 1 if p then s1 else s2 fi

Throughout the paper we do not bother ahout syntactic ambiguities which may be

remedied by suitable addition of parentheses.":" is used to denote syntactic identity.

Meaning is attributed to expressions and statements in the following manner: Let 1

be the set of integers with v as a typical element, and let {T,F} be the set of truth

values. In the subsequent development (section 4) variables are mapped to integers

via an intermediate step of addresses. In the present simplified situation we do not

yet introduce these, but map variables directly to integers. There is a slight compli­

cation for subscripted variables, dealt with as follows: Let Var = SV u (AVxI) be the

set of elements x, ••• E SV united with the set of elements (a,µ), •.. E AV x 1. We

then define a store cr as a mapping from Var to 1. Let ~ be the set of all stores. The

meaning of an expression or statement is defined with respect to a store in the fol­

lowing way: We introduce the mappings

33

Lo: IV _,. o: -+ Var) cieft-hand-value of an integer variable),

Ro: TE _,. (!.: -+ 1) (right-hand-value of an integer expression),
T0 : BE _,. (I: -+ {T,F}) (value of a boolean expression), and

MO: .So ->- o: _,. L) (value or meaning of a statement).

First we need the notion of v~~~·ant f
~·~ o a store. Let s,z;' be typical elements of Var.

Then cr{v/s}(z;') is defined by:

cr{v/?;}(1;')

o{v/1;}(1;')

We now define:

\).

Cl (z;').

if 1,; I '

if f. 1,; I •

L0 Cx) (o) x, L0 (a[s])(cr) = (a,R0 (s)(cr)),

R0 Cn) (o) = v (where v is the integer denoted by the integer constant n),

R0 (v) (o) cr(L0 (v)(cr)), R0 (t 1+t 2)(cr) =plus (R0 (t1)(cr), R0 (t2)(o)), ... ,

fR0 Ct 1)(cr) if T0 (p)(cr) T,

LR0 Ct2)(cr) if T0 (p)(o) F.

Example: R0 (a[a[l+I]J)(cr) = cr(a,o((a,2))).

T0 (~)(cr) = T, T0 (false)(cr) = F, T0(t 1 = t 2)(o) = equal(R0(t 1)(a), R0 (ti)(cr)), ... ,

T0 Cp 1:::.p2)(cr) = (T0 Cp 1)(cr) => T0 Cp)(o)), (with"=>" the usual implication

between truth values), ..• ,

M0 (v:=t)(cr) = o{R0 (t)(cr)/L0 (v)(cr)},

M0 cs 1 ;s2)(a) = M0 cs 2)(M0 cs 1)(cr)),

fMo(Sl)(cr)

LMO(S2)(cr)

if T0(p)(cr)

if T0(p)(cr)

T,

F.

(These definitions are all straightforward and presented like this to get the reader

somewhat accustomed to the notation before confronting him with the main issues of

this paper.)

3. SYNTAX AND SEMANTICS OF S 1 (S0 with parameterless procedures added)

Synt=.

IV, TE and BE are as before. Let PV be a class of procedure variables with P,Q, •.•

as typical elements. s1 with s,s 1, ..• as typical elements is defined as

34

Let E with E,E 1 ••• as typical elements be the set of procedure deata:l'ations given by

(note that this allows an empty E)

where it is required that in each declaration P 1 <== s 1 , ••• ,P <== S, P. ~ P. for
n n J. J

i ~ j, I s i,j s n. (P <== S abbreviates the parameterless procedure declaration

procedure P;S as e.g. in ALGOL 60. Note that we do not yet allow procedure declara­

tions within the procedure bodies: this restriction is lifted in section 4.)

Sema:ntias.

