
EXERCISES IN DENOTATIONAL SEMANTICS

K.R. Apt

J.W.deBakker

Mathematisch Centrum, Amsterdam

I. INTRODUCTION

The present paper is a progress report about our work on semantics and proof theory

of progralllliling languages. We study a number of fundamental programming concepts occur

ring e.g. in the language PASCAL, viz. assignment, sequential composition, conditionals,

locality, and (recursive) procedures with parameters called-by-value and called-by

variable. Our goal is the development of a formalism which satisfies two requirements

- Semantic adequacy: the definitions capture exactly the meaning attributed to these

concepts in the PASCAL report.

Mathematical adequacy: The definitions are as precise and mathematically rigorous as

possible.

Of course, full semantic adequacy cannot be achieved within the scope of our paper. Thus,

we were forced to omit certain aspects of the concepts concerned. What we hope to have

avoided, however, is any essential alteration of a concept for the sake of making it

more amenable to formal treatment.

Our approach follows the method of denotational semantics introduced by Scott

and Strachey (e.g. in [12]). Moreover, we investigate the connections between denota

tional semantics and Hoare's proof theory ([6]), insofar as pertaining to the concepts

mentioned above.

As main contributions of our paper we see

- The proposal of a new definition of substitution for a subscripted variable. This

allows an extension of Hoare's axiom for assignment to the case of assignment to a

subscripted variable. (This idea is described in greater detail in [2].)

- The proposal of a semantic definition and corresponding proof rule for recursive

procedures with an adequate treatment of call-by-value and call-by-variable. (We

believe these to be new. The proof rule is based on Scott's (or computational) in

duction, which is well-understood for parameterless procedures, but hardly so for

procedures with parameters. In our opinion, neither the papers of Manna et al. (e.g.

in [10,11]) nor those of e.g. De Bakker ([I]), Hoare ([7]), Hoare and Wirth ([8]),

Igarashi, London and Luckham ([9]) give the full story on this subject.)

It will turn out that our treatment of procedures is quite complex. However, we doubt

whether an approach which is essentially simpler is possible. Of course, we do not claim

that our formalism is the last word, but the programming notions involved are intricate,

2

and we feel that essential simplification could be obtained only by changing the lan

guage.

The paper has the following outline:

Section 2 gives the syntax of the various language constructs. Also, a careful defini

tion of sUbstitution is given which is needed for the treatment of assignment, local

ity and parameter passing.

Section 3 is devoted to the definition of the denotational semantics of the five types

of statements. We introduce the semantic function M which gives meaning to a statement

S, in a given environment s (a mapping from variables to addresses) and store a (a map

ping from addresses to values), yielding a new store cr' : M(S)(s,cr) =a'. For assign

ment, sequential composition and conditionals the definitions are fairly straightfor

ward. It is also reasonably clear what to do about locality, but the treatment of pro

cedures may be rather hard to follow. Some of the causes are:

- When applying the usual least fixed point approach, one has to be careful with the

types (in the set-theoretical sense) of the functions involved.

- The notion of call-by-variable (the FORTRAN call-by-reference) requires a somewhat

mixed action to be taken: When the actual parameter (which has to be a variable) is

subscripted, the subscript is evaluated first, and then a process of substitution of

the modified actual for the formal is invoked.

- The possibility of clash of variables has to be faced. (Cf. the ALGOL 60 report,

sections 4.7.3.2 (Example:£. int .:::_; proc P(x); int x;~ ... ~; ... P(x+I) ... _~) and 4.7.3.3

(Example: .!?_ int x; proc P;!'._ .•• x •. ·.'.:.; ••• .!?_ int x; ••• P •• ·.'.:.· •• ~).) These problems are not

exactly the same as encountered in mathematical logic; in particular, they cannot

simply be solved by appropriate use of the notions of free and bound occurrence and

of substitution, as customary in logic.

Section 4 introduces the proof-theoretical framework. It contains the "Exercises in

denotational semantics": For each type of statement, a corresponding axiom or proof

rule is given, and it is required to show its soundness. Also, a modest attempt at

dealing with substitution is included. In fact, for two rules (sequential composition

and conditionals) the proof is easy, for the assignment axiom we refer to [2], whereas

the remaining three cases should, at the moment of writing this, be seen as conjectures

since we do not yet have fully worked out proofs available. However, we are confident

that the rules, perhaps after some minor modifications, will turn 01•t to be sound.

It may be appropriate to add an indication of the restrictions we have imposed

upon our investigation. There are a few minor points (such as: only one procedure de

claration, i.e., not a simultaneous system; only one parameter of each of the two types,

etc.). Next, things we omitted but which we do not consider essentially difficult (such

as type information in declarations) and, finally, a major omission: We have no func

tion designators in expressions, nor do we allow procedure identifiers as parameters.

There is a vast amount of literature dealing with the same issues. Many of the

papers take an operational approach, defining semantics in terms of abstract machines.

3

This we wholly circumvent in the present paper, though it is in fact needed for the

justification of the least fixed point approach to recursion (to be given along the

lines of De Bakker [I]). Many others take their starting point in some powerful mathe

matical system (universal algebra, category theory), but tend to fall short of a treat

ment of the subtler points of the programming notions at hand. A proof-theoretic ap

proach can be found e.g. in Hoare and Wirth [8] or Igarashi, London and Luckham [9],

but we must confess not to be able to follow their treatment of procedures and param

eter passing. There are also a few papers dealing with the relationship between seman

tics and proof theory, such as Donahue [4], Cook [3] and Gorelick [5], Again, the ap

proach of these papers differs from the present one. E.g., the first one omits treat

ment of recursion, and the other two treat locality in a way which differs from ours

(cf. the block rule in our section 4). On the other hand, we recommend the papers by

Cook and Gorelick for a discussion of substitution, a topic to which we pay little

attention below.

2. SYNTAX

We present a language which is essentially a subset of PASCAL, though there are

some notational variants introduced in order to facilitate the presentation. We start

with the following classes of symbols:

sv {x,y,z,u, ••• }: the class of simple variables,

AV {a,b, ••• } the class of al'ray variables,

B {n,m, ••• } the class of integer constants,
p {P,Q, ••• } the class of procedure symbols.

For technical reasons which will become clear below (def. 2.1, def. 3.3), we

assume some well-ordering of these four sets.

Using a self-explanatory variant of BNF, we now define the classes V (variables),

I E (integer expressions) , BE (boo lean expressions) , and S (statements) :

v (with elements v,w, •••) v: := xla[t]

1E (with elements r,s,t, •••) t: := vlnlt1+tzlt1*tzl if p then t 1 else t 2 fi

BE (with elements p,q,. ••) p"= .. ~lfalseit 1 =t 2 it 1 >t 2 ip 1 ~Pz1P 1 Ap 2 l,p
s (with elements s,so, ...) s· ·= v:=tiS 1;s2 iif p then s 1 ~ s 2 fil

begin~ x; s ~IP(t,v).

Remarks

I. We shall use the notation t 1=t2 (p 1=p 2 , s 1=s 2) to indicate that t 1 and t 2 (p 1 and

p 2 , s 1 and s2) are identical sequences of symbols.

2. Whenever convenient, we shall use parentheses to enhance readability or to avoid

ambiguity. Syntactic specification of this is omitted.

3. (Variables) Note that we have simple variables (x,y,z,u) and subscripted variables

(a[t],b[s], •••), and that an arbitrary variable v may be both simple or subscripted.

4

4. (Expressions) The syntax of 1E and BE has been kept simple on purpose. A minor ex

tension would be to introduce additional operations. On the other hand, the inclu

sion of functions designators within TE or BE presumably would constitute a major

extension, requiring substantial additional analysis below.

5. (Statements) In S we have: assignment, sequential composition, conditionals, blocks,

and procedure calls. The last two cases require further comment:

6, (Blocks) We restrict ourselves to declarations of simple variables without type in

formation. This is motivated by our wish to treat declarations only in sofar as

needed for the analysis of parameter passing.

7, (Procedures) Throughout the paper~ we restrict ourseZves to the case that we have

onZ.y one proaedu:I'e deaZ.aration, given in the form

(2. I) p <= vaZ. x · var y • s0

with the following conventions

(a) P c P, x,y € SV, s0 c S, with x ~ y.

(S) s0 is the proaedUl'e body, x the formal value parameter, y the formal variable

parameter.

(y) In a aaz.i P(t,v), t is the actual (€ IE) corresponding to the formal x, and

v (€ V) corresponds to y.

(o) The declaration (2.1) is assumed to be "globally" available; a call P(t,v) al-

ways refers to (2.1) as corresponding declaration.

(In PASCAL, one would write for (2.1):

procedure P(x:integer,~ y:integer);S0).