E and! are as before, and so are L1(= L0), R1 (= R0) and T1 (= T0). Let us con­

sider a statement SE s1• Its meaning with respect to a system of declarations E will

now be defined as a partiat function t from states to states (i.e., as an element in

the set E_____,.t E with typical elements ~.n, .••). E.g., if S: P, we want its meaning par
with respect to P <== P to be the nowhere defined function. We allow the possibility

that one or more procedure variables occurring in S are undeclared in E, and we use

an element e in the class of mappings e1: PV + (E______.. E) to assign (some arbitrary)
part

meaning to such undeclared procedure variables. Before presenting the definitions, we

introduce the following notation (compare the o{ ••• }formalism): For each e E e1,

P E PV and n E E---+ E, we define S{n/P} by: part

e{ n/P}(P) n. S{n/P}(Q) = S(Q) for all Q ~ P.

Moreover, we order E___..t Eby putting: n ~ n' iff, for all o, either n(o) is unde­par
fined, or n(cr) = n'(cr).

We now define M1 : ExS 1 + (e 1 + (E part E)) (writing M1 (EjS)(0)(cr) in order to

avoid certain ambiguities below).

First we give the easy cases:

M1(Ejv:=t)(S)(o) = cr{R 1(t)(cr)/L 1(v)(cr)}

M1(Ejs 1;s2)(e)(cr) = M1(Ejs2)(S)(M1(Ejs 1)(e)(cr))

{
M1 (Ej S) (S)(o)

M1(Ejif p then s 1 ~ s2 fi)(S)(cr) = l
M1 (Ejs2)(e)(d)

if T(p) (cr)

if T(p) (cr)

T

F.

M1(EjP) is defined through the following process (which is, in fact, nothing but the

well-known least-fixed-point iremantics, justified on the basis of the operational

meaning of procedures e.g. in [2]):

Let E: P1 <== s 1, •.• ,Pn <==Sn.

35

where, for j = I, ••. ,n, s. is obtained in the following way: Let, for i
J n

the operator I.: (E ____.. E) + (E ___,. E) be given by
I, ... , n,

1 part part

{n /P }).
n n

Let the ordering "s:" on i: ----+t E be extended in
par the natural way to (l: ----.. l:)n. Then

part
S· = µ.[1 1,. • .,4>], j = 1 ,. •• ,n where µ.[I ,. . .,I] is the j-th component of the

J J n J 1 n
least fixed point of the n-tuple of operators 11, ••• ,4> (i.e., µ.[@ 1, ••• ,1] = s.,

n J n J
j = J, ••• ,n iff <s 1 , ••• ,s) = glb{(n 1 , ••. ,n)l•.Cn 1, ••• ,n) = n., i = 1, ••• ,n}.)

n n 1 n 1

Observe that if P is undeclared in E, M1 (EJP)(S) e(P) is some arbitrary n.

4.SYNTAX AND SEMANTICS OF S2 (S0 with declarations and full procedures)

Syntax.

Expressions are as before. We introduce the class of statements S (dropping, as every­

where below, the index 2) using auxiliary classes R1, R2, R3 , E and PB defined as

follows:

Remarks.

S· ·=

RJ. ·=

R2· ·=

3
R . ·=

E· ·=

1 I
R I~ x;R

21 2 R array a;R

R3IE;R3

v:=tlR~;R;lif p then R~ else R; filP(t,v) I

begin S end

P<~BIE 1 ,E2 J (restricted as in section 3)

B: := <val x;~ y JS> where x t y

(S E S)

(R 1 E R 1)

CR2 E R2)

(R3 E R3)

(E E E)

(B E PB).

(i) The construct <val x;~ y IS> denotes a procedure body with x as formal

value parameter and y as formal variable parameter.

(ii) All considerations of this and the next section can be trivally extended to

the case of, possibly empty, lists of variable declarations, array declara­

tions, or formal parameters (we use this fact tacitly in the definition of

syntatic application below).

(iii) Separate treatment of the begin S end case, being trivial, is always omitted

in the sequel.

S is essentially a subset of PASCAL (apart from the begin S end construct which ensur­

es that the outcome of syntatic application (see below) is an element of S).

36

Sema:ntias.