Extension to a treatment of systems of declarations is reasonably straightfor

ward (see e.g. [l]), and omitted here mainly for reasons of space; extension to

any number of (value and variable) parameters is trivial.

Substitution plays an important role below, both in semantics and proof theory

(assignment, locality, parameter mechanisms). In particular, we define

S[v/x]: substitute the (arbitrary) variable v for the simple variable x in S;

- s[t/v] and p[t/v]: substitute the integer expression t for the variable v in s or p.

The first kind of substitution is defined in the standard way using the notions of free

and bound occurrence of a simple variable in a statement (An occurrence of x in S is

bound whenever it is within a substat~ment of S of the form begin ~ x;s 1 end. All

other occurrences of x in S are free.) The second kind of substitution, which includes

the case of substitution for a subsa:ripted variable, was introduced in De Bakker [2].

We refer to that paper for a detailed account of this, in particular of its application

in proving correctness of assignment statements.

DEFINITION 2.1. (Substitution in a statement)

a. (w:=t)[v/x] : (w[v/x]:=t[v/x])

b. (S 1;s2)[v/x] : (S 1[v/x];S2[v/x])

c.

d.

5

(if p then S1 else S2 !2:_)[v/x] ;: if p[v/x] ~ s1[v/x] else s2[v/x] fi

(begin~ z;S end)[v/x] - begin~ z;S ~' if x ;: z

- begin ~ z;S[v/x] end, if x ~ z and z does not occur

free in v

- begin new z';S[z'/z][v/x] end, if x ~ z and z occurs

free in v, where z' is the first variable ~ x not occur

ring free in v or S

e. P(t,w)[v/x] = P(t[v/x],w[v/x]).

DEFINITION 2.2. (Substitution in an expression)

a. The definitions of s[t/v] and p[t/v] are straightforwardly reduced by formula induc

tion to that of w[t/v], for some w E V.

b. We distinguish two cases: v = x, and v =a[s].

(a) x[t/x] = t, y[t/x] = y (x~y), a[s][t/x] = a[s[t/x]]

(S) x[t/a[s]]: x, b[s'][t/a[s]] = b[s'[t/a[s]]] (a~b),

a[s'][t/a[s]] - if s'[t/a[s]] = s then t else a[s'[t/a[s]]] fi.

Examples

I. (begin~ y; x:=a[y]; P(x+y+z, a[x]) end)[y/x] _

begin~ y'; y:=a[y'J; P(y+y'+z, a[y]) end.

2. x[l/a[a[J]]] = x, b[2][1/a[a[l]]] = b[2],

a[a[2]][1/a[a[2]]] - if(if 2 = a[2] then I else a[2] fi) a[2]

a[2] then I else a[2] fi] fi.

Observe that the last expression is semantically (section 3) (though not syntactic-

cally) equal to if a[2] 2 then a[I] else fi.

3. DENOTATIONAL SEMANTICS

For any two sets K, L, let (K + L) ((K---+ L)) denote the set of all functions
part

(all partial functions) from K to L.

We define the meaning M of the various types of statements in our language yield

ing, for S E S, as a result a partial function M(S) operating on an environment-store

pair yielding a new store: M(S)(e,o) = o'.

As starting point we take the set A= {a,$, .•. } of addresses and the set 1 =

{v,µ, ... } of integers. Again, we assume these to be well-ordered. LetZ={o,o', •.• }be

the set of stores, i.e. L =(A+ 1), and let Env = {e,e' , ... }be the set of environ

ments, i.e., of certain partial, I - I functions from SV u (AVxI) to A. More specifi

cally, we require that each E is defined on a finite subset of SV, and on all elements

AV x I. Thus, for each x E SV, e(x) EA may be defined, and for each a E AV and v E I,

£(a,v) is defined. (For a subscripted variable a[s], if s has the current value v,

£(a,v) yields the address corresponding to a[s]. The assumption that e(a,v) is always

defined stems from the fact that we study (explicit) declarations of simple variables

only. Array variables may be considered as (implicitly) declared globally.) Next, we

6

introduce

- For each t E IE its Pight-hand value R(t) (t::,cr) E 1,

- For each v E v its left-hand value L(v) (t::,cr) E A,

- For each p E BE its value T(p)(E,cr) E {T,F}.

DEFINITION 3. I.
a. R(v)(E,cr) = cr(L(v)(E,cr)), R(n)(E,cr) = v (where v is the integer denoted by the

integer constant n), n(t 1+t 2)(E,cr) =plus (R(t 1)(E,cr),R(t2)(E,cr)), •.• ,R(if p ~

t 1 else t 2 fi) (E:,cr)

= { R(t 1)(E,a),

R(t 2)(E,a),

b. L(x)(t,a) = E(x),

if T(p) (E,cr)

if T(p)(E,a)

L(a[s]) (E,cr)

T

F

E(a,R(s) (E,cr))

c, T(~)(e,a) = T, ••• ,T(t 1=t2)(e,a) =equal (R(t 1)(£,cr),R(t2)(e,o)), .•• ,

T(p 1:ip2)(t,cr) = (T(p1)(e,cr) => T(p2)(s,cr)),

where "=>" denotes implication between the truth-values in {T ,F}, •••

For the definition of assignment we need the notion of vaPia:nt of a store o: We

write o{v/a} for the store which satisfies: cr{v/a}(a) = v, and, for a' fa, cr{v/a}(a')

= a(o: ') •

Using the notations and definitions introduced sofar, it is not difficult to de

fine the meaning of the first three types of statements. We shall use the convention

that M(S)(E:,cr) is undefined whenever e is undefined on some variable which occurs free

in Sor s0• A similar convention applies to L, R and T.

DEFINITION 3.2. (Assignment, sequential composition, conditionals)

a, M(v:=t)(E,~) = o{R(t)(t,a)/L(v)(E,o)}

b. M(s 1;s2)(t,a) = M(S 2)(e,M(S 1)(t,o))

if T(p)(t::,cr) T

if T(p)(t::,cr) F.

For blocks and procedure calls, some further preparations are required. First of
all, we require that, for each e, A \ range(€:) is infinite. Moreover, for each E, each

y E SV not in the domain of E, and each a E A not in the range of E, we use the nota

tion£ u <y,o:> for the extension of E defined also on y (and yielding there a). This

allows us to give

DEFINITION 3.3. (Blocks)

M(begin new x;S end)(s,cr) M(S[y/x]) (tu<y,a> ,cr), where y is the first variable in SV

not in the domain of e, and a is the first address in A not in the range of £,

The last - and most difficult - case is that of procedure calls, Complications are
- The standard least fixed point treatment of recursion can be given only in terms of

a somewhat hybrid entity: a function which expects linguistic objects (elements of

IE and V) as arguments, and yields an element of (En~ x L---->- L) as value. part

7

- The possibility that the actual parameter t has (free) occurrences of the formal x.

- The concept of call-by-variable which, contrary to call-by-name, does not allow

straightforward substitution but requires prior evaluation of the subscript in case

the actual is a subscripted variable.

Let us consider the declaration P <= val x • var y • s0 , with s0 E S. In general, s0

will contain "inner" recursive calls of P, i.e.,

Let us use, for any SES, thenotation S[P+X] for the result of replacing all occurrences

of Pin S by X, where X is an element of the set X = {X,Y, .•• } of procedUT'e variables.

This result is no longer an element of S, but it is easy to extend the definition of

S yielding Sext containing both Sand all elements of the form S[P+X].

We shall define the meaning of the procedure P to be an element of a certain sub

set of the set H d~. ((1ExV) + (Envxl: ---r l:)). In fact, we consider the subset H.
part vi

consisting of those elements n of Ii which are variable invariant, i.e., which satisfy

n(t[y/x],v[y/x])(su<y,a>,o) = n(t[y'/x],v[y'/x])(su<y',a>,o), for all y,y' which do not

occur free in t, v or s0 • F1,lrthermore, we order Hvi by putting n ~ q,'· iff Vt,v[~(t,v)

5 n'(t,v)]. Let e,e', ••• be elements of the set (X+Hvi),Thus,itismeaningfultowrite

e(X)(t,v)(s,cr) = o'. For each 8 E (X+Hvi)andeach SextESext' we define a mapping

M(e) (Sext) in the following way:

- For Sext of one of the first four types, M(e)(Sext) is the obvious analogue of M(S).

E.g., M(e)(v:=t) = 1.l(v:=t), ••• ,M(e)(E_~ x;S ~)(s,o) = M(e)(S[y/x])(su<y,a>,o),

where y = ••• and a= •.•

- M(e)(X(t,v)) = B(X)(t,v).

Actually, we shall mostly use B's of the special form e

= n, <X,n>(Y) is undefined for X ~ Y.