As important extension of the previous cases we now use the notion of an envi~­

onment mapping variables to an infinite well-ordered set A of addresses. Stores are

then mappings from A to I. More precisely, we define a class Env, with typical ele­

ments E,E , ••• , of partiai functions: V~----+- A satisfying certain restrictions
J part

(each Eis I - I; specification of other (technical) restrictions is omitted for

simplicity's sake). Recall that V~ = SV u (AVxI). Environments are used in the treat­

ment of (variable and array) declarations which, in turn, play a role in the seman­

tics of procedure calls. Their use implies a refinement in the definitions of L1 , R1

and T1, which now are of the following type:

L: IV--+
part

(Env x i:: +A)'

R: IE--+ (Env x i:: + I)' part

T: BE--+ (Env x i:: + {T,F}). part

We give a few clauses of their definitions:

L(x)(E,o) = E(x),

L(a[s])(E,o) = E(a,R(s)(E,o)),

R(v)(E,o) = o(L(v)(E,o)),. .. ,

T(t 1=t 2)(E,o) = equal(R(t 1)(E,o),R(t2)(E,o)), •.•

Let H IE x IV + (Env x i:: --+t E) and let n,n',n 1 , ••• be typical elements of H. We par
order H by putting n ~ n' iff Vt'v'v(n(t,v) S n'(t,v)). 0isnowdefined;as1PV +H. For

each e E e, P E PV and n E H we define e{n/P} as before.

The meaning M of S E S with respect to E € E and e € e in environment e and

store o yields a new store o', i.e.

M: Ex S + (e +(Env x E----+- i::)). part

In our approach the treatment of declarations and procedures calls requires a

number of preparations, viz. a new notation, and the introduction two major tools:

(a) Notation. For any E E Env, y E SV such that y i dom(E) and a € A such that

a i range(e), we write e u <y,a> for the extension of E yielding a when applied toy.

Similarly we write E u <'..c:a,vi>,a\J>\JEI for the extension of E yielding °'v when

applied to <a,v>(vEI).

(b) Substi-tution. A careful definition of substitution of an integer variable v for a

(simple) variable x in a statement S , written as S[v/x], and, mutatis mutandis, of

S[b/a] and S[Q/P] plays a major part in our approach. Substitution is - as we see it

- the proper tool for dealing with scope problems, and, moreover, it is used in an

essential manner in the treatment of parameter passing. We do not present its full

37

definition, but give some representative cases.

An occurence of a variable in a statement can be bound or free (e.g., an occur­

ence of x in S is bound whenever it is within a substatement of S of the form var x;R 1 -- '
or <val x;~ ylS:1·>, or <val z;var x!S >. Mutatis mutandis, we define the other

- - I
cases).

(w:=t)[v/x] - w[v/x]:= t[v/x] (where substitution in expressions is straightfor­
ward),

3 3 3 3
(R1;R2)[v/x] :=R1[v/x];RzCv/x], P(t,w)[v/x] _ P(t[v/x], w[v/x]),

(~ y;R1)[v/x]

I
- var y;R

I
_ ~ y;R [v/x],

I
- ~ y' ;R [y' /y][v/x],

if x - y

if x i y and y not free in v,

if x i y and y free in v, where y' is the first
vfriable E SV such that y' i x and y' not free in
R or v.

3 3
(E;R)[v/x] - E[v/x];R [v/x~, (E 1 ,E 2)[v/x] = E1 [v/xJ,E2[v/x], (P<=B)[v/x] =: P<= B[vfa],

<val. x; ~ y!S>[v/z]

_ <val x; ~ y!S>, if z - x or z - y,

- <val x; ~ y!S[v/z]>, if z i x and z i y and x and y not free in v,

- similar as above, otherwise

(cJ Syntactic apptication. The next main idea of this section is the notion of

"syntactic application": For each procedure body B we define its application B[t,v]

to the actuals t (corresponding to the formal value parameter) and v (corresponding

to the formal variable parameter) as a syntactic operation (i.e., as an operation

yielding a piece of text) as follows:

(<val x; var yJS>)[t,z] _ var u;u:=t;begin S[u/x][z/y]end,

(<val x; ~ y!S>)[t,a[s]] _ var u1,u2;u1 :=t;u2:=s;begin S[u /x][a[u]/y]end,
- -- I 2 -

where it is required that u is the first variable t x,y and not free in S,t or z

(analogously for u 1,u2). Observe that

(i) this definition implies that the actual value parameter t is indeed evaluated

before execution of S;

(ii) the precaution with the fresh u is necessary since a definition like

~ x;x:= t; •.• !!light give a clash between the local x and possible occurences

of x in the actual t (cf • .ALGOL 60 report, 4.7.3.2);

(iii) the two possibilities for the actual variable parameter v are

- v = z, a simple variable. Call-by-variable then coincideswith the .ALGOL 60

call-by-uame.