<X,n>, where we have <X,n>(X)

Let, for ~a monotone element of (Hvi + Hvi)' µ~be the least fixed point of ~. i.e.,

the least element of Hvi satisfying ~(µ~) = µ~. Let us, finally, write E_ ~ x,y;S ~

as short hand for E_~ x;~~ y;S .=_.=_,provided that x ~ y.

At last, we have enough background to give

DEFINITION 3. 4. (Procedure calls) Assume the declaration (2, I). Then M(P (t, v)) = (µ~) (t, v),

where ~ is the following (monotone) function:

~ = iln • At,v • M(<X,n>)

(begin~ u 1 ,u2;u1 :=t;u2:=s;

s0[P+X][u 1/x][v 1/y] end)

where u 1,u2 are the first two variables

where if v - z for some z E sv, then s

where if v - a[r] for some a E AV and r

not occurring free in t, v or so,
d~. df.

u2 and v 1 :::: z,

E 1E, then s d~. r and v 1
d~. a[u2J.

8

Exampie. Consider the declaration

p <= vai x • var y • if x ~ 2 ~ P (7 ,y) ~ if x = then

i:+i+l ;P(x-1,a[y]) ~ y:=O Q. Q .
Then M('P(x+S),a[i])) = (µi!>)(x+5,a[i]), where we have, e.g.,

\ll(n)(7,y) = M(<X,n>)(E_~ u1,u2 ;u1:=7;u2 :=u2 ; g_ u1 ~ 2 ~ P(7,y) ~if u1 =I then

i:=i+l;X(u1-J,a[y] ~ y:=O fi fi ~)

and

i!>(n)(x+S,a[i]) = M(<X,n>)(.!:_~ u1,u2;u1:=x+S;u2 :=i; ifu1<>: 2~P(7,a[u2J~ifu 1 = 1

then

i:=i+l;X(u1-I,a[a[u2J]) ~ a[u2J:=O fi fi ~).

4. APPLICATIONS TO PROOF THEORY

We introduce the kernel of a system of axioms and proof rules to show the correct

ness of programs in our PASCAL-like language, and offer as exercises the proofs of

the soundness of these axioms and rules.

The formal system is taken from Hoare's axiomatic treatment ([6,7]) of the induc

tive assertion method. (Subsequent elaboration of his system may be found e.g. in [8]

and [9].)

What we view as our extension of the theory as previously developed, is the fol

lowing:

- An extension of Hoare's axiom of assignment to the case of assignment to a subscript

ed variable

- A rule for recursive procedures which extends Scott's induction principle to proce

dures with call-by-value and call-by-variable parameters.

Let p,q t: BE,

Arbitrary correctness

y } of such formu'lae
n

times omitted.

E Sext" A correctness fo1'mUia is a construct of the form {p}S{q}.

formulae are denoted by y,y 1,y', .•• , and finite sets r {y 1, •••

are called axioms. Outermost parenthesis in {y 1, ••• ,yn} are some-

The proof rules of our system are of the following two forms:

(4. I)

(4.2)

DEFINITION 4. I •

a. M(e)(r) holds iff M(e)(y) holds for each y E r.

M(e)({p}S{q}) holds iff for all £ defined on all free variables of p,q,S and s0 ,

and for all o, we have T(p)(e:,o) • T(q)(£,!f(e)(S)(E,o)).

9

b. r is valid iff M(e)(r) holds for all e.
c. ~I is sound iff, for all e, M(9)(r 1) implies

2
d. r1 + rz is sound iff soundness of .:J. implies

r3 rz
validity of r 3 •

We now present the axioms and proof rules for the five types of statements and,

moreover, a proof rule dealing with substitution. (It is possible to refine the last

rule (see [3,5]); however, in the form as given it is sufficiently powerful to allow

meaningful application of the procedure rule.)

Assignment {p[t/v]} v:=t {p},

This axiom, though syntactically identical to Hoare's assignment axiom, is in

fact an extension of it since it also covers assignment to subscripted variables.

Example: {if a[2]

see [2].

2 ~ a[J] =I~~ fi} a[a[2]]:=J {a[a[2]]=1}. For details

Composition

Conditionals

{p}S 1{q},{q}S2{r}

{p}S 1;s2{r}

{pAq}S){r},{pA,q}S2{r}

These two rules are easily seen to be sound.

BZoaks {p} S[y/x] {q}
{p} begin~ x;S ~ {q}

where y is some variable whiah does not oaaur free

in p, q, S or s0 .