38

- v: a[s], a subscripted variable. Then s is evaluated (and stored in u2)

before execution of S.

We now define M as follows:

MCE!v:=t)(e)(E,cr) = cr{R(t)(E,cr)/l(v)(E,cr)}

MCEIRi;R~)(e)(E,cr) = MCEIR~)(e)(E,MCEIR:)(e)(E,cr))

fMCEIR:)(e)(E,cr)

.. LM(E!R~)(e) (E,cr)

if T(p)(E,cr) T

if T(p)(E,cr) = F

I I
M<EI~ x;R)(e)(E,cr) = M(EjR [y/x])(S)(Eu<y,a>,cr),

where y is the first variable€ SV not in dom(E), and a the first

address not in range(E)

2 I 2 MCE!array a;R)(6)(E,cr) = M(E R [b/a])(S)(EU<<b,v>,av>vEI>,cr)

where bis the first array variable such that no <b,v> is in dom(E),

and where the a are chosen in some (unspecified but) unique way
v

from A\ range(E)

3
MCEIP 1<==B 1, ••• ,Pn<==Bn;R)(e)(E,cr) =

n n 3 n M(E,Q 1<=B 1[Q./P.]. 1 ,. .. ,Q <=B [Q./P.]. 1 1R [Q./P.]. 1)(8)(E,cr)
J J J= n n J J J= J J J=

where the Q1 , ••• ,Qn are the first variables€ PV such that for each

j, j = l, ••• ,n, Q. does not occur in E, P1<=B 1, ••• ,P <=B or R3•
J n n

MCE!P(t,v))(S)(E,cr) = e{;l/Pl} •.. {;n/Pn}(P)(t,v)(E,cr)

where E : <P.<=B.>~ 1 and for j = I, ••• ,n, ;. is obtained in the
l l i= J

following way: Let, for i = 1, .•. ,n, the operator~.: Hn + H be given
l

by ~.(n 1 , •• .,n) = A.t'•1'v'•M(IB.[t',v'J)(S{n 1/P 1} ... {n /P }). Then
i n l n n

;. = µ.[~ 1 ,. ••• ~], for j = I,. . .,n.
J J n

It is always assumed that E is defined for all simple and array variables

which are free in E or S.

Summarizing, declarations are dealt with by suitably extending the environment

(E or E (which may just as well be viewed as environment for the procedure vari­

ables)), with the precaution of always choosing fresh variables. Procedure calls are

treated through a combination of least fixed point techniques with a syntactic device

for dealing with parameter mechanisms.

5 • PROOF THEORY

The proof theory is given in the style of HOARE [7], but it extends previous

approaches in that we

39

- present an axiom for assignment to subscripted variables as well (a detailed

description of this is contained in DE BAKKER [3])

- present a proof rule for (recursive) procedure calls which embodies an adequate

treatment of parameter passing

- present proof rules for declarations which properly deal with scope problems (for

variable declarations our rule is taken from HOARE [8])

We describe only the kernel of the system. Certain rules which are standard in

this type of deductive system are omitted and extension of BE with quantifiers to­

gether with the appropriate extension of the function T is left to the reader.

An atomic correctness formula is a construct of the form {p}S{q}, p,q E BE,

SES. Arbitrary atomic correctness formulae are denoted by y,y 1 , ••• and r denotes

a finite set of such atomic formulae. A correctness formula is a construct of the

form <Ejr>. It is not required that each P occurring in some {p}S{q} from r be

declared in E (it will be, however, the case with all provable <Ejf>). Proof rules

are of two forms:

<El I r I>

<E2 j r 2>'
and

<Ejr 1> _,_ <Ejr 2>

<Elf 3>

a correctness formula <Elf>. Let E = <P.<=
1.

First we define the validity of
n

Bi>i=I" Let (as before) H = (1E x IV)->- (Env x rpart: E), and let HE be the set of all

E-variable invariant n in H, i.e., n satisfies, for each t,v,x,s,a,0:

(i)

(ii)

n(t[y'/x], v[y'/x])(e:u<y',a>,o) = n(t[y"/x], v[y"/x])(e:u<y",a>,o)

where y', y" are variables E SV not occurring free in t, v·or in

any procedure body in E

n(t,v) (e:,o) (e:(y)) = o(e:(y))

where y is a variable E SV which does not occur free in t,v

or in any procedure body in E

The first condition is needed for (the soundness of) the substitution rule

whereas the second is needed for (the validity of) the invariance axiom. Observe

that for each i = I, ... ,n ~t·Av•M(EIP.(t,v)) E HE
1.

We define

(i) M(<Ej{p}S{q}>)(8) holds iff for all e: defined on all the free variables of E,

p, Sand q and for all o, we have: if T(p)(e:,o) and for some a', M(Els)(S)(e:,o)

=a' then T(q)(e:,o').

(ii) M(<Ejr>)(e) holds iff M(<Ejy>)(e) holds for each y Er.

40

(iii) <Elf> is

<EI I r I>

<E2Jr2>

valid iff M(<Ejr>)(8) holds for each e < PV-+ HE

(iv)

(v)

E E
is sound iff for all e " PV-+ H 1 n H 2 , M(<E 1 fF1>) (8)

implies M(<E2 Jr2>)(e)

<EJr 1> + <EJr 2>

<EI r 3>

<EJr 1>

is sound iff soundness of <Elr 2> implies validity of <Elr3>.

The following axioms and proof rules are proposed:

Assignment <E J{p[t/v]}v:=t{p}> .

This is like Hoare's axiom, but it extends it since substitution for a subscripted

variable is also covered. We present the central clause from its definition:

a[s][r/a[t] = if s[r/a[t]] = t then r else a[s[r/a[t]]] fi.

Corrrposition, conditionals. As usual and omitted.

Declarations I
<E {p}R [y/x]{ }>

<E {p} ~ x;R {q}> '

. I
where y is some variable not occurring free in E,p,R or q.

(The array case is similar and omitted.)

For procedure declarations:

n n J 3 n <E,Q 1<=B 1[Q./P.]. 1, ... ,Q <=B [Q./P.]. I {p}R [Q./P.]. 1{q}>
J J J= n n J J J= J J J=

where the Qj are completely fresh (formal definition of this omitted).

Remark. The rule for procedure declarations motivates the carrying along of E in a

correctness formula for the purpose of recording the procedure bodies.

Prooedure oaZZs. We proceed in four stages for didactic reasons.

1. (Only one non-recursive procedure declaration.) Assume the declaration P <=B.

If B contains no occurrences of P, then we have the following simple proof rule:

<E,P<=B {p}B[t,v]{q}>
<E,P<=B {p}P(t,v){q >

(Note that, in the recursive case this rule is still sound, though presumably

not very useful.)

2. (Only one parameterless procedure declaration.) Assume the declaration P <== S.

We then have

41

<E,P<=S I {po}S'{qo},{pl}S'{ql}, •.. ,{pn}s'{qn}>

<E,P<=S I {p0}P{q0},{p1}P{q1}, ... ,{pn}P{qn}>

where S' = S[P'/P] and P' is a fresh variable.

(This is a "parallel" version of Scott's well-known induction rule for parameter­

less procedures. The structure of this version anticipates stage 3.)

3. (Only one procedure declaration.) Assume the declaration P <= B with

B: <val x;~ y[S> in which

We then have

<E,P<=B j {p 1}P'(t1,v1){q1},. . .,{n }P'(t ,v){q }>
·n n n n

+

<E,P<= B {p0}B'[t0,v0J{q0},{p1 }B'[t 1 ,v1 J{q 1 }, ••. ,{pn}B'[tn,vn]{qn}>

<E,P<=B I {p0}P(t0 ,v0){q0}>

where B' - B[P'/PJ and P' is a fresh variable.