This rule was first given in Hoare [7]. It is not so easy to grasp all its conse

quences. Let us point out, e.g., that the fact that it leaves declaration (2.1) un-

affected ensures that in a program such as < P +- var x • vai y • z ••• , ~ •••

~~ z; ••• P(t,v) •.• !:. ••• !:_>,a clash between the global z of the procedure body,

and the local z valid at the moment of call, is avoided. (As we see it, this problem

is incorrectly dealt with in [3,5].)

Proaedure aalls. Assume (2.1), and let s0 have the form as described before definition

3.4. Assume we want to prove {p} P(t,v) {q}. Let Po d~. p, q0 d~. q, t 0 d~. t, v0 d~. v.

10

. o o o o_ {p0} begin~ u1 ,u2,u1 :=t0 ;u2:-s0 ;

0 0 s0[P +X][u1/x][v/yJ !E2. {q0 },

i i where, for eaah i = O,J,,,.,n, the u 1, u2 do not oaaur> free

in s0, t., v., p. or q.,, and where the s. and vi1·, i = o, ... ,n,
l l. l. l. l

are derived from the vi in the same manner as in def. 3.4.

Observe that the p., q., i = I, ... ,n, are assertions about the inner calls, where-
J. l

as the p0 , q0 are assertions about the outer call. Therefore, the p0 , q0 do not play a

part in the inductiOn hypothesis. One should also observe that the rule remains valid

when the formulae {pi} P(ti,vi) {qi}' i = l, ... ,n, are added to its conclusion (i.e.

to {p0} P(t0,v0) {q0}).

Substitution P • var x • vaZ y · s0 , {p}S{q}

P • (var x • vaZ y • s0)[v/u],{p[v/u]}S[v/u]{q[v/u]}

where v satisfies the foZZowing requirement: None of the sirrrpZe

variables oaaurring in v oaaurs free in s, s0, p or q.

We hope that the notation in this rule - which extends the definitions given so

far - is self-explanatory: Above the line, calls of P refer to declaration (2. I), but

below they refer to the declaration P • (var x • vaZ y • s0)[v/u], where a natural

extension of def, 2. I is assumed,

We are confident that the proofs of the soundness of the block rule, the procedure

call rule and the substitution rule, will offer no difficulties.

11

REFERENCES

1. De Bakker, J.W., Least fixed points revisited, in \-Calculus and Computer Science

Theory, Lecture Notes in Computer Science 37 (C. Bohm, ed.), p.27-61,

Springer (1975).

2. De Bakker, J.W., Correctness proofs for assignment statements, Report IW 55/76,

Mathematisch Centrum (1976).

3. Cook, S.A., Axiomatic and interpretive semantics for an ALGOL fragment, Technical

Report no. 79, University of Toronto (1975).

4. Donahue, J.E., The mathematicat semantics of axiomaticatty defined programming

tanguage constructs, in Proc. Symp. Proving and Improving Programs,

p.353-370, !RIA (1975).

5. Gorelick, G.A., A comptete axiomatic system for proving assertions about recursive

and non-recursive programs, Technical Report no. 75, University of Toronto

(1975).

6. Hoare, C.A.R., An axiomatic basis for programming language constructs, C.ACM _!I,

p.576-580 (1969).

7. Hoare, C.A.R., Procedures and parameters, an axiomatic approach, in Symp. on Se

mantics of Algorithmic Languages, Lecture Notes in Mathematics 188

(E. Engeler, ed.), p.102-116, Springer (1971).

8. Hoare, C.A.R. & N. Wirth, An axiomatic definition of the programming tanguage

PASCAL, Acta Inf. ~. p.335-355 (1973).

9. Igarashi, S., R.L. London & D.C. Luckham, Automatic program ver'ification I: A togi

cat basis and its implementation, Acta Inf. i• p.145-182 (1975).

10. Manna, Z., S. Ness & J. Vuillemin, Inductive methods for proving properties of

programs, C.ACM ~. p.491-502 (1973).

11. Manna, Z. & J, Vuillemin, Fixpoint approach to the theory of computation, C.ACM J2.,
p.528-536 (1972).

12. Scott, D. & C. Strachey, Towards a mathematical semantics for computer tanguages,

in Proc. of the Syrop. on Computers and Automata (J, Fox, ed.), p. 19-46,

Polytechnic Inst. of Brooklyn (1971).