Observe that the antecedent of the premise of the rule consists of correctness

formulae concerning the inner recursive calls P(ti,vi)' i = 1 , .•. ,n with appro­

priately chosen "inner" assertions pi' qi' i = l, •.. ,n, whereas the conclusion of

the rule concerns the outer call P(t0,v0), with outer assertions p0 , q0 .

Observe also that there is no point in including {p0}P(t0 ,v0){q0} in the 'antece­

dent of the premise, nor of {pi}P(ti,vi){qi}, i = I, ••• ,n in the conclusion of

the rule.

4. (A system of procedure declarations.) We now consider the system of procedure
n

declarations E' : <Pi<= Bi>i=J' We use index-triples (j,k,h) to denote the h-th

occurrence (I s h) of the k-th procedure variable (I s k s n) in the j-th proce­

dure body (I s j s n), with h s M. k where M. k denotes the number of occurrences
J. J.

of Pk in Bj. Of course, Pk always occurs in Bj in the form Pk(t,v) for some (t,v)=

(t(j,k,h)'v(j,k,h)) (I s h s Mj,k). Let

J={(j,k,h)[Jsjsn, !Sksn, I s h s M. k}
J'

42

and let k0 be an element of the set {1, .•. ,n}.

Remarks.

<E,E'

<E,E'

I { P < •) } P' < t < · k h) • v c ·) H q c · k h) }k 1 > J,k,h k J, , J,k,h J, , = , ... ,n

{pk }Bk [tk ,vk]{qk },
0 0 0 0 0

(j,k,h)d

{ P (·) } B 1
[t (· h) 'v (· h)] { q (' k h) }k I > J,k,h k J,k, J,k, J, , = , •• .,n

(j,k,h)d

where fork= l, ... ,n

variables.

Bk' ~ Bk[P!/P.]~ l
].]. 'l"'

and P;, .•• ,Pk are fresh

l. The Pk are not declared in E, E', hence, in the premise of the rule the meaning of Pk
' b' HE,E' h d d f' . ' . l' . 1 is an ar itrary nk c . However, t e soun ness e 1n1t1on imp ies universa

quantification over these n, as follows from the role of a.

2. Again, the conclusion is to show <E,E' I {pk }Pk (tk ,vk){qk }> for some k0
. 0 0 0 6 0

l ~ kO ~ n, where the Pk (tk ,vk) is the outer call, ana the Pk(t(j,k,h)'v(j,k,h))

are inner recursive call~, o2cur~ing within the B., and having to satisfy the
J

premise for (suitably chosen) inner assertions p(j,k,h) and q(j,k,h)'

3. Our rule is an extended version of Scott's induction rule (see SCOTT & DE BAKKER

[14]) - its soundness can be shown by a more or less standard appeal to the cont­

inuity of the operators involved in the least fixed point definition. Observe

that in our approach eaah call can be treated (by applying some appropriate in­

stance of the rule), which is not the case with the approach originated by HOARE

[8] and followed by IGARASHI et. al. [10], GORELICK [6] and DONAHUE [5]. As we

understand it, they use Scott's rule only for actual parameters (which happen to

be) identical to the corresponding formals and then apply some substitution pro­

cess to deal with other actuals. However, they are then enforced to impose various

restrictions on these actuals.

Two types of rules and one final axiom are needed to allow meaningful applica­

tion of the procedure rule.

Substitution

<E { }P(t,v){q}>
<E p[w/x] P(t[w/x],v[w x]) q[w x] >

43

where

(i) x does not occur free in E.

(ii) either w = z or w = a[z] for some z E SV which does not occur free in E,p,t,v

or q.

Remark. This rule presents a limited treatment of substitution; stronger versions

are possible (see COOK [4] and GORELICK [6]).

Extension

<E {p}S{q}>
<E,E' {p}S{q}>

where no procedure variable declared in E' occurs free in E or S.

Invariance

<E J {p}P(t,v){p}>

where p does not have free simple variables which occur free in E, t or v.

Remark. This axiom is taken from GORELICK [6].

We illustrate the use of the procedure rule by means of an example.

Example. Let S be the following statement:

if x = 0 then a[O]:=l else x:=x-1; P(x,a[xJ); y:= (x+l)·a[x] fi

and let B be <val x; ~ yJS>. For any integer expression t we want to prove

<P<=B J {t 2: O}P(t,a[t]) {'v'u(u $ t => a[u]=u!)}>.

We have to make use of the procedure rule (from stage 3) with appropriately

chosen inner assertions p 1 and q 1 for the inner call P(x,a[x]). Observe that we have

not only to verify that the inner call does its subtask but also that it does not

change the value of x. For this reason we choose x2:0Az=x as p 1 and 'v'u(u$x=>a[u]=u!) /\

z = x as q 1 where u and z are fresh variables. By the procedure rule it is no~ suf­

ficient to prove

<P<= B I {x 2: 0 11 z x}P' (x,a[x]){'v'u(u :>; x => a [u] = u!) 11 z x}>

+

<P<= B {t 2: O}B'[t,a[t]]{'v'u(u :>; t => a[u] = u!)},

{x 2: 0 /\ z = x}B'[x,a[x]]{'v'u(u $ x => a[u] u !) /\ z x}>,

where B' = B[P'/P] and P' is a fresh variable.

Because of space limits we leave the details to the reader. The proof uses the sub­

stitution rule and the invariance axiom.

44

REFERENCES

[1] APT, K.R. & J.W. IlE BAKKER, Exereises in denotational semantics, in: Proc. 5th

Symposium on Mathematical Foundations of Computer Science (A. Mazurkiew­

icz, ed.), pp. 1-11, Lecture Notes in Computer Science 45, Springer

(1976).

[2] BAKKER, J, w. DE, Least fixed points revisited , Theoretical Computer Science, ~.

pp. 155-181 (1976).

[3] BAKKER, J. w. DE, Correctness proofs for assignment statements, Report IW 55/76

Mathematisch Centrum (1976).

[4 J COOK, S.A., Axiomatie and interpretive semantics for an ALGOL fragment,

Technical Report no. 79, University of Toronto (1975).

[5] DON.AHUE, J.E., Complementary definitions of programming Zanguage semantics,

Lecture Notes in Computer Science 42, Springer (1976).

[6] GORELICK, G.A., A complete aziomatia system for proving assertions about

reaursive and non-reaursi~e programs, Technical Report no. 75, University

of Toronto (1975).

[7 J HOARE, C.A.R., An a.:x:iomatic basis for programning l.anguage eonstructs, C.ACM _!2,

pp. 576-580 (1969).

[8] HOARE, C.A.R., Procedures and parameters: an axiomatie approaah, in: Symp. on

Semantics or Algorithmic Languages., Lecture Notes in Ma thematics 188

(E. Engeler, ed.) pp. 102-116, Springer (1971).

[9 J HOARE, C.A.R. & N. WIRTH, An a.xiomatie definition of the programming language

PASCAL, Acta Inf. _£, pp. 335-355 (1973).

[10] IGARASHI, S., R.L. LONDON & D.C. LUCICH.AM, Axiomatie program verifieation I: A
logicaZ basis and its implementation, Acta Inf . ..!!.... pp. 145-182 (1975).

[11 J LAUER, P.W., Consistent formal theories of the semantias of' programming lan­

guages, Report TR 25 121, IBM Laboratory, Vienna (1971).

[12] MANNA, Z. & J. VUILLEMIN, Fi:x:point approach to the theory of the eomputation,

C.ACMJ.2, pp. 528-536 (1972).

[13] MILNE, R. & C. STRACHEY, A theory of programning language semanties, Chapman

and Hall, London and Wiley, New York (1976).

[14] SCOTT, D. & J.W. DE BAKKER, A theory of programs, unpublished memo (1969).

[15] SCOTT, D. & C. STRACHEY, Towards a mathematieal semantics for computer language~

.!!!_: Proc. of the Symp. on Computers and Automata (J. Fox, ed.) pp. 19-46,

Polytechnic Inst. of Brooklyn (1971).

